Novi Sad J. Math. Vol. 40, No. 1, 2010, 103-110

BEST APPROXIMATION IN PROBABILISTIC 2-NORMED SPACES

A. Khorasani¹, M. Abrishami Moghaddam²

Abstract. In this article, we studied the best approximation in probabilistic 2-normed spaces. We defined the best approximation on these spaces and generalized some definitions such as set of best approximation, P_b -proximinal set and P_b -approximately compact and orthogonality relative to any set and proved some theorems about them.

AMS Mathematics Subject Classification (2010): 54E70, 46S50

Key words and phrases: Probabilistic 2-normed spaces, P_b -best approximation 2-normed spaces, P_b -proximinal, P_b -chebyshev

1. Introduction

In [5], K. Menger introduced the notion of probabilistic metric spaces. The idea of K. Menger was to use distribution function instead of non-negative real numbers as values of the metric. The concept of probabilistic normed spaces (briefly, PN-spaces) was introduced by A. N. Sertnev in 1963, [7].

The main aim of this paper is to develop best approximation theory in 2-normed spaces. In [8], M. Shams and S. M. Vaezpour get some results in probabilistic normed spaces. We want to extend those in 2-normed linear space.

In the sequel, after an introduction to probabilistic 2-normed spaces, we define the concept of best approximation in probabilistic 2-normed space and generalize some definitions such as set of best approximation, proximinal set and approximatively compact set [1, 2, 4, 6, 8].

A distance distribution function (briefly, d.d.f.), is a function F defined from the extended interval $[0, +\infty]$ into the unit interval I = [0, 1], that is nondecreasing and left-continuous on $(0, +\infty)$ such that F(0) = 0 and $F(+\infty) =$ 1. The family of all d.d.f.s will be denoted by Δ^+ , and we denote

$$\mathcal{D}^+ = \{ F \in \Delta^+ \mid \lim_{t \to \infty} F(t) = 1 \}.$$

By setting $F \leq G$ whenever $F(t) \leq G(t)$, for all $t \in \mathbb{R}^+$, one introduces a natural ordering in \mathcal{D}^+ . If $a \in \mathbb{R}^+$ then H will be an element of \mathcal{D}^+ , defined by H(t) = 0 if $t \leq 0$ and H(t) = 1 if t > 0. It is obvious that $H \geq F$ if t > 0 for all $F \in \mathcal{D}^+$.

A t-norm T is a two-place function $T: I \times I \longrightarrow I$, which is associative, commutative, non-decreasing in each place, and such that T(a, 1) = a, for all

¹Islamic Azad University, Birjand Branch, e-mail: amirkhorasani59@yahoo.com

 $^{^2}$ Islamic Azad University, Birjand Branch, e-mail: m.abrishami.m@gmail.com

 $a \in [0,1].$

Let T be a t-norm and T^* is the function given by

$$T^*(x,y) = 1 - T(1-x,1-y)$$

for all $x, y \in I$. Then T^* the *t*-conorm of *T*.

A triangle function is a mapping $\tau : \Delta^+ \times \Delta^+ \longrightarrow \Delta^+$, which is associative, commutative, non-decreasing, and for which H is an identity, that is, $\tau(H, F) = F$, for every $F \in \mathcal{D}^+$.

Definition 1.1. Let V be a linear space of dimension greater than 1 over the field \mathbb{R} of real numbers. Suppose $\|.,.\|$ is a real-valued function on $V \times V$ satisfying the following conditions:

a) ||x, y|| = 0 if and only if x and y are linearly dependent vectors.

b) ||x, y|| = ||y, x|| for all $x, y \in V$.

c) $\|\lambda x, y\| = |\lambda| \|x, y\|$ for all $\lambda \in \mathbb{R}$ and $x, y \in V$.

d) $||x+y,z|| \le ||x,z|| + ||y,z||$ for all $x, y, z \in V$.

Then $\|.,.\|$ is called a 2-norm on V and $(V,\|.,.\|)$ is called a 2-normed linear space.

Definition 1.2. Let V be a linear space of dimension greater than 1 over filed \mathbb{R} of real numbers, τ a triangle function, and let \mathfrak{F} be a mapping from $V \times V$ into \mathcal{D}^+ satisfying the following conditions:

a) $F_{x,y} = H$ if and only if x and y are linearly dependent vectors.

b) $F_{x,y} \neq H$ if and only if x and y are linearly independent vectors.

c) $F_{x,y} = F_{y,x}$, for all $x, y \in V$.

d) $F_{\alpha x,y} = F_{x,y}(\frac{t}{|\alpha|})$, for every t > 0, $\alpha \neq 0$, $\alpha \in \mathbb{R}$ and $x, y \in V$.

e) $F_{x+y,z} \ge \tau(F_{x,z}, F_{y,z})$ for all $x, y, z \in V$.

Then, \mathfrak{F} is called a probabilistic 2-norm on V and (V, \mathfrak{F}, τ) is called a probabilistic 2-normed linear space (briefly P-2NL space), and \mathfrak{F} is a strong probabilistic 2-norm if $b \in V$ and $t > 0, x \longrightarrow F_{x,b}(t)$ is a continuous map on V.

If the triangle inequality (e) is formulated under a t-norm T: (f) $F_{x+y,z}(t_1+t_2) \ge T(F_{x,z}(t_1), F_{y,z}(t_2))$, for all $x, y, z \in V$, $t_1, t_2 \in \mathbb{R}^+$, then the triple (V, \mathcal{F}, T) is called a Menger probabilistic 2-normed linear space.

If T is a left-continuous t-norm and τ_T is the associated triangle function, then the inequalities (e) and (f) are equivalent.

Remark 1.3. It is easy to check that every 2-normed linear space $(V, \|., .\|)$ can be made a probabilistic 2-normed linear space, in a natural way, by setting $F_{x,y} = H(t - \|x, y\|)$, for every $x, y \in V$, $t \in \mathbb{R}^+$ and T = Min.

Definition 1.4. Let $G \in \Delta^+$ be different from H, let $(V, \|., .\|)$ be a 2-normed linear space. Define \mathcal{F} as a mapping from $V \times V$ into Δ^+ , by $F_{x,y} = H$ for every $x, y \in V$, if x and y are linearly dependent and

$$F_{x,y}(t) := G(\frac{t}{\|x,y\|}) \quad (t > 0)$$

when x and y are linearly independent. The pair (V, \mathfrak{F}) is called the simple space generated by $(V, \|., .\|)$ and G.

104

Let $(V, \|., .\|)$ be a 2-normed linear space. Define $\tau(F, G)(x) = F(x).G(x)$ for every $F, G \in \Delta^+$ and for each $b \in V$, $F_{x,b}^{\|...\|}(t) = \frac{t}{(t+\|x,b\|)}$ for every $x \in V$, then $F^{\|...\|}$ is a P-2 norm which is called the standard P-2 norm induced by $\|.,.\|$.

I. Golet in [3] proved that if (V, \mathcal{F}, τ) is a probabilistic 2-normed space and \mathcal{A} is the family of all finite and non-empty subsets of the linear space V, then for every $A \in \mathcal{A}, \varepsilon > 0$ and $\lambda \in (0, 1), (V, \mathcal{F}, \tau)$ is a Hausdorff topological space in the topology τ induced by the family of (ε, λ) -neighborhoods of x_0 vector:

$$\nu_{x_0} = \{ N_{x_0}(\varepsilon, \lambda, A) : \varepsilon > 0, \ \lambda \in (0, 1), \ A \in \mathcal{A} \}$$

where

$$N_{x_0}(\varepsilon,\lambda,A) = \{ x \in V : F_{x_0-x,a}(\varepsilon) > 1 - \lambda, \ a \in A \}$$

under a continuous triangle function τ such that $\tau \geq \tau_{T_m}$, where $T_m(a, b) = max\{a+b-1, 0\}$.

Example 1.5. Let $(V, \|., .\|)$ be a 2-normed linear space. Define:

$$F_{x,y}(t) = \begin{cases} 0 & \text{when} & t \le ||x,y||, \\ 1 & \text{when} & ||x,y|| < t. \end{cases}$$

Then $(V, \mathfrak{F}, \tau = min)$ is a P-2NL space.

2. P_b -best approximation in probabilistic 2-normed space

Definition 2.1. Let A be a nonempty subset of P-2NL space (V, \mathfrak{F}, τ) . For $x, b \in V, t > 0$, let

$$F_{x-A,b}(t) = \sup\{F_{x-y,b}(t): y \in A\}.$$

An element $y_0 \in A$ is said to be a P_b -best approximation to x from A if

$$F_{x-y_0,b}(t) = F_{x-A,b}(t).$$

We shall denote by $P_{A,b}^t(x)$ the set of elements of P_b -best approximation of x by elements of the set A, *i.e.*

$$P_{A,b}^t(x) = \{ y \in A : F_{x-y,b}(t) = F_{x-A,b}(t) \}.$$

Also we introduce

$$e_{A,b}^t(x) = 1 - F_{x-A,b}(t).$$

Definition 2.2. Let (V, \mathcal{F}, τ) be a P-2NL space. For $b \in V$, t > 0, the nonempty subset $A \subset V$ is called P_b -proximinal set if $P_{A,b}^t(x)$ is non-void for every $x \in$ $V \setminus (A+ < b >)$ and A is called P_b -Chebyshev set if for every $x \in V$ the set $P_{A,b}^t(x)$ contains exactly one element. Also A is called P_b -quasi Chebyshev set if $P_{A,b}^t(x)$ is a compact set. **Definition 2.3.** Let (V, \mathcal{F}, τ) be a *P*-2*NL* space, and $\{x_n\}$ be a sequence of *V*. Then the sequence $\{x_n\}$ is said to be P_b -convergent to $x_0 \in V$ and denoted by $x_n \xrightarrow{P_b} x$, if $\lim_{n\to\infty} F_{x_n-x_0,b}(t) = 1$, for all $x \in V$ and t > 0.

Theorem 2.4. Let A be a nonempty subset of a P-2NL space (V, \mathfrak{F}, τ) and $x, b \in V$. Then, $x \in \overline{A}$ if and only if $F_{x-A,b}(t) = 1$, for t > 0.

Proof. Suppose $x \in \overline{A}$ and $b \in V$. As V is first countable, there exists a sequence $\{x_n\}$ in A, such that $x_n \to x$ as $n \to \infty$. Then for every t > 0 and $0 < \lambda < 1$ there exists N, such that for $n \ge N$, $F_{x-x_n,b}(t) > 1 - \lambda$. Hence for all $n \ge N$, we have

$$1 - \lambda < F_{x-x_n,b}(t) \le F_{x-A,b}(t) \le 1$$

for all $0 < \lambda < 1$. Thus $F_{x-A,b}(t) = 1$.

Conversely, suppose for t > 0, $F_{x-A,b}(t) = 1$. We know $\{N_x(t,\lambda,b) : t > 0, 0 < \lambda < 1\}$ is a local base at x. Now for each $n \in \mathbb{N}$, $F_{x-A,b}(1/n) = 1$, then by definition, there exists $x_n \in A$ such that $F_{x-x_n,b}(1/n) > 1 - 1/n$ and so $x_n \in N_x(1/n, 1/n, b)$.

For the given t > 0 and $0 < \lambda < 1$ choose $n \in \mathbb{N}$ such that $t, \lambda > 1/n$, then $N_x(1/n, 1/n, b) \subset N_x(t, \lambda, b)$. So $N_x(t, \lambda, b) \cap A \neq \emptyset$. Thus, $x \in \overline{A}$.

Theorem 2.5. Let A be a nonempty subset of a P-2NL space (V, \mathcal{F}, τ) . Then for $b \in V$:

 $(i) \ \ P^t_{A+y,b}(x+y) = P^t_{A,b}(x) + y, \ \text{for every} \ x,y \in V \ \text{and} \ t > 0.$

(ii) $P_{\alpha A,b}^{|\alpha|t}(\alpha x) = \alpha P_{A,b}^t(x)$, for every $x \in V$, t > 0 and $\alpha \in \mathbb{R} \setminus \{0\}$.

(iii) A is P_b -proximinal (respectively P_b -Chebyshev) if and only if A + y is P_b -proximinal (respectively P_b -Chebyshev) for any given $y \in V$.

Proof. (i) For any $x, y, b \in V$ and t > 0, let $y_0 \in P_{A+u,b}^t(x+y)$. Therefore

$$F_{x-A,b}(t) = F_{A+y-(x+y),b}(t) = F_{x-(y_0-y),b}(t)$$

then $y_0 - y \in P_{A,b}^t(x)$ i.e. $y_0 \in P_{A,b}^t(x) + y$. The converse is obvious.

(ii) Let $y_0 \in P_{\alpha A, b}^{|\alpha|t}(\alpha x)$, for any $x \in V, t > 0$ and $\alpha \in \mathbb{R} \setminus \{0\}$. Then

$$F_{x-A,b}(t) = F_{\alpha x - \alpha A,b}(|\alpha | t) = F_{\alpha x - y_0,b}(|\alpha | t) = F_{x+y_0/\alpha,b}(t)$$

therefore, $y_0 \in \alpha P_{A,b}^t(x)$. The converse is obvious.

(iii) Is an immediate consequence of (i).

Theorem 2.6. Let (V, \mathcal{F}, τ) be a P-2NL space such that $\tau(F_{p,b}, F_{q,b})(x) = T(F_{p,b}(x), F_{q,b}(x))$, where T is a continuous t-norm. If A is a subspace of a V and $b \in V$. Then,

$$(a) \quad 0 \le e^t_{A,b}(x) \le 1,$$

(b) $e^t_{A,b}(a) = 0$, for all $a \in A$,

Best approximation in probabilistic 2-normed spaces

- $\begin{array}{ll} (c) & \mbox{ If }B \mbox{ is a subspace of }A, \mbox{ then we have } e^t_{B,b}(x) \geq e^t_{A,b}(x), \\ (d) & e^t_{A,b}(x+a) = e^t_{A,b}(x), \mbox{ for } (x \in V, a \in A), \\ (e) & \mbox{ }T^*(e^t_{A,b}(x), e^t_{A,b}(y)) \geq e^t_{A,b}(x+y), \mbox{ where } T^* \mbox{ is a } t\mbox{-conorm.} \end{array}$

Proof. (a),(b) and (c) are obvious by the definition of $e_A^t(x)$.

(d) Let $x \in V$, $a \in A$ and $\varepsilon > 0$ be arbitrary. By the definition sup, there exits $a_0 \in A$ such that

$$F_{x-A,b}(t) \le F_{x-a_0,b}(t) + \varepsilon$$

consequently, we have

$$e_{A,b}^{t}(x) - \varepsilon \ge 1 - F_{x-a_0,b}(t) \ge 1 - F_{x-(-a+A),b}(t) = e_{A,b}^{t}(x+a).$$

Whence, for $x \in V$ and $a \in A$ we obtain

$$e_{A,b}^t(x) \ge e_{A,b}^t(x+a).$$

Now, since $x + a \in V$ and $-a \in A$ implies $e_{A,b}^t(-a) = 0$ and so, the proof is complete.

(e) Let $x, y \in V$ and $\varepsilon' > 0$ be arbitrary. By the definition for any $\varepsilon > 0$ there exit elements, $a_1, a_2 \in A$ such that

$$F_{x-a_1,b}(t) \ge F_{x-A}(t) - \varepsilon, \quad F_{y-a_2,b}(t) \ge F_{y-A}(t) - \varepsilon$$

consequently, we have

$$F_{x+y-A,b}(t) \ge \tau \left(F_{x-a_1,b}, F_{y-a_2,b} \right)(t)$$

= $T \left(F_{x-a_1,b}(t), F_{y-a_2,b}(t) \right)$
 $\ge T \left(F_{x-A,b}(t) - \varepsilon, F_{y-A,b}(t) - \varepsilon \right)$

by the uniform continuity of T we have:

$$F_{x+y-A,b}(t) \ge T\left(F_{x-A,b}(t), F_{y-A,b}(t)\right) - \varepsilon'$$

therefore

$$e^t_{A,b}(x+y) \leq 1 - T\left(F_{x-A,b}(t), F_{y-A,b}(t)\right) = 1 - T\left(1 - e^t_{A,b}(x), 1 - e^t_{A,b}(y)\right). \quad \ \Box$$

The following lemma shows that the P_b -best approximation in probabilistic 2-normed spaces is a generalization of the best approximation in 2-normed spaces.

Lemma 2.7. Let $(V, \|., .\|)$ be a 2-normed space and $F^{\|.,.\|}$ be the induced probabilistic 2-norm. Then for $b \in V$, $y_0 \in A$ is a best approximation to $x \in V$ in the 2-normed linear space if and only if y_0 is a P_b -best approximation to x in the induced probabilistic 2-normed linear space $(V, \mathcal{F}^{\parallel, \dots \parallel}, \tau)$, for each t > 0.

Proof. For $b \in V$, since y_0 is a best approximation to $x \in V$, we have $||x - A, b|| = ||x - y_0, b|| = inf\{||x - y, b|| : y \in A\}$ if and only if $F_{x-A,b}^{\parallel,,\parallel}(t) = \frac{t}{(t+||x-A,b||)} = \frac{t}{(t+||x-y_0,b||)} = F_{x-y_0,b}^{\parallel,,\parallel}(t)$.

Theorem 2.8. Let (V, \mathcal{F}, τ) be a P-2NL space, A be a subset of V, $b \in V$ and $x \in V \setminus (\overline{A} + \langle b \rangle), t > 0$. Then $P_{A,b}^t(x) = A \cap N_x(t, e_{A,b}^t(x), b)$.

Proof. It is obvious that

$$P_{A,b}^t(x) \subset A \cap N_x(t, e_{A,b}^t(x), b).$$

Conversely, let $y_0 \in A \cap N_x(t, e^t_{A,b}(x), b)$ therefore, $F_{x-y_0,b}(t) \ge 1 - e^t_{A,b}(x)$ whence, $y_0 \in P^t_{A,b}(x)$.

Corollary 2.9. Let (V, \mathfrak{F}, τ) be a P-2NL space, A be a subset of V, $b \in V$. Then

(a) The set P^t_{A,b}(x) is bounded.
(b) If A is closed, then P^t_{A,b}(x) is closed.

Remark 2.10. Let (V, \mathfrak{F}, τ) be a P-2NL space, A be a subset of V, $b \in V$ and $x \in V \setminus (\overline{A} + \langle b \rangle), t > 0$. Then we have $A \cap N_x(t, e_{A,b}^t(x), b) = \emptyset$.

Proof. Suppose the contrary, so that, there is $y_0 \in A \cap N_x(t, e_{A,b}^t(x), b)$ such that

$$F_{x-y_0,b}(t) > 1 - e_{A,b}^t(x) = F_{x-A,b}(t) \ge F_{x-y_0,b}(t)$$

which is a contradiction.

We recall that a set A is said to be countably compact if for every decreasing sequence $A_1 \supset A_2 \supset \dots$ of nonvoid closed subsets of A we have $\bigcap_{n=1}^{\infty} A_n \neq \emptyset$.

Theorem 2.11. Let (V, \mathfrak{F}, τ) be a P-2NL space. If $b \in V$ and A is a nonvoid set of V, $0 < \lambda < 1$ and t > 0 such that $A \cap N_x(t, \lambda, b)$ is countably compact, then A is P_b-proximinal.

Proof. For $b \in V$ and every $n \in \mathbb{N}$, $0 < 1 - F_{x-A,b}(t) + F_{x-A,b}(t)/(n+1) < 1$. Put

$$A_n^t = A \bigcap N_x(t, 1 - F_{x-A,b}(t) + F_{x-A,b}(t)/(n+1), b) \quad (n = 1, 2, ...)$$

We have obviously $A_1^t \supset A_2^t \supset \ldots$ and each A_n^t is nonvoid. Since for every $n \in \mathbb{N}$, $F_{x-A,b}(t)(1-1/(n+1)) < F_{x-A,b}(t)$ hence there exists $a_n^t \in A$ such that $F_{x-A,b}(t)(1-1/(n+1)) < F_{x-a_n^t,b}(t)$. So $a_n^t \in A_n^t$. Since each A_n^t is countably compact and closed, it follows that there exists an $a_0 \in \bigcap_{n=1}^{\infty} A_n^t$. Then we have that

$$F_{x-A,b}(t) \ge F_{x-a_0,b}(t) \ge F_{x-A,b}(t)(1-1/(n+1))$$
 (n = 1, 2, ...)

implies $F_{x-a_0,b}(t) = F_{x-A,b}(t)$, whence $a_0 \in P_{A,b}^t(x)$.

108

Definition 2.12. Let $b \in V$. A nonempty subset A of a P-2NL space (V, \mathfrak{F}, τ) is said to be P_b -approximatively compact if for each $x \in V$ and each sequence y_n in A with $F_{x-y_n,b}(t) \to F_{x-A,b}(t)$, there exists a subsequence y_{n_k} of y_n converging to an element y_0 in A.

Lemma 2.13. (1) If A is approximatively compact in a 2-normed space $(V, \|., .\|)$ then for each t > 0, $b \in V$, A is P_b -approximatively compact in the induced P-2NL space.

(2) If A is a compact subset of a P-2NL space (V, \mathfrak{F}, τ) and $b \in V$ then A is P_b -approximatively compact for each t > 0.

Theorem 2.14. For $b \in V$ and t > 0, let A be a nonempty P_b -approximatively compact subset of a strong P-2NL space (V, \mathfrak{F}, τ) . Then

(1) A is a P_b -proximinal set.

(2) A is closed in V.

Proof. (1) For $b \in V$ and $x \in V$, there exists $\{y_n\} \subset A$ such that $F_{x-y_n,b}(t) \to F_{x-A,b}(t)$. Since A is a P_b -approximatively compact set, there exists a subsequence y_{n_k} of y_n and y_0 in A such that $y_n \to y_0$, and since (V, \mathcal{F}, τ) is a strong P-2NL space, we have, $F_{x-y_{n_k},b}(t) \to F_{x-y_0,b}(t)$. Hence $F_{x-y_0,b}(t) = F_{x-A,b}(t)$, then y_0 is a P_b -best approximation to x from A.

(2) Obviously, $A \subseteq \overline{A}$, let $x \in \overline{A}$. Then, $F_{x-A,b}(t) = 1$. Since A is P_b -approximatively compact, there exists $y \in A$ such that $F_{x-y,b}(t) = F_{x-A,b}(t) = 1$, then $F_{x-y,b} = H$, therefore $x \in A$.

Theorem 2.15. If A is a P_b -approximatively compact set then A is a P_b -quasi Chebyshev set.

Proof. Let $\{y_n\}$ be a sequence in $P_{A,b}^t(x)$. Since A is a P_b -approximatively compact so, there exists a subsequence $\{y_{n_k}\}$ of $\{y_n\}$ and $y_0 \in A$ such that $y_n \to y_0$. Then $F_{x-y_{n_k},b}(t) \to F_{x-y_0,b}(t)$. On the other hand, $F_{x-y_{n_k},b}(t) \to F_{x-A,b}(t)$, therefore, $F_{x-y_0,b}(t) = F_{x-A,b}(t)$, and so $y_0 \in P_{A,b}^t(x)$. Thus $P_{A,b}^t(x)$ is compact. \Box

3. Orthogonality

Definition 3.1. Let $(V, \mathcal{F}^{\parallel,..\parallel}, \tau)$ be a P-2NL space with P-2 norm $F^{\parallel,..\parallel}$ and A be a subset of V and $b \in V$. An element $x \in V$ is said to be orthogonal to an element $y \in V$, and we denote $x \perp^b y$, if $F_{x+\lambda y,b}^{\parallel,..\parallel}(t) \leq F_{x,b}^{\parallel,..\parallel}(t)$ for all scalar $\lambda \in \mathbb{R}, \lambda \neq 0$ and t > 0.

Also, an element $x \in V$ is said to be orthogonal to E, and we denote $x \perp^{b} E$, if $x \perp^{b} y$, for all $y \in E$.

Theorem 3.2. Let $(V, \mathcal{F}^{\parallel,..\parallel}, \tau)$ be a P-2NL space with P-2 norm $F^{\parallel,..\parallel}$ and E be a subset of V and $x, b \in V$. Then $y_0 \in P_{E,b}^t(x)$ if and only if $x - y_0 \perp^b E$.

Proof. Note that, $F_{x-y_0+\lambda z,b}^{\parallel,,\parallel}(t) \leq F_{x-y_0,b}^{\parallel,,\parallel}(t)$ for all $z \in E$ and all scalar $\lambda \in \mathbb{R}, \lambda \neq 0$ and t > 0, if and only if $y_0 \in P_{E,b}^t(x)$. \Box

References

- Chang, S. S., Cho, Y. J. and Kang, S. M., Nonlinear operator theory in probabilistic metric spaces. Novi Science Publisher: Inc, 2001.
- Golet, I., Approximation theorems in probabilistic normed spaces. Novi Sad J. Math. Vol. 38 No. 3 (2008), 73–79.
- [3] Golet, I., On generalized probabilistic 2-normed spaces. Acta Universitatis Apulensis. 11 (2005), 87–96.
- [4] Jebril, I. H., Hatmleh, R., Random n-normed linear spaces. ICSRS Publication, 2 (3)(2009), 489–495.
- [5] Menger, K., Statistical metric spaces. Proc. Nat. Acad. Sci, Usa 3 (1942), 535– 537.
- [6] Rezapour, Sh., 2-proximinality in generalized 2-normed spaces. Southeast Asian Bulletin of Mathematics 33 (2009), 109–113.
- [7] Sertnev, A. N., On the notion of a random normed spaces. Dokl. Akad. Nauk SSSR. 149 (2) 280–283; English translation in Soviet Math. Dkl., 4 (1963), 388– 390.
- [8] Shams, M., Vaezpour, S. M., Best approximation on probabilistic normed spaces. Elsevier Publisher (2009), 1661–1667.

Received by the editors February 27, 2010