Novi SAD J. MATH.
Vor. 40, No. 2, 2010, 7-16

ON COUNTABLE FAMILIES OF TOPOLOGIES
ON A SET

M.K. Bosél, Ajoy Mukharjeé?

Abstract

Considering a countable number of topologies on a set X, we introduce
the notion of (Rg)topological spaces as a generalization of the notions of
both bitopological spaces and (w)topological spaces, and study some of
their properties.
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1. Introduction

The purpose of this paper is to study a space equipped with countable number
of topologies. The notion of bitopological spaces was introduced in Kelly [5]
and the notion of (w)topological spaces in Bose and Tiwari [I]. By generalizing
both of these notions, we introduce here the notion of (Rg)topological spaces
(Definition 2.1)). In the (Xg)topological spaces, we define (Xg)Hausdorffness,
(Ng)regularity, (Ng)normality and (Ng)compactness. We also define complete
(Ng)regularity and complete (Ng)normality. We prove some results for these
notions.

A set X equipped with an increasing sequence {7,} of topologies is called
a (w)topological space. If 7,, = T, for all n,n/, then the (w)topological space
X becomes a topological space. Thus the notion of (w)topological spaces gen-
eralizes the notion of topological spaces. But it does not generalize the notion
of bitopological spaces.

Fletcher et al. [4] attempted to define pairwise paracompactness in a bitopo-
logical space. But in the presence of pairwise Hausdorffness, the two topologies
coincide and the resulting single topological space is paracompact whenever the
bitopological space is pairwise paracompact. Later Datta [2] introduced a no-
tion of pairwise paracompactness. In the (Xg)topological spaces, we introduce
(Ng)paracompactness. A space which is (Ng)Hausdorff and (Ng)paracompact is
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(Ng)regular. Raghavan and Reilly [§] introduced -, 3-, v- and §-pairwise para-
compactness. They presented a d-pairwise paracompactness version of Michael’s
characterization (Michael [7]) of regular paracompact spaces. Unfortunately,
the proof of this result is not correct (Kovar [6]). We introduce here a (/-
R )paracompactness and prove the Michael’s theorem for (5-Xg)paracompactness
of the space X when it is (Ng)regular (Theorem B16). From this, we obtain an
analogue of Michael’s theorem for the 8-pairwise paracompactness of a pairwise
regular bitopological space, as a particular case.

2. Definitions

Let {P,} be a sequence of topologies on a set X. The sequence {P,,} is said to
satisfy the condition (%) (resp. condition (a)) if for any positive integer m, the
union (resp. intersection) of a finite number of sets € |J P, isaset € |J Pn.
We introduce the following definitions.
Definition 2.1. If {P,} is a sequence of topologies on a set X satisfying the
condition (x), then the pair (X, {P,}) is called an (Xg)topological space. A set
G € Py, is called an (Rg)open set.
n

Throughout the paper, R and N denote the set of real numbers and the
set of positive integers respectively. Members of N are generally denoted by
k,l,m,n etc. If 7 is a topology on a set X, then (7)clA and (7 )intA denote the
closure and interior respectively of A C X with respect to 7. Unless otherwise
mentioned, X denotes the (Xg)topological space (X, {P,}). Elements of X are
denoted by x,y etc. All the sets considered here are subsets of X.

Example 2.1. We enumerate all the rational numbers: r1,7r3,73,.... Let Q,
denote the particular point topology (Steen and Seebach, Jr. [9]) on R, where
each nonempty set € Q,, contains r,.

Then (R, {9Q,}) is an (Ng)topological space, where the sequence {Q,,} does
not satisfy the condition (a). In the (Rg)topological space considered in Example
22, {P,} satisfies the condition (a).

Definition 2.2. Suppose Y C X and P, | Y denotes the subspace topology on
Y induced by P,. Then (Y, {P, | Y'}) is called a subspace of (X, {P,}).

Definition 2.3. A function f: X — R is said to be ( |J P,)upper semi-
neM

continuous (resp. ( |J Pn)lower semi-continuous) if for every a € R, f~1((—o0,
neM

a)) € U Pn (vesp. f1((a,00)) € U Pn) where M C N.

neM neM
Definition 2.4. X is said to be (Ng)compact if every (Ng)open cover C of X
with C NP, # () for at least two values of n has a finite subcover. Let M C N.

X is said to be (M)compact if every cover of X consisting of the sets € |J Py
neM
has a finite subcover.
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Definition 2.5. An (Xg)open cover {U, | Uy € P, } of X is said to be
shrinkable if there is another (Ng)open cover {V, | Vo, € P, } of X with
(Pn)clV, C U, for some n # ny,.

Definition 2.6. A set D is called a (P, )neighbourhood, or in short a (P, )nbd,
of aset Aif A C (Py,)intD.

Definition 2.7. X is said to be (m)Hausdorff if for any pair of distinct points

z,y € X, there exist U € P, and V € |J P, such that z € U,y € V and
n#m

UNV = 0. If X is (m)Hausdorfl for all m € N, then X is said to be an

(No) Hausdorff space.

The (No)topological space (R,{Q,}) considered in Example 1] is not
(n)Hausdorff for any n. Also for any n, the topological space (R, Q,) is not
Hausdorff and for any pair of integers m, n, the bitopological space (R, O, Qn)
is not pairwise Hausdorff.

Example 2.2. Let the sequence {P,} of topologies on R be defined by
7Dl = u)

P ={0} U{G U (n,0) | G € U} for all n > 1,
where U is the usual topology on R.

Then the (Rg)topological space (R, {P,}) is (1)Hausdorff but it is not (n)Haus-
dorff for any n # 1, and so it is not (Xg)Hausdorff.

Definition 2.8. X is said to be (m)regular if for any point z € X and any

(Pr)closed set A with n # m and « ¢ A, there exist U € |J P, and V € P,
n#m

such that z € U, A C V, UNV = (. X is said to be (Ng)regular if it is (m)regular

for all m € N.

It is easy to see that X is (m)regular iff for any point x € X and any

(Pr)open set G containing x with n # m, there exists a U € |J P, containing
n#m
x such that (P,)clU C G.

Definition 2.9. X is said to be completely (m)regular if for any point z € X
and any (P,)closed set A with n # m and = ¢ A, there exists a function
f: X — [0,1] such that f(z) =0,f(y) =1forally € A, fis ( |J Pn)upper

n#Em
semi-continuous and (Pp,)lower semi-continuous. X is completely (No)regular if
it is completely (m)regular for all m € N.

Definition 2.10. X is said to be (m)normal if given a (P,,)closed set A and
a (Pp)closed set B with n # m and AN B = (, there exist U € |J P, and

n#EmM
V € Py such that AC U,BCVand UNV = (. If X is (m)normal for all
m € N, then it is said to be (Rg)normal.
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From the definition, it follows that X is (m)normal iff for any (P, )closed set

A and any (P, )open set W containing A with n # m, there existsaU € |J Py
n#m
such that A C U C (Pp,)clU C W.

Definition 2.11. X is said to be completely (m)normal if for each pair A, B of
subsets of X satisfying (A N (P,)clB) U ((Pp)clAN B) =, n # m, there exist
Ue U PpandV € Py such that ACU,BCV andUNV =10.

n#m

Complete (Ng)normality is defined in the obvious way.

The (Rg)topological space (R,{Q,}) considered in Example 2 is com-
pletely (Rg)normal but for no n, the topological space (R, Q,) is normal. Also,
for no n, (R,{Q,}) is (n)regular.

Example 2.3. Let X be an infinite set and a, b, c € X. Suppose G (resp. H) is
a collection of subsets of X, which contains, in addition to () and X, all those
subsets E of X for which a ¢ F and ¢ € E (resp. a,b ¢ FE and ¢ € E). Then G
and H form topologies on X. Let P, = G for odd n, and = H for even n.

Then the (Rg)topological space (X, {P,}) is (Ng)normal but not completely
(Ng)normal. In fact, it is completely (m)normal for no m.

Definition 2.12. A collection C of subsets of X is said to be (Rg)locally finite
if each z € X has a (P,)open nbd, for at least two values of n, intersecting at

most finitely many U € C. For any m € N, C is said to be ( |J P, )locally finite
n#m
if for each x € X, there exists a set € |J P, containing = and intersecting at
n#m
most finitely many U € C.

Definition 2.13. A refinement V of an (Xg)open cover U is said to be a parallel
refinement if V. € V is (P, )open whenever V.C U € Y and U is (P, )open.

Definition 2.14. X is said to be (Rg)paracompact if every (Xg)open cover U of
X with U NP, # O for at least two values of n has an (Xg)locally finite parallel
refinement.

It follows from the definitions that an (Rg)compact space is (Rg)paracompact.
The converse is not true:

Example 2.4. Let 7 be the indiscrete topology on R, and U,, be the subspace
topology U | I,, on I,, = (—n,n), of the usual topology U on R. If P,, =7 UU,,
then (R,{P,}) is an (Rg)topological space, which is (RXg)paracompact but not
(Ng)compact.

Let P denote the smallest topology containing all the topologies P,,n € N.
We call a cover C of X, a ( |J Pn)cover if C C |J Pa.
Definition 2.15. X is said to be (0-Rg)paracompact if for all m € N, every
( U Prn)cover of X has a ( |J Pp)locally finite (P)open refinement.



On countable families of topologies on a set 11

The following example shows that a (8-Rg)paracompact space may not be
(Ng)paracompact.

Example 2.5. Suppose X = [0,00) and U is the usual topology on X. Let
Py = discrete topology on X, Py =U and for n > 2, P,, = {0} U{G U (n,o0) |
G € U}. Then the (Rg)topological space (X, {P,}) is (8-Ng)paracompact but
not (Ng)paracompact.

Open question. Does (Xg)paracompactness of a space imply (8-Rg)paracom-
pactness of the space?

3. Results

Theorem 3.1. If X is (Ng)compact, and K is (Pp,)closed for some m, then K
is (No)compact. If K is a proper subset of X, then K is (P,)compact for all
n # m.

Proof. We prove only the second part. Choose ng # m. Let U be a (P, )open
cover of K. Then Uy = UU{X — K} is an (Ng)open cover of X with U; NP, # 0

for two values of n. Therefore U; has a finite subcover. Hence U has a finite
subcover. 0O

Theorem 3.2. If (X,P,) is a Hausdorff topological space for each n, and
(X, {Pn}) is (No)compact, then all P,, are identical.

The proof is straightforward.

Theorem 3.3. Let M = {n € N | n # m}. If X is (m)Hausdorff and
(M) compact, then P, C Py, for all n.

Proof. Let n # m. If P, ¢ P, then there exists a set U € P, such that
U ¢ Pp,. Then X — U is (Py)closed, and hence (M )compact. Since X — U is
not (P, )closed, there is a point p € U which is a (P,,)limit point of X — U.
Again, since X is (m)Hausdorff, for each € X — U, there exist U, € ;] Pn

and V, € Py, such that x € U,,p € V, and U, NV, = 0. Then {U, | = €

X — U} is a cover of X —U by sets € |J Pp. Therefore it has a finite subcover
neM

Uy Uggy oo U, UV = Vg, then V € Py, pe Vand VN(X —U) =0,
i=1
which is a contradiction, since p is a (P, )limit point of X — U. |

Theorem 3.4. X is (m)Hausdorff iff for all x,
{z} = ﬂ{(Pn)clU |n#m,U € Pp,zeU}.

The proof is straightforward.

Theorem 3.5. If X is (m)Hausdorff, then for each filterbase F on X such that
F is (Pm)convergent to x and (P,,)convergent to y for some n # m, x =y. The
converse is also true if {P,} satisfies the condition (a).
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Proof. Let X be (m)Hausdorff, and F be a filterbase on X, which is (P,,)conver-
gent to x. Let y # x. Then there exist U € P,,, and V € |J P, such that
n#Em

xeUyeV, UNV =0. Thereisan A e Fwith ACU. If Ve P,,n#m,
then F cannot be (P, )convergent to y. For if it is so, there must be a B € F
with B C V| which is not possible, since any two elements of F have a non-empty
intersection.

To prove the converse, suppose X is not (m)Hausdorfl. Then there exists a
pair z,y (x # y) such that for any U € Py, and V € |J P, withz € U,y € V,

n#Em
we have UNV # (). SotheclassC ={UNV |U € P,,V € U P,z €U,y eV}
n#m
is a filterbase on X, which is (P, )convergent to z and (P, )convergent to y for
all n # m. |

If X is (Ng)Hausdorff, then Theorem is true for any pair of elements
m,n € N.

Likewise, each of the following theorems with (m) has a corresponding result
with (Rg).

Theorem 3.6. If X is (m)Hausdorff and M = {n | n # m}, then (M)compact
subsets are (Pp,)closed.

Proof. Let K be an (M )compact subset of X and z € X — K. If y € K, then
there exist sets Uy € Py, and Vy € J P, such that = € Uzy,y € Vzy and
n#Em
Upy N Vyy = 0. Then V = {V,, | y € K} forms a cover of K by sets € J Pp.
neM

k
Therefore V has a finite subcover Viy,, Voyss ooy Vay,. If Vo = (JVay, and
i=1

k
Uy = NUypy,, thenz €Uy, € Py, K CV, € Y P and U, NV, = 0. Now
=1 n#Em

X-K c (JU.|zeXx-K}
c Yx-Vilzex-K}
c X-K.
=X-K = (JU.|zeX-K}
Thus K is (P, )closed. O

Theorem 3.7. X is (m)regular iff for ng # m, any (Pp,)closed set A is the
intersection of all (Py)closed (Py,)nbds of A, n # m.

Proof. Let X be (m)regular. Suppose z belongs to the complement X — A
of the (Pp,)closed set A with ng # m. Since X — A is (P, )open, ng # m,
there exists a set G € |J P, such that x € G C (Pp,)clG C X — A. Then

n#m

AC X —(Pp)dG C X —@G. Thus X — G is a (P,)closed (P,,)nbd of A with



On countable families of topologies on a set 13

n# m and x ¢ X — G. Hence the intersection of all (P, )closed (P,,)nbds of A
with n # m, is the set A.

To prove the converse, suppose for ng # m, A is a (Pp,)closed set not
containing the point . Then there exists a (Py)closed (P,)nbd F of A with
n#Fmandx ¢ F. fU =X —F and V = (Pp,)intF, then U € |J P,,V €

n#m

P, €U ACV and UNV = . |

Theorem 3.8. If X is (Ro)compact and (m)Hausdorff, and if {P,} satisfies
the condition (a), then X is (m)regular.

Proof. Let x € X and A be a (P,)closed set with n #m and = ¢ A. If y € A,
then by (m)Hausdorffness of X, there exist U, € |J P, and V,, € P,, such

n#m
that z € Uy,y € V,, and U, NV, = 0. Then V = {V, | y € A} forms a (P,,)open
cover of A. Since A is (P,)closed, by Theorem Bl it is (P,,)compact, and

k k
hence V has a finite subcover V,,,...,V,,. f U = N U, and V = (JV,,, then
i=1 i=1
Ue UPn,VEP,z€UACV andUNV =0. |
n#m

Theorem 3.9. FEvery completely (m)regular space is (m)regular.
The proof is straightforward.
Theorem 3.10. If X is (Xg)compact and (m)regular, then X is (m)normal.

Proof. Suppose A is a (P,,)closed set and B is a (P,)closed set with n # m
and ANB = 0. For z € A, thereisa U, € |J P, and V,, € P,, such that

n#m
2 €U,,BCV,, U, NV, =0. Sinceld ={U, | x € A} is a cover of A with sets

€ U Pn, and X is (Ng)compact, it follows that there is a finite subcollection
n#m

k k
Upyy, Uy Ug,, of U covering A. If U = JU,, and V = (V,,, then
i=1 1

1=

Ue UPnVEPLUNV =0, ACUBCV. u]
n#m

Corollary 3.1. If X is (Ng)compact and (m)Hausdorff, and if {P,} satisfies

the condition (a), then X is (m)normal.

The following theorem is a generalization of Urysohn’s Lemma for (Xg)topo-
logical spaces.

Theorem 3.11. Suppose X is (m)normal. Let A be a (Pp,)closed set and B
be a (Py)closed set with n # m and AN B = (. Then there exists a function
f X —[0,1] such that f(z) =0 for allxz € A, f(z) =1 for all x € B, f is
( U Pn)upper semi-continuous and (Py,)lower semi-continuous.
n#Em
The proof is omitted. It is similar to the proof of Theorem 2.7 (Kelly [5]).
It is easy to see the converse of the above theorem is also true.
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From the definitions, it is clear that a completely (m)normal space is (m)nor-
mal. Also, it can be shown that complete (m)normality is a hereditary property
but (m)normality is not hereditary. The (m)Hausdorff property, (m)regularity
and complete (m)regularity are hereditary.

Theorem 3.12. X is completely (m)normal iff every subspace of X is (m)nor-
mal.

The proof is omitted.

Theorem 3.13. If X is (Ng)normal, then every finite (No)open cover U = {Uq,
Us,...,Ux} of X with U; € P, and n; # ny if i # 1, is shrinkable.

Proof. Suppose X is (Rg)normal. We choose a finite (Rg)open cover U = {Uy,
Us, ..., U} of X, satisfying the above conditions. Then (X —U;) N (X —Uz) N

N(X —U) =0, and so (X —Uy) and (X —Uz)N...N(X — Uy) are disjoint.
Again, X — U is (Py, )closed and (X — Uz) N ... N (X — Uy) is (P, )closed for
some ng # ni. So there exist V3 € P, for some n # ny and W; € P,, such
that X — Uy € Vi, (X —Us)N...0 (X — Uy) C Wi and Vi N W; = 0. Then,
(Pp)clWy € X — Vi C Uy, n # ny. Therefore it follows that {Wy,Us,...,Us}
forms an (Ng)open cover of X with (P,)clW; C Uy, n # ny. If we apply the
process k times, we obtain an (Xg)open cover {Wy, Ws, ..., Wy} such that W, €
Pn, and (P,)cdW; C U;, n # n,. O

Theorem 3.14. If X is (Ng)paracompact, and if K is a (Py,)closed subset of
X for some m, then K is (Ng)paracompact.

The proof is straightforward.

Theorem 3.15. If X is (m)Hausdorff and (Ro)paracompact, and if {P,} sat-
isfies the condition (a), then X is (m)regular.

The proof is omitted.

Theorem 3.16. Let X be (Xg)regular, and let {P,} satisfy the condition (a).
Then X is (8-Ro)paracompact iff for all m € N, every ( |J Pn)cover of X has
n#m

a (P)open refinement V = |J Vi, where each Vi is ( |J Pn)locally finite.
k=1 n#Em

Proof. Since the ‘only if ’ part of the theorem is obviously true, we prove the
‘if” part. It is done in three steps.

Step I. For m € N, let G be a ( |J Pn)cover of X. Then it has a (P)open
n#m

refinement V = |J Vi, where each Vj; is ( |J Pn)locally finite. Suppose Vi, =
k=1 n#Em

{Vka | a € A} Let Vi C Gia € G. We write Wy, = UGkou Wi = U Wi, A =
W1, and for i > 1, A; = W; — WL, Then {W}, | k € N} is a cover ofX and
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so {A; | i € N} is a cover of X. This cover is ( |J Pp)locally finite. In
n#m

fact, if k(z) is the first k for which x € Wiy, then 2 € Gy)q for some a,

Gi@a € U Pn, and Gj(y)o does not intersect any A; for i > k(x). Thus

n#m
E(G) ={Eka | k € N, € A}, where Eq = A NViw, is a ( |J Py)locally finite
n#Em
refinement of G.

Step IL. For m € N, let H be a ( |J Py )cover of X. For & € X, we choose an
n#m
H, € Hsuchthat x € H,. Since X is (Ng)regular, and since H,, is (P,,)Jopen with
n # m, there exists a set H. € |J P, such that x € H} C (P,,)clH} C H,.
n#Em
Since P,,, C P, we have

(1) (P)clH} C (Pm)clH) C H,.

Now H' = {H! | z € X} is also a ( | Py)cover of X. Hence by Step I, we
n#Em
get a ( |J Py)locally finite refinement £(H?') of H!. For E € £(H'), we get an
n#EmM
H} € H' with E C H} and hence by (@), (P)clE C H,. Thus F(H) = {(P)clE |
E € E(HY)} is a (P)closed refinement of H. Also F(H) is ( |J Pn)locally finite:
n#m
Since £(H!) is ( |J Pn)locally finite, there exists, for x € X, a G € P,,, n #m
n#m
such that z € G, and for all but finitely many £ € E(H!), GNE = ) =
GN(P,)eE =0= Gn(P)dE = 0.

Step III. We choose an m € N. Let U be a ( |J Py)cover of X. By Step I, U
has a ( |J Ppn)locally finite refinement £(U). Fgf; € X, suppose W, € | Pn
isa setnc;(é)ygtaining x and intersecting a finite number of members of £ (U )ﬁéTml‘len
W={W, |z € X} forms a ( |J Pn)cover of X. Therefore by Step II, W has a
( g Pp)locally finite (P)CIOSZ?Zeﬁnement F(W). For E € £(U), let

Sp=X - J{FeFOW) | FNE =0}

Since the collection F(W) of (P)closed sets is ( |J Py)locally finite, and since

U Pn C P, by 9.2 (Dugundji [3], p. 82), it follorzsmthat the set | J{F € F(W) |
}#:E =0} is (P)closed, and hence Sg is (P)open. Since £(U) is a cover of X,
S={Sg | Ec&U)} is a (P)open cover of X. S is also ( |J Py)locally finite.
For, consider a set D, € g P, containing x and intersecrtli?g i, Fs, ... F €
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F(W). Now

DIQSE#Q),
= FNSg#0 forsomei=1,2,...,k,
= FNE#( forsomei=1,2,...,k.

Since each F; is contained in some W, it can intersect at most finitely many
E € £(U). Therefore D, can intersect at most finitely many Sg € S.
For every E € £(U), we take Ug € U such that E C Ug. Then the collection
{UenNSg | E € EU)} is a ( |J Pn)locally finite (P)open refinement of U.
n#m

Therefore X is (8-Ng)paracompact. a
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