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ON COUNTABLE FAMILIES OF TOPOLOGIES
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Abstract

Considering a countable number of topologies on a set X, we introduce
the notion of (ℵ0)topological spaces as a generalization of the notions of
both bitopological spaces and (ω)topological spaces, and study some of
their properties.
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1. Introduction

The purpose of this paper is to study a space equipped with countable number
of topologies. The notion of bitopological spaces was introduced in Kelly [5]
and the notion of (ω)topological spaces in Bose and Tiwari [1]. By generalizing
both of these notions, we introduce here the notion of (ℵ0)topological spaces
(Definition 2.1). In the (ℵ0)topological spaces, we define (ℵ0)Hausdorffness,
(ℵ0)regularity, (ℵ0)normality and (ℵ0)compactness. We also define complete
(ℵ0)regularity and complete (ℵ0)normality. We prove some results for these
notions.

A set X equipped with an increasing sequence {Tn} of topologies is called
a (ω)topological space. If Tn = Tn′ for all n, n′, then the (ω)topological space
X becomes a topological space. Thus the notion of (ω)topological spaces gen-
eralizes the notion of topological spaces. But it does not generalize the notion
of bitopological spaces.

Fletcher et al. [4] attempted to define pairwise paracompactness in a bitopo-
logical space. But in the presence of pairwise Hausdorffness, the two topologies
coincide and the resulting single topological space is paracompact whenever the
bitopological space is pairwise paracompact. Later Datta [2] introduced a no-
tion of pairwise paracompactness. In the (ℵ0)topological spaces, we introduce
(ℵ0)paracompactness. A space which is (ℵ0)Hausdorff and (ℵ0)paracompact is
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(ℵ0)regular. Raghavan and Reilly [8] introduced α-, β-, γ- and δ-pairwise para-
compactness. They presented a δ-pairwise paracompactness version of Michael’s
characterization (Michael [7]) of regular paracompact spaces. Unfortunately,
the proof of this result is not correct (Kovár [6]). We introduce here a (β-
ℵ0)paracompactness and prove the Michael’s theorem for (β-ℵ0)paracompactness
of the space X when it is (ℵ0)regular (Theorem 3.16). From this, we obtain an
analogue of Michael’s theorem for the β-pairwise paracompactness of a pairwise
regular bitopological space, as a particular case.

2. Definitions

Let {Pn} be a sequence of topologies on a set X. The sequence {Pn} is said to
satisfy the condition (∗) (resp. condition (a)) if for any positive integer m, the
union (resp. intersection) of a finite number of sets ∈ ⋃

n6=m

Pn is a set ∈ ⋃
n6=m

Pn.

We introduce the following definitions.

Definition 2.1. If {Pn} is a sequence of topologies on a set X satisfying the
condition (∗), then the pair (X, {Pn}) is called an (ℵ0)topological space. A set
G ∈ ⋃

n
Pn is called an (ℵ0)open set.

Throughout the paper, R and N denote the set of real numbers and the
set of positive integers respectively. Members of N are generally denoted by
k, l,m, n etc. If T is a topology on a set X, then (T )clA and (T )intA denote the
closure and interior respectively of A ⊂ X with respect to T . Unless otherwise
mentioned, X denotes the (ℵ0)topological space (X, {Pn}). Elements of X are
denoted by x, y etc. All the sets considered here are subsets of X.

Example 2.1. We enumerate all the rational numbers: r1, r2, r3, . . .. Let Qn

denote the particular point topology (Steen and Seebach, Jr. [9]) on R, where
each nonempty set ∈ Qn contains rn.

Then (R, {Qn}) is an (ℵ0)topological space, where the sequence {Qn} does
not satisfy the condition (a). In the (ℵ0)topological space considered in Example
2.2, {Pn} satisfies the condition (a).

Definition 2.2. Suppose Y ⊂ X and Pn | Y denotes the subspace topology on
Y induced by Pn. Then (Y, {Pn | Y }) is called a subspace of (X, {Pn}).
Definition 2.3. A function f : X → R is said to be (

⋃
n∈M

Pn)upper semi-

continuous (resp. (
⋃

n∈M

Pn)lower semi-continuous) if for every a ∈ R, f−1((−∞,

a)) ∈ ⋃
n∈M

Pn (resp. f−1((a,∞)) ∈ ⋃
n∈M

Pn) where M ⊂ N .

Definition 2.4. X is said to be (ℵ0)compact if every (ℵ0)open cover C of X
with C ∩ Pn 6= ∅ for at least two values of n has a finite subcover. Let M ⊂ N.
X is said to be (M)compact if every cover of X consisting of the sets ∈ ⋃

n∈M

Pn

has a finite subcover.
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Definition 2.5. An (ℵ0)open cover {Uα | Uα ∈ Pnα
} of X is said to be

shrinkable if there is another (ℵ0)open cover {Vα | Vα ∈ Pnα} of X with
(Pn)clVα ⊂ Uα for some n 6= nα.

Definition 2.6. A set D is called a (Pn)neighbourhood, or in short a (Pn)nbd,
of a set A if A ⊂ (Pn)intD.

Definition 2.7. X is said to be (m)Hausdorff if for any pair of distinct points
x, y ∈ X, there exist U ∈ Pm and V ∈ ⋃

n 6=m

Pn such that x ∈ U, y ∈ V and

U ∩ V = ∅. If X is (m)Hausdorff for all m ∈ N, then X is said to be an
(ℵ0)Hausdorff space.

The (ℵ0)topological space (R, {Qn}) considered in Example 2.1, is not
(n)Hausdorff for any n. Also for any n, the topological space (R,Qn) is not
Hausdorff and for any pair of integers m,n, the bitopological space (R,Qm,Qn)
is not pairwise Hausdorff.

Example 2.2. Let the sequence {Pn} of topologies on R be defined by

P1 = U ,

Pn = {∅} ∪ {G ∪ (n,∞) | G ∈ U} for all n > 1,

where U is the usual topology on R.

Then the (ℵ0)topological space (R, {Pn}) is (1)Hausdorff but it is not (n)Haus-
dorff for any n 6= 1, and so it is not (ℵ0)Hausdorff.

Definition 2.8. X is said to be (m)regular if for any point x ∈ X and any
(Pn)closed set A with n 6= m and x /∈ A, there exist U ∈ ⋃

n6=m

Pn and V ∈ Pm

such that x ∈ U,A ⊂ V, U∩V = ∅. X is said to be (ℵ0)regular if it is (m)regular
for all m ∈ N.

It is easy to see that X is (m)regular iff for any point x ∈ X and any
(Pn)open set G containing x with n 6= m, there exists a U ∈ ⋃

n6=m

Pn containing

x such that (Pm)clU ⊂ G.

Definition 2.9. X is said to be completely (m)regular if for any point x ∈ X
and any (Pn)closed set A with n 6= m and x /∈ A, there exists a function
f : X → [0, 1] such that f(x) = 0, f(y) = 1 for all y ∈ A, f is (

⋃
n 6=m

Pn)upper

semi-continuous and (Pm)lower semi-continuous. X is completely (ℵ0)regular if
it is completely (m)regular for all m ∈ N.

Definition 2.10. X is said to be (m)normal if given a (Pm)closed set A and
a (Pn)closed set B with n 6= m and A ∩ B = ∅, there exist U ∈ ⋃

n 6=m

Pn and

V ∈ Pm such that A ⊂ U,B ⊂ V and U ∩ V = ∅. If X is (m)normal for all
m ∈ N, then it is said to be (ℵ0)normal.
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From the definition, it follows that X is (m)normal iff for any (Pm)closed set
A and any (Pn)open set W containing A with n 6= m, there exists a U ∈ ⋃

n 6=m

Pn

such that A ⊂ U ⊂ (Pm)clU ⊂ W .

Definition 2.11. X is said to be completely (m)normal if for each pair A,B of
subsets of X satisfying (A ∩ (Pn)clB) ∪ ((Pm)clA ∩ B) = ∅, n 6= m, there exist
U ∈ ⋃

n 6=m

Pn and V ∈ Pm such that A ⊂ U,B ⊂ V and U ∩ V = ∅.

Complete (ℵ0)normality is defined in the obvious way.
The (ℵ0)topological space (R, {Qn}) considered in Example 2.1, is com-

pletely (ℵ0)normal but for no n, the topological space (R,Qn) is normal. Also,
for no n, (R, {Qn}) is (n)regular.

Example 2.3. Let X be an infinite set and a, b, c ∈ X. Suppose G (resp. H) is
a collection of subsets of X, which contains, in addition to ∅ and X, all those
subsets E of X for which a /∈ E and c ∈ E (resp. a, b /∈ E and c ∈ E). Then G
and H form topologies on X. Let Pn = G for odd n, and = H for even n.

Then the (ℵ0)topological space (X, {Pn}) is (ℵ0)normal but not completely
(ℵ0)normal. In fact, it is completely (m)normal for no m.

Definition 2.12. A collection C of subsets of X is said to be (ℵ0)locally finite
if each x ∈ X has a (Pn)open nbd, for at least two values of n, intersecting at
most finitely many U ∈ C. For any m ∈ N, C is said to be (

⋃
n 6=m

Pn)locally finite

if for each x ∈ X, there exists a set ∈ ⋃
n 6=m

Pn, containing x and intersecting at

most finitely many U ∈ C.
Definition 2.13. A refinement V of an (ℵ0)open cover U is said to be a parallel
refinement if V ∈ V is (Pn)open whenever V ⊂ U ∈ U and U is (Pn)open.

Definition 2.14. X is said to be (ℵ0)paracompact if every (ℵ0)open cover U of
X with U ∩ Pn 6= ∅ for at least two values of n has an (ℵ0)locally finite parallel
refinement.

It follows from the definitions that an (ℵ0)compact space is (ℵ0)paracompact.
The converse is not true:

Example 2.4. Let T be the indiscrete topology on R, and Un be the subspace
topology U | In on In = (−n, n), of the usual topology U on R. If Pn = T ∪ Un,
then (R, {Pn}) is an (ℵ0)topological space, which is (ℵ0)paracompact but not
(ℵ0)compact.

Let P denote the smallest topology containing all the topologies Pn, n ∈ N .
We call a cover C of X, a (

⋃
n 6=m

Pn)cover if C ⊂ ⋃
n6=m

Pn.

Definition 2.15. X is said to be (β-ℵ0)paracompact if for all m ∈ N , every
(

⋃
n6=m

Pn)cover of X has a (
⋃

n 6=m

Pn)locally finite (P)open refinement.
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The following example shows that a (β-ℵ0)paracompact space may not be
(ℵ0)paracompact.

Example 2.5. Suppose X = [0,∞) and U is the usual topology on X. Let
P1 = discrete topology on X, P2 = U and for n > 2, Pn = {∅} ∪ {G ∪ (n,∞) |
G ∈ U}. Then the (ℵ0)topological space (X, {Pn}) is (β-ℵ0)paracompact but
not (ℵ0)paracompact.

Open question. Does (ℵ0)paracompactness of a space imply (β-ℵ0)paracom-
pactness of the space?

3. Results

Theorem 3.1. If X is (ℵ0)compact, and K is (Pm)closed for some m, then K
is (ℵ0)compact. If K is a proper subset of X, then K is (Pn)compact for all
n 6= m.

Proof. We prove only the second part. Choose n0 6= m. Let U be a (Pn0)open
cover of K. Then U1 = U ∪{X−K} is an (ℵ0)open cover of X with U1∩Pn 6= ∅
for two values of n. Therefore U1 has a finite subcover. Hence U has a finite
subcover. 2

Theorem 3.2. If (X,Pn) is a Hausdorff topological space for each n, and
(X, {Pn}) is (ℵ0)compact, then all Pn are identical.

The proof is straightforward.

Theorem 3.3. Let M = {n ∈ N | n 6= m}. If X is (m)Hausdorff and
(M)compact, then Pn ⊂ Pm for all n.

Proof. Let n 6= m. If Pn 6⊂ Pm, then there exists a set U ∈ Pn such that
U /∈ Pm. Then X − U is (Pn)closed, and hence (M)compact. Since X − U is
not (Pm)closed, there is a point p ∈ U which is a (Pm)limit point of X − U.
Again, since X is (m)Hausdorff, for each x ∈ X − U, there exist Ux ∈ U

n6=m
Pn

and Vx ∈ Pm such that x ∈ Ux, p ∈ Vx and Ux ∩ Vx = ∅. Then {Ux | x ∈
X −U} is a cover of X −U by sets ∈ ⋃

n∈M

Pn. Therefore it has a finite subcover

Ux1 , Ux2 , . . . , Uxn . If V =
n⋂

i=1

Vxi , then V ∈ Pm, p ∈ V and V ∩ (X − U) = ∅,
which is a contradiction, since p is a (Pm)limit point of X − U. 2

Theorem 3.4. X is (m)Hausdorff iff for all x,

{x} =
⋂
{(Pn)clU | n 6= m,U ∈ Pm, x ∈ U}.

The proof is straightforward.

Theorem 3.5. If X is (m)Hausdorff, then for each filterbase F on X such that
F is (Pm)convergent to x and (Pn)convergent to y for some n 6= m, x = y. The
converse is also true if {Pn} satisfies the condition (a).
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Proof. Let X be (m)Hausdorff, and F be a filterbase on X, which is (Pm)conver-
gent to x. Let y 6= x. Then there exist U ∈ Pm and V ∈ ⋃

n6=m

Pn such that

x ∈ U, y ∈ V, U ∩ V = ∅. There is an A ∈ F with A ⊂ U . If V ∈ Pn, n 6= m,
then F cannot be (Pn)convergent to y. For if it is so, there must be a B ∈ F
with B ⊂ V, which is not possible, since any two elements of F have a non-empty
intersection.

To prove the converse, suppose X is not (m)Hausdorff. Then there exists a
pair x, y (x 6= y) such that for any U ∈ Pm and V ∈ ⋃

n6=m

Pn with x ∈ U, y ∈ V,

we have U∩V 6= ∅. So the class C = {U∩V | U ∈ Pm, V ∈ ⋃
n6=m

Pn, x ∈ U, y ∈ V }
is a filterbase on X, which is (Pm)convergent to x and (Pn)convergent to y for
all n 6= m. 2

If X is (ℵ0)Hausdorff, then Theorem 3.5 is true for any pair of elements
m,n ∈ N.

Likewise, each of the following theorems with (m) has a corresponding result
with (ℵ0).

Theorem 3.6. If X is (m)Hausdorff and M = {n | n 6= m}, then (M)compact
subsets are (Pm)closed.

Proof. Let K be an (M)compact subset of X and x ∈ X −K. If y ∈ K, then
there exist sets Uxy ∈ Pm and Vxy ∈

⋃
n 6=m

Pn such that x ∈ Uxy, y ∈ Vxy and

Uxy ∩ Vxy = ∅. Then V = {Vxy | y ∈ K} forms a cover of K by sets ∈ ⋃
n∈M

Pn.

Therefore V has a finite subcover Vxy1 , Vxy2 , . . . , Vxyk
. If Vx =

k⋃
i=1

Vxyi and

Ux =
k⋂

i=1

Uxyi , then x ∈ Ux ∈ Pm, K ⊂ Vx ∈
⋃

n 6=m

Pn and Ux ∩ Vx = ∅. Now

X −K ⊂
⋃
{Ux | x ∈ X −K}

⊂
⋃
{X − Vx | x ∈ X −K}

⊂ X −K.

⇒ X −K =
⋃
{Ux | x ∈ X −K}.

Thus K is (Pm)closed. 2

Theorem 3.7. X is (m)regular iff for n0 6= m, any (Pn0)closed set A is the
intersection of all (Pn)closed (Pm)nbds of A, n 6= m.

Proof. Let X be (m)regular. Suppose x belongs to the complement X − A
of the (Pn0)closed set A with n0 6= m. Since X − A is (Pn0)open, n0 6= m,
there exists a set G ∈ ⋃

n6=m

Pn such that x ∈ G ⊂ (Pm)clG ⊂ X − A. Then

A ⊂ X − (Pm)clG ⊂ X − G. Thus X − G is a (Pn)closed (Pm)nbd of A with
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n 6= m and x /∈ X −G. Hence the intersection of all (Pn)closed (Pm)nbds of A
with n 6= m, is the set A.

To prove the converse, suppose for n0 6= m, A is a (Pn0)closed set not
containing the point x. Then there exists a (Pn)closed (Pm)nbd F of A with
n 6= m and x /∈ F . If U = X − F and V = (Pm)intF , then U ∈ ⋃

n 6=m

Pn, V ∈
Pm, x ∈ U,A ⊂ V and U ∩ V = ∅. 2

Theorem 3.8. If X is (ℵ0)compact and (m)Hausdorff, and if {Pn} satisfies
the condition (a), then X is (m)regular.

Proof. Let x ∈ X and A be a (Pn)closed set with n 6= m and x /∈ A. If y ∈ A,
then by (m)Hausdorffness of X, there exist Uy ∈

⋃
n6=m

Pn and Vy ∈ Pm such

that x ∈ Uy, y ∈ Vy and Uy ∩ Vy = ∅. Then V = {Vy | y ∈ A} forms a (Pm)open
cover of A. Since A is (Pn)closed, by Theorem 3.1, it is (Pm)compact, and

hence V has a finite subcover Vy1 , . . . , Vyk
. If U =

k⋂
i=1

Uyi
and V =

k⋃
i=1

Vyi
, then

U ∈ ⋃
n6=m

Pn , V ∈ Pm, x ∈ U,A ⊂ V and U ∩ V = ∅. 2

Theorem 3.9. Every completely (m)regular space is (m)regular.

The proof is straightforward.

Theorem 3.10. If X is (ℵ0)compact and (m)regular, then X is (m)normal.

Proof. Suppose A is a (Pm)closed set and B is a (Pn)closed set with n 6= m
and A ∩ B = ∅. For x ∈ A, there is a Ux ∈

⋃
n6=m

Pn and Vx ∈ Pm such that

x ∈ Ux, B ⊂ Vx, Ux ∩ Vx = ∅. Since U = {Ux | x ∈ A} is a cover of A with sets
∈ ⋃

n 6=m

Pn, and X is (ℵ0)compact, it follows that there is a finite subcollection

Ux1 , Ux2 , . . . , Uxk
of U covering A. If U =

k⋃
i=1

Uxi and V =
k⋂

i=1

Vxi , then

U ∈ ⋃
n6=m

Pn, V ∈ Pm, U ∩ V = ∅, A ⊂ U,B ⊂ V. 2

Corollary 3.1. If X is (ℵ0)compact and (m)Hausdorff, and if {Pn} satisfies
the condition (a), then X is (m)normal.

The following theorem is a generalization of Urysohn’s Lemma for (ℵ0)topo-
logical spaces.

Theorem 3.11. Suppose X is (m)normal. Let A be a (Pm)closed set and B
be a (Pn)closed set with n 6= m and A ∩ B = ∅. Then there exists a function
f : X → [0, 1] such that f(x) = 0 for all x ∈ A, f(x) = 1 for all x ∈ B, f is
(

⋃
n 6=m

Pn)upper semi-continuous and (Pm)lower semi-continuous.

The proof is omitted. It is similar to the proof of Theorem 2.7 (Kelly [5]).
It is easy to see the converse of the above theorem is also true.
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From the definitions, it is clear that a completely (m)normal space is (m)nor-
mal. Also, it can be shown that complete (m)normality is a hereditary property
but (m)normality is not hereditary. The (m)Hausdorff property, (m)regularity
and complete (m)regularity are hereditary.

Theorem 3.12. X is completely (m)normal iff every subspace of X is (m)nor-
mal.

The proof is omitted.

Theorem 3.13. If X is (ℵ0)normal, then every finite (ℵ0)open cover U = {U1,
U2, . . . , Uk} of X with Ui ∈ Pni and ni 6= ni′ if i 6= i′, is shrinkable.

Proof. Suppose X is (ℵ0)normal. We choose a finite (ℵ0)open cover U = {U1,
U2, . . . , Uk} of X, satisfying the above conditions. Then (X −U1)∩ (X −U2)∩
. . .∩ (X −Uk) = ∅, and so (X −U1) and (X −U2)∩ . . .∩ (X −Uk) are disjoint.
Again, X − U1 is (Pn1)closed and (X − U2) ∩ . . . ∩ (X − Uk) is (Pn0)closed for
some n0 6= n1. So there exist V1 ∈ Pn for some n 6= n1 and W1 ∈ Pn1 such
that X − U1 ⊂ V1, (X − U2) ∩ . . . ∩ (X − Uk) ⊂ W1 and V1 ∩W1 = ∅. Then,
(Pn)clW1 ⊂ X − V1 ⊂ U1, n 6= n1. Therefore it follows that {W1, U2, . . . , Uk}
forms an (ℵ0)open cover of X with (Pn)clW1 ⊂ U1, n 6= n1. If we apply the
process k times, we obtain an (ℵ0)open cover {W1,W2, . . . , Wk} such that Wi ∈
Pni and (Pn)clWi ⊂ Ui, n 6= ni. 2

Theorem 3.14. If X is (ℵ0)paracompact, and if K is a (Pm)closed subset of
X for some m, then K is (ℵ0)paracompact.

The proof is straightforward.

Theorem 3.15. If X is (m)Hausdorff and (ℵ0)paracompact, and if {Pn} sat-
isfies the condition (a), then X is (m)regular.

The proof is omitted.

Theorem 3.16. Let X be (ℵ0)regular, and let {Pn} satisfy the condition (a).
Then X is (β-ℵ0)paracompact iff for all m ∈ N , every (

⋃
n 6=m

Pn)cover of X has

a (P)open refinement V =
∞⋃

k=1

Vk, where each Vk is (
⋃

n6=m

Pn)locally finite.

Proof. Since the ‘only if ’ part of the theorem is obviously true, we prove the
‘if’ part. It is done in three steps.

Step I. For m ∈ N, let G be a (
⋃

n6=m

Pn)cover of X. Then it has a (P)open

refinement V =
∞⋃

k=1

Vk, where each Vk is (
⋃

n6=m

Pn)locally finite. Suppose Vk =

{Vkα | α ∈ A}. Let Vkα ⊂ Gkα ∈ G. We write Wk =
⋃
α

Gkα, W i =
i⋃

k=1

Wk, A1 =

W1, and for i > 1, Ai = Wi −W i−1. Then {Wk | k ∈ N} is a cover of X, and
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so {Ai | i ∈ N} is a cover of X. This cover is (
⋃

n 6=m

Pn)locally finite. In

fact, if k(x) is the first k for which x ∈ Wk(x), then x ∈ Gk(x)α for some α,
Gk(x)α ∈ ⋃

n6=m

Pn, and Gk(x)α does not intersect any Ai for i > k(x). Thus

E(G) = {Ekα | k ∈ N, α ∈ A}, where Ekα = Ak ∩Vkα, is a (
⋃

n6=m

Pn)locally finite

refinement of G.

Step II. For m ∈ N , let H be a (
⋃

n6=m

Pn)cover of X. For x ∈ X, we choose an

Hx ∈ H such that x ∈ Hx. Since X is (ℵ0)regular, and since Hx is (Pn)open with
n 6= m, there exists a set H1

x ∈
⋃

n6=m

Pn such that x ∈ H1
x ⊂ (Pm)clH1

x ⊂ Hx.

Since Pm ⊂ P, we have

(1) (P)clH1
x ⊂ (Pm)clH1

x ⊂ Hx.

Now H1 = {H1
x | x ∈ X} is also a (

⋃
n 6=m

Pn)cover of X. Hence by Step I, we

get a (
⋃

n6=m

Pn)locally finite refinement E(H1) of H1. For E ∈ E(H1), we get an

H1
x ∈ H1 with E ⊂ H1

x and hence by (1), (P)clE ⊂ Hx. Thus F(H) = {(P)clE |
E ∈ E(H1)} is a (P)closed refinement of H. Also F(H) is (

⋃
n 6=m

Pn)locally finite:

Since E(H1) is (
⋃

n 6=m

Pn)locally finite, there exists, for x ∈ X, a G ∈ Pn, n 6= m

such that x ∈ G, and for all but finitely many E ∈ E(H1), G ∩ E = ∅ ⇒
G ∩ (Pn)clE = ∅ ⇒ G ∩ (P)clE = ∅.

Step III. We choose an m ∈ N . Let U be a (
⋃

n 6=m

Pn)cover of X. By Step I, U
has a (

⋃
n6=m

Pn)locally finite refinement E(U). For x ∈ X, suppose Wx ∈
⋃

n6=m

Pn

is a set containing x and intersecting a finite number of members of E(U). Then
W = {Wx | x ∈ X} forms a (

⋃
n 6=m

Pn)cover of X. Therefore by Step II, W has a

(
⋃

n 6=m

Pn)locally finite (P)closed refinement F(W). For E ∈ E(U), let

SE = X −
⋃
{F ∈ F(W) | F ∩ E = ∅}.

Since the collection F(W) of (P)closed sets is (
⋃

n 6=m

Pn)locally finite, and since
⋃

n6=m

Pn ⊂ P, by 9.2 (Dugundji [3], p. 82), it follows that the set
⋃{F ∈ F(W) |

F ∩E = ∅} is (P)closed, and hence SE is (P)open. Since E(U) is a cover of X,
S = {SE | E ∈ E(U)} is a (P)open cover of X. S is also (

⋃
n6=m

Pn)locally finite.

For, consider a set Dx ∈
⋃

n 6=m

Pn containing x and intersecting F1, F2, . . . , Fk ∈
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F(W). Now

Dx ∩ SE 6= ∅,
⇒ Fi ∩ SE 6= ∅ for some i = 1, 2, . . . , k,

⇒ Fi ∩ E 6= ∅ for some i = 1, 2, . . . , k.

Since each Fi is contained in some Wx, it can intersect at most finitely many
E ∈ E(U). Therefore Dx can intersect at most finitely many SE ∈ S.

For every E ∈ E(U), we take UE ∈ U such that E ⊂ UE . Then the collection
{UE ∩ SE | E ∈ E(U)} is a (

⋃
n 6=m

Pn)locally finite (P)open refinement of U .

Therefore X is (β-ℵ0)paracompact. 2
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