NOVI SAD J. MATH. Vol. 40, No. 2, 2010, 7-16

ON COUNTABLE FAMILIES OF TOPOLOGIES ON A SET

M.K. Bose¹, Ajoy Mukharjee²

Abstract

Considering a countable number of topologies on a set X, we introduce the notion of (\aleph_0) topological spaces as a generalization of the notions of both bitopological spaces and (ω) topological spaces, and study some of their properties.

AMS Mathematics Subject Classification (2000): 54A10

Key words and phrases: bitopological space, (ω) topological space, (\aleph_0) topological space, (\aleph_0) open set, (m)Hausdorff, (\aleph_0) Hausdorff, (\aleph_0) regular, (\aleph_0) normal, completely (\aleph_0) normal, (\aleph_0) compact, (\aleph_0) paracompact, $(\beta-\aleph_0)$ paracompact

1. Introduction

The purpose of this paper is to study a space equipped with countable number of topologies. The notion of bitopological spaces was introduced in Kelly [5] and the notion of (ω) topological spaces in Bose and Tiwari [1]. By generalizing both of these notions, we introduce here the notion of (\aleph_0) topological spaces (Definition 2.1). In the (\aleph_0) topological spaces, we define (\aleph_0) Hausdorffness, (\aleph_0) regularity, (\aleph_0) normality and (\aleph_0) compactness. We also define complete (\aleph_0) regularity and complete (\aleph_0) normality. We prove some results for these notions.

A set X equipped with an increasing sequence $\{\mathcal{T}_n\}$ of topologies is called a (ω) topological space. If $\mathcal{T}_n = \mathcal{T}_{n'}$ for all n, n', then the (ω) topological space X becomes a topological space. Thus the notion of (ω) topological spaces generalizes the notion of topological spaces. But it does not generalize the notion of bitopological spaces.

Fletcher et al. [4] attempted to define pairwise paracompactness in a bitopological space. But in the presence of pairwise Hausdorffness, the two topologies coincide and the resulting single topological space is paracompact whenever the bitopological space is pairwise paracompact. Later Datta [2] introduced a notion of pairwise paracompactness. In the (\aleph_0) topological spaces, we introduce (\aleph_0) paracompactness. A space which is (\aleph_0) Hausdorff and (\aleph_0) paracompact is

 $^{^1 \}rm Department of Mathematics, University of North Bengal, Siliguri, W. Bengal - 734013, India, e-mail: manojkumarbose@yahoo.com$

 $^{^2 \}rm Department of Mathematics, St. Joseph's College, North Point, Darjeeling, W. Bengal - 734 104, India, e-mail: ajoyjee@yahoo.com$

 (\aleph_0) regular. Raghavan and Reilly [8] introduced α -, β -, γ - and δ -pairwise paracompactness. They presented a δ -pairwise paracompactness version of Michael's characterization (Michael [7]) of regular paracompact spaces. Unfortunately, the proof of this result is not correct (Kovár [6]). We introduce here a (β - \aleph_0)paracompactness and prove the Michael's theorem for (β - \aleph_0)paracompactness of the space X when it is (\aleph_0)regular (Theorem 3.16). From this, we obtain an analogue of Michael's theorem for the β -pairwise paracompactness of a pairwise regular bitopological space, as a particular case.

2. Definitions

Let $\{\mathcal{P}_n\}$ be a sequence of topologies on a set X. The sequence $\{\mathcal{P}_n\}$ is said to satisfy the condition (*) (resp. condition (a)) if for any positive integer m, the union (resp. intersection) of a finite number of sets $\in \bigcup_{n \neq m} \mathcal{P}_n$ is a set $\in \bigcup_{n \neq m} \mathcal{P}_n$.

We introduce the following definitions.

Definition 2.1. If $\{\mathcal{P}_n\}$ is a sequence of topologies on a set X satisfying the condition (*), then the pair $(X, \{\mathcal{P}_n\})$ is called an (\aleph_0) topological space. A set $G \in \bigcup \mathcal{P}_n$ is called an (\aleph_0) open set.

Throughout the paper, R and N denote the set of real numbers and the set of positive integers respectively. Members of N are generally denoted by k, l, m, n etc. If \mathcal{T} is a topology on a set X, then $(\mathcal{T})clA$ and $(\mathcal{T})intA$ denote the closure and interior respectively of $A \subset X$ with respect to \mathcal{T} . Unless otherwise mentioned, X denotes the (\aleph_0) topological space $(X, \{\mathcal{P}_n\})$. Elements of X are denoted by x, y etc. All the sets considered here are subsets of X.

Example 2.1. We enumerate all the rational numbers: r_1, r_2, r_3, \ldots Let \mathcal{Q}_n denote the particular point topology (Steen and Seebach, Jr. [9]) on R, where each nonempty set $\in \mathcal{Q}_n$ contains r_n .

Then $(R, \{Q_n\})$ is an (\aleph_0) topological space, where the sequence $\{Q_n\}$ does not satisfy the condition (a). In the (\aleph_0) topological space considered in Example 2.2, $\{\mathcal{P}_n\}$ satisfies the condition (a).

Definition 2.2. Suppose $Y \subset X$ and $\mathcal{P}_n \mid Y$ denotes the subspace topology on Y induced by \mathcal{P}_n . Then $(Y, \{\mathcal{P}_n \mid Y\})$ is called a *subspace* of $(X, \{\mathcal{P}_n\})$.

Definition 2.3. A function $f: X \to R$ is said to be $(\bigcup_{n \in M} \mathcal{P}_n)$ upper semi-

continuous (resp. $(\bigcup_{n \in M} \mathcal{P}_n)$ lower semi-continuous) if for every $a \in R$, $f^{-1}((-\infty, a)) \in [\Box, \mathcal{P}_n]$ where $M \subset N$.

$$(a)) \in \bigcup_{n \in M} \mathcal{P}_n \quad (\text{resp. } f^{-1}((a,\infty)) \in \bigcup_{n \in M} \mathcal{P}_n) \text{ where } M \subset N$$

Definition 2.4. X is said to be (\aleph_0) compact if every (\aleph_0) open cover \mathcal{C} of X with $\mathcal{C} \cap \mathcal{P}_n \neq \emptyset$ for at least two values of n has a finite subcover. Let $M \subset N$. X is said to be (M) compact if every cover of X consisting of the sets $\in \bigcup_{n \in M} \mathcal{P}_n$

has a finite subcover.

Definition 2.5. An (\aleph_0) open cover $\{U_\alpha \mid U_\alpha \in \mathcal{P}_{n_\alpha}\}$ of X is said to be *shrinkable* if there is another (\aleph_0) open cover $\{V_\alpha \mid V_\alpha \in \mathcal{P}_{n_\alpha}\}$ of X with $(\mathcal{P}_n)clV_\alpha \subset U_\alpha$ for some $n \neq n_\alpha$.

Definition 2.6. A set D is called a (\mathcal{P}_n) neighbourhood, or in short a (\mathcal{P}_n) nbd, of a set A if $A \subset (\mathcal{P}_n)$ intD.

Definition 2.7. X is said to be (m) Hausdorff if for any pair of distinct points $x, y \in X$, there exist $U \in \mathcal{P}_m$ and $V \in \bigcup_{n \neq m} \mathcal{P}_n$ such that $x \in U, y \in V$ and $U \cap V = \emptyset$. If X is (m) Hausdorff for all $m \in N$, then X is said to be an (\aleph_0) Hausdorff space.

The (\aleph_0) topological space $(R, \{Q_n\})$ considered in Example 2.1, is not (n)Hausdorff for any n. Also for any n, the topological space (R, Q_n) is not Hausdorff and for any pair of integers m, n, the bitopological space (R, Q_m, Q_n) is not pairwise Hausdorff.

Example 2.2. Let the sequence $\{\mathcal{P}_n\}$ of topologies on R be defined by

$$\mathcal{P}_1 = \mathcal{U},$$

$$\mathcal{P}_n = \{\emptyset\} \cup \{G \cup (n, \infty) \mid G \in \mathcal{U}\} \text{ for all } n > 1,$$

where \mathcal{U} is the usual topology on R.

Then the (\aleph_0) topological space $(R, \{\mathcal{P}_n\})$ is (1) Hausdorff but it is not (n) Hausdorff for any $n \neq 1$, and so it is not (\aleph_0) Hausdorff.

Definition 2.8. X is said to be (m) regular if for any point $x \in X$ and any (\mathcal{P}_n) closed set A with $n \neq m$ and $x \notin A$, there exist $U \in \bigcup_{n \neq m} \mathcal{P}_n$ and $V \in \mathcal{P}_m$ such that $x \in U, A \subset V, U \cap V = \emptyset$. X is said to be (\aleph_0) regular if it is (m) regular for all $m \in N$.

It is easy to see that X is (m) regular iff for any point $x \in X$ and any (\mathcal{P}_n) open set G containing x with $n \neq m$, there exists a $U \in \bigcup_{n \neq m} \mathcal{P}_n$ containing

x such that $(\mathcal{P}_m)clU \subset G$.

Definition 2.9. X is said to be *completely* (m)*regular* if for any point $x \in X$ and any (\mathcal{P}_n) closed set A with $n \neq m$ and $x \notin A$, there exists a function $f: X \to [0, 1]$ such that f(x) = 0, f(y) = 1 for all $y \in A$, f is $(\bigcup_{n \neq m} \mathcal{P}_n)$ upper

semi-continuous and (\mathcal{P}_m) lower semi-continuous. X is completely (\aleph_0) regular if it is completely (m) regular for all $m \in N$.

Definition 2.10. X is said to be (m) normal if given a (\mathcal{P}_m) closed set A and a (\mathcal{P}_n) closed set B with $n \neq m$ and $A \cap B = \emptyset$, there exist $U \in \bigcup_{n \neq m} \mathcal{P}_n$ and $V \in \mathcal{P}_m$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$. If X is (m) normal for all $m \in N$, then it is said to be (\aleph_0) normal. From the definition, it follows that X is (m) normal iff for any (\mathcal{P}_m) closed set A and any (\mathcal{P}_n) open set W containing A with $n \neq m$, there exists a $U \in \bigcup_{n \neq m} \mathcal{P}_n$

such that $A \subset U \subset (\mathcal{P}_m) cl U \subset W$.

Definition 2.11. X is said to be *completely* (m)*normal* if for each pair A, B of subsets of X satisfying $(A \cap (\mathcal{P}_n)clB) \cup ((\mathcal{P}_m)clA \cap B) = \emptyset, n \neq m$, there exist $U \in \bigcup_{n \neq m} \mathcal{P}_n$ and $V \in \mathcal{P}_m$ such that $A \subset U, B \subset V$ and $U \cap V = \emptyset$.

Complete (\aleph_0) normality is defined in the obvious way.

The (\aleph_0) topological space $(R, \{Q_n\})$ considered in Example 2.1, is completely (\aleph_0) normal but for no n, the topological space (R, Q_n) is normal. Also, for no n, $(R, \{Q_n\})$ is (n) regular.

Example 2.3. Let X be an infinite set and $a, b, c \in X$. Suppose \mathcal{G} (resp. \mathcal{H}) is a collection of subsets of X, which contains, in addition to \emptyset and X, all those subsets E of X for which $a \notin E$ and $c \in E$ (resp. $a, b \notin E$ and $c \in E$). Then \mathcal{G} and \mathcal{H} form topologies on X. Let $\mathcal{P}_n = \mathcal{G}$ for odd n, and $= \mathcal{H}$ for even n.

Then the (\aleph_0) topological space $(X, \{\mathcal{P}_n\})$ is (\aleph_0) normal but not completely (\aleph_0) normal. In fact, it is completely (m) normal for no m.

Definition 2.12. A collection C of subsets of X is said to be (\aleph_0) locally finite if each $x \in X$ has a (\mathcal{P}_n) open nbd, for at least two values of n, intersecting at most finitely many $U \in C$. For any $m \in N$, C is said to be $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite

if for each $x \in X$, there exists a set $\in \bigcup_{n \neq m} \mathcal{P}_n$, containing x and intersecting at

most finitely many $U \in \mathcal{C}$.

Definition 2.13. A refinement \mathcal{V} of an (\aleph_0) open cover \mathcal{U} is said to be a *parallel* refinement if $V \in \mathcal{V}$ is (\mathcal{P}_n) open whenever $V \subset U \in \mathcal{U}$ and U is (\mathcal{P}_n) open.

Definition 2.14. X is said to be (\aleph_0) paracompact if every (\aleph_0) open cover \mathcal{U} of X with $\mathcal{U} \cap \mathcal{P}_n \neq \emptyset$ for at least two values of n has an (\aleph_0) locally finite parallel refinement.

It follows from the definitions that an (\aleph_0) compact space is (\aleph_0) paracompact. The converse is not true:

Example 2.4. Let \mathcal{T} be the indiscrete topology on R, and \mathcal{U}_n be the subspace topology $\mathcal{U} \mid I_n$ on $I_n = (-n, n)$, of the usual topology \mathcal{U} on R. If $\mathcal{P}_n = \mathcal{T} \cup \mathcal{U}_n$, then $(R, \{\mathcal{P}_n\})$ is an (\aleph_0) topological space, which is (\aleph_0) paracompact but not (\aleph_0) compact.

Let \mathcal{P} denote the smallest topology containing all the topologies $\mathcal{P}_n, n \in N$. We call a cover \mathcal{C} of X, a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover if $\mathcal{C} \subset \bigcup_{n \neq m} \mathcal{P}_n$.

Definition 2.15. X is said to be $(\beta \cdot \aleph_0)$ paracompact if for all $m \in N$, every $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X has a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite (\mathcal{P}) open refinement.

The following example shows that a $(\beta - \aleph_0)$ paracompact space may not be (\aleph_0) paracompact.

Example 2.5. Suppose $X = [0, \infty)$ and \mathcal{U} is the usual topology on X. Let \mathcal{P}_1 = discrete topology on X, $\mathcal{P}_2 = \mathcal{U}$ and for n > 2, $\mathcal{P}_n = \{\emptyset\} \cup \{G \cup (n, \infty) \mid G \in \mathcal{U}\}$. Then the (\aleph_0) topological space $(X, \{\mathcal{P}_n\})$ is $(\beta \cdot \aleph_0)$ paracompact but not (\aleph_0) paracompact.

Open question. Does (\aleph_0) paracompactness of a space imply $(\beta - \aleph_0)$ paracompactness of the space?

3. Results

Theorem 3.1. If X is (\aleph_0) compact, and K is (\mathcal{P}_m) closed for some m, then K is (\aleph_0) compact. If K is a proper subset of X, then K is (\mathcal{P}_n) compact for all $n \neq m$.

Proof. We prove only the second part. Choose $n_0 \neq m$. Let \mathcal{U} be a (\mathcal{P}_{n_0}) open cover of K. Then $\mathcal{U}_1 = \mathcal{U} \cup \{X - K\}$ is an (\aleph_0) open cover of X with $\mathcal{U}_1 \cap \mathcal{P}_n \neq \emptyset$ for two values of n. Therefore \mathcal{U}_1 has a finite subcover. Hence \mathcal{U} has a finite subcover. \Box

Theorem 3.2. If (X, \mathcal{P}_n) is a Hausdorff topological space for each n, and $(X, \{\mathcal{P}_n\})$ is (\aleph_0) compact, then all \mathcal{P}_n are identical.

The proof is straightforward.

Theorem 3.3. Let $M = \{n \in N \mid n \neq m\}$. If X is (m)Hausdorff and (M)compact, then $\mathcal{P}_n \subset \mathcal{P}_m$ for all n.

Proof. Let $n \neq m$. If $\mathcal{P}_n \not\subset \mathcal{P}_m$, then there exists a set $U \in \mathcal{P}_n$ such that $U \notin \mathcal{P}_m$. Then X - U is (\mathcal{P}_n) closed, and hence (M)compact. Since X - U is not (\mathcal{P}_m) closed, there is a point $p \in U$ which is a (\mathcal{P}_m) limit point of X - U. Again, since X is (m)Hausdorff, for each $x \in X - U$, there exist $U_x \in \bigcup_{n \neq m} \mathcal{P}_n$

and $V_x \in \mathcal{P}_m$ such that $x \in U_x, p \in V_x$ and $U_x \cap V_x = \emptyset$. Then $\{U_x \mid x \in X - U\}$ is a cover of X - U by sets $\in \bigcup_{n \in M} \mathcal{P}_n$. Therefore it has a finite subcover

 $U_{x_1}, U_{x_2}, \dots, U_{x_n}$. If $V = \bigcap_{i=1}^n V_{x_i}$, then $V \in \mathcal{P}_m$, $p \in V$ and $V \cap (X - U) = \emptyset$, which is a contradiction, since p is a (\mathcal{P}_m) limit point of X - U.

Theorem 3.4. X is (m) Hausdorff iff for all x,

$$\{x\} = \bigcap \{ (\mathcal{P}_n) clU \mid n \neq m, U \in \mathcal{P}_m, x \in U \}.$$

The proof is straightforward.

Theorem 3.5. If X is (m) Hausdorff, then for each filterbase \mathcal{F} on X such that \mathcal{F} is (\mathcal{P}_m) convergent to x and (\mathcal{P}_n) convergent to y for some $n \neq m$, x = y. The converse is also true if $\{\mathcal{P}_n\}$ satisfies the condition (a).

Proof. Let X be (m)Hausdorff, and \mathcal{F} be a filterbase on X, which is (\mathcal{P}_m) convergent to x. Let $y \neq x$. Then there exist $U \in \mathcal{P}_m$ and $V \in \bigcup_{n \neq m} \mathcal{P}_n$ such that $x \in U, y \in V, U \cap V = \emptyset$. There is an $A \in \mathcal{F}$ with $A \subset U$. If $V \in \mathcal{P}_n, n \neq m$, then \mathcal{F} cannot be (\mathcal{P}_n) convergent to y. For if it is so, there must be a $B \in \mathcal{F}$ with $B \subset V$, which is not possible, since any two elements of \mathcal{F} have a non-empty intersection.

To prove the converse, suppose X is not (m)Hausdorff. Then there exists a pair $x, y \ (x \neq y)$ such that for any $U \in \mathcal{P}_m$ and $V \in \bigcup_{n \neq m} \mathcal{P}_n$ with $x \in U, y \in V$, we have $U \cap V \neq \emptyset$. So the class $\mathcal{C} = \{U \cap V \mid U \in \mathcal{P}_m, V \in \bigcup_{n \neq m} \mathcal{P}_n, x \in U, y \in V\}$ is a filterbase on X, which is (\mathcal{P}_m) convergent to x and (\mathcal{P}_n) convergent to y for all $n \neq m$.

If X is (\aleph_0) Hausdorff, then Theorem 3.5 is true for any pair of elements $m, n \in N$.

Likewise, each of the following theorems with (m) has a corresponding result with (\aleph_0) .

Theorem 3.6. If X is (m)Hausdorff and $M = \{n \mid n \neq m\}$, then (M) compact subsets are (\mathcal{P}_m) closed.

Proof. Let K be an (M)compact subset of X and $x \in X - K$. If $y \in K$, then there exist sets $U_{xy} \in \mathcal{P}_m$ and $V_{xy} \in \bigcup_{n \neq m} \mathcal{P}_n$ such that $x \in U_{xy}, y \in V_{xy}$ and $U_{xy} \cap V_{xy} = \emptyset$. Then $\mathcal{V} = \{V_{xy} \mid y \in K\}$ forms a cover of K by sets $\in \bigcup_{n \in M} \mathcal{P}_n$.

Therefore \mathcal{V} has a finite subcover $V_{xy_1}, V_{xy_2}, \ldots, V_{xy_k}$. If $V_x = \bigcup_{i=1}^k V_{xy_i}$ and

 $U_x = \bigcap_{i=1}^k U_{xy_i}$, then $x \in U_x \in \mathcal{P}_m$, $K \subset V_x \in \bigcup_{n \neq m} \mathcal{P}_n$ and $U_x \cap V_x = \emptyset$. Now

$$X - K \subset \bigcup \{ U_x \mid x \in X - K \}$$
$$\subset \bigcup \{ X - V_x \mid x \in X - K \}$$
$$\subset X - K.$$
$$\Rightarrow X - K = \bigcup \{ U_x \mid x \in X - K \}.$$

Thus K is (\mathcal{P}_m) closed.

Theorem 3.7. X is (m)regular iff for $n_0 \neq m$, any (\mathcal{P}_{n_0}) closed set A is the intersection of all (\mathcal{P}_n) closed (\mathcal{P}_m) nbds of A, $n \neq m$.

Proof. Let X be (m)regular. Suppose x belongs to the complement X - Aof the (\mathcal{P}_{n_0}) closed set A with $n_0 \neq m$. Since X - A is (\mathcal{P}_{n_0}) open, $n_0 \neq m$, there exists a set $G \in \bigcup_{n \neq m} \mathcal{P}_n$ such that $x \in G \subset (\mathcal{P}_m) clG \subset X - A$. Then $A \subset X - (\mathcal{P}_m) clG \subset X - G$. Thus X - G is a (\mathcal{P}_n) closed (\mathcal{P}_m) nbd of A with $n \neq m$ and $x \notin X - G$. Hence the intersection of all (\mathcal{P}_n) closed (\mathcal{P}_m) nbds of A with $n \neq m$, is the set A.

To prove the converse, suppose for $n_0 \neq m$, A is a (\mathcal{P}_{n_0}) closed set not containing the point x. Then there exists a (\mathcal{P}_n) closed (\mathcal{P}_m) nbd F of A with $n \neq m$ and $x \notin F$. If U = X - F and $V = (\mathcal{P}_m)intF$, then $U \in \bigcup_{n \neq m} \mathcal{P}_n, V \in \mathcal{P}_n$

$$\mathcal{P}_m, x \in U, A \subset V \text{ and } U \cap V = \emptyset.$$

Theorem 3.8. If X is (\aleph_0) compact and (m) Hausdorff, and if $\{\mathcal{P}_n\}$ satisfies the condition (a), then X is (m) regular.

Proof. Let $x \in X$ and A be a (\mathcal{P}_n) closed set with $n \neq m$ and $x \notin A$. If $y \in A$, then by (m) Hausdorffness of X, there exist $U_y \in \bigcup_{n \neq m} \mathcal{P}_n$ and $V_y \in \mathcal{P}_m$ such that $x \in U_y, y \in V_y$ and $U_y \cap V_y = \emptyset$. Then $\mathcal{V} = \{V_y \mid y \in A\}$ forms a (\mathcal{P}_m) open cover of A. Since A is (\mathcal{P}_n) closed, by Theorem 3.1, it is (\mathcal{P}_m) compact, and hence \mathcal{V} has a finite subcover V_{y_1}, \ldots, V_{y_k} . If $U = \bigcap_{i=1}^k U_{y_i}$ and $V = \bigcup_{i=1}^k V_{y_i}$, then $U \in \bigcup_{n \neq m} \mathcal{P}_n, V \in \mathcal{P}_m, x \in U, A \subset V$ and $U \cap V = \emptyset$. \Box

Theorem 3.9. Every completely (m) regular space is (m) regular.

The proof is straightforward.

Theorem 3.10. If X is (\aleph_0) compact and (m) regular, then X is (m) normal.

Proof. Suppose A is a (\mathcal{P}_m) closed set and B is a (\mathcal{P}_n) closed set with $n \neq m$ and $A \cap B = \emptyset$. For $x \in A$, there is a $U_x \in \bigcup_{n \neq m} \mathcal{P}_n$ and $V_x \in \mathcal{P}_m$ such that $x \in U_x, B \subset V_x, U_x \cap V_x = \emptyset$. Since $\mathcal{U} = \{U_x \mid x \in A\}$ is a cover of A with sets $\in \bigcup_{n \neq m} \mathcal{P}_n$, and X is (\aleph_0) compact, it follows that there is a finite subcollection

 $U_{x_1}, U_{x_2}, \dots, U_{x_k}$ of \mathcal{U} covering A. If $U = \bigcup_{i=1}^k U_{x_i}$ and $V = \bigcap_{i=1}^k V_{x_i}$, then $U \in \bigcup_{n \neq m} \mathcal{P}_n, V \in \mathcal{P}_m, U \cap V = \emptyset, A \subset U, B \subset V$.

Corollary 3.1. If X is (\aleph_0) compact and (m) Hausdorff, and if $\{\mathcal{P}_n\}$ satisfies the condition (a), then X is (m) normal.

The following theorem is a generalization of Urysohn's Lemma for (\aleph_0) topological spaces.

Theorem 3.11. Suppose X is (m)normal. Let A be a (\mathcal{P}_m) closed set and B be a (\mathcal{P}_n) closed set with $n \neq m$ and $A \cap B = \emptyset$. Then there exists a function $f: X \to [0,1]$ such that f(x) = 0 for all $x \in A$, f(x) = 1 for all $x \in B$, f is $(\bigcup_{n \neq m} \mathcal{P}_n)$ upper semi-continuous and (\mathcal{P}_m) lower semi-continuous.

The proof is omitted. It is similar to the proof of Theorem 2.7 (Kelly [5]). It is easy to see the converse of the above theorem is also true.

From the definitions, it is clear that a completely (m) normal space is (m) normal. Also, it can be shown that complete (m) normality is a hereditary property but (m) normality is not hereditary. The (m) Hausdorff property, (m) regularity and complete (m) regularity are hereditary.

Theorem 3.12. X is completely (m) normal iff every subspace of X is (m) normal.

The proof is omitted.

Theorem 3.13. If X is (\aleph_0) normal, then every finite (\aleph_0) open cover $\mathcal{U} = \{U_1, U_2, \ldots, U_k\}$ of X with $U_i \in \mathcal{P}_{n_i}$ and $n_i \neq n_{i'}$ if $i \neq i'$, is shrinkable.

Proof. Suppose X is (\aleph_0)normal. We choose a finite (\aleph_0)open cover $\mathcal{U} = \{U_1, U_2, \ldots, U_k\}$ of X, satisfying the above conditions. Then $(X - U_1) \cap (X - U_2) \cap \ldots \cap (X - U_k) = \emptyset$, and so $(X - U_1)$ and $(X - U_2) \cap \ldots \cap (X - U_k)$ are disjoint. Again, $X - U_1$ is (\mathcal{P}_{n_1}) closed and $(X - U_2) \cap \ldots \cap (X - U_k)$ is (\mathcal{P}_{n_0}) closed for some $n_0 \neq n_1$. So there exist $V_1 \in \mathcal{P}_n$ for some $n \neq n_1$ and $W_1 \in \mathcal{P}_{n_1}$ such that $X - U_1 \subset V_1$, $(X - U_2) \cap \ldots \cap (X - U_k) \subset W_1$ and $V_1 \cap W_1 = \emptyset$. Then, $(\mathcal{P}_n) cl W_1 \subset X - V_1 \subset U_1$, $n \neq n_1$. Therefore it follows that $\{W_1, U_2, \ldots, U_k\}$ forms an (\aleph_0)open cover of X with $(\mathcal{P}_n) cl W_1 \subset U_1$, $n \neq n_1$. If we apply the process k times, we obtain an (\aleph_0)open cover $\{W_1, W_2, \ldots, W_k\}$ such that $W_i \in \mathcal{P}_{n_i}$ and $(\mathcal{P}_n) cl W_i \subset U_i$, $n \neq n_i$. □

Theorem 3.14. If X is (\aleph_0) paracompact, and if K is a (\mathcal{P}_m) closed subset of X for some m, then K is (\aleph_0) paracompact.

The proof is straightforward.

Theorem 3.15. If X is (m) Hausdorff and (\aleph_0) paracompact, and if $\{\mathcal{P}_n\}$ satisfies the condition (a), then X is (m) regular.

The proof is omitted.

Theorem 3.16. Let X be (\aleph_0) regular, and let $\{\mathcal{P}_n\}$ satisfy the condition (a). Then X is $(\beta \cdot \aleph_0)$ paracompact iff for all $m \in N$, every $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X has

a (\mathcal{P}) open refinement $\mathcal{V} = \bigcup_{k=1}^{\infty} \mathcal{V}_k$, where each \mathcal{V}_k is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite.

Proof. Since the 'only if ' part of the theorem is obviously true, we prove the 'if' part. It is done in three steps.

Step I. For $m \in N$, let \mathcal{G} be a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X. Then it has a (\mathcal{P}) open

refinement $\mathcal{V} = \bigcup_{k=1}^{\infty} \mathcal{V}_k$, where each \mathcal{V}_k is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite. Suppose $\mathcal{V}_k = i$

 $\{V_{k\alpha} \mid \alpha \in A\}$. Let $V_{k\alpha} \subset G_{k\alpha} \in \mathcal{G}$. We write $W_k = \bigcup_{\alpha} G_{k\alpha}$, $W^i = \bigcup_{k=1}^{i} W_k$, $A_1 = W_1$, and for i > 1, $A_i = W_i - W^{i-1}$. Then $\{W_k \mid k \in N\}$ is a cover of X, and

so $\{A_i \mid i \in N\}$ is a cover of X. This cover is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite. In fact, if k(x) is the first k for which $x \in W_{k(x)}$, then $x \in G_{k(x)\alpha}$ for some α , $G_{k(x)\alpha} \in \bigcup_{n \neq m} \mathcal{P}_n$, and $G_{k(x)\alpha}$ does not intersect any A_i for i > k(x). Thus $\mathcal{E}(\mathcal{G}) = \{E_{k\alpha} \mid k \in N, \alpha \in A\}$, where $E_{k\alpha} = A_k \cap V_{k\alpha}$, is a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite refinement of \mathcal{G} .

Step II. For $m \in N$, let \mathcal{H} be a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X. For $x \in X$, we choose an $H_x \in \mathcal{H}$ such that $x \in H_x$. Since X is (\aleph_0) regular, and since H_x is (\mathcal{P}_n) open with $n \neq m$, there exists a set $H_x^1 \in \bigcup_{n \neq m} \mathcal{P}_n$ such that $x \in H_x^1 \subset (\mathcal{P}_m) cl H_x^1 \subset H_x$. Since $\mathcal{P}_m \subset \mathcal{P}$, we have

(1)
$$(\mathcal{P})clH_x^1 \subset (\mathcal{P}_m)clH_x^1 \subset H_x.$$

Now $\mathcal{H}^1 = \{H_x^1 \mid x \in X\}$ is also a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X. Hence by Step I, we get a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite refinement $\mathcal{E}(\mathcal{H}^1)$ of \mathcal{H}^1 . For $E \in \mathcal{E}(\mathcal{H}^1)$, we get an $H_x^1 \in \mathcal{H}^1$ with $E \subset H_x^1$ and hence by (1), $(\mathcal{P})clE \subset H_x$. Thus $\mathcal{F}(\mathcal{H}) = \{(\mathcal{P})clE \mid E \in \mathcal{E}(\mathcal{H}^1)\}$ is a (\mathcal{P}) closed refinement of \mathcal{H} . Also $\mathcal{F}(\mathcal{H})$ is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite. Since $\mathcal{E}(\mathcal{H}^1)$ is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite, there exists, for $x \in X$, a $G \in \mathcal{P}_n, n \neq m$ such that $x \in G$, and for all but finitely many $E \in \mathcal{E}(\mathcal{H}^1), G \cap E = \emptyset \Rightarrow G \cap (\mathcal{P}_n)clE = \emptyset$.

Step III. We choose an $m \in N$. Let \mathcal{U} be a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X. By Step I, \mathcal{U} has a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite refinement $\mathcal{E}(\mathcal{U})$. For $x \in X$, suppose $W_x \in \bigcup_{n \neq m} \mathcal{P}_n$ is a set containing x and intersecting a finite number of members of $\mathcal{E}(\mathcal{U})$. Then $\mathcal{W} = \{W_x \mid x \in X\}$ forms a $(\bigcup_{n \neq m} \mathcal{P}_n)$ cover of X. Therefore by Step II, \mathcal{W} has a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite (\mathcal{P}) closed refinement $\mathcal{F}(\mathcal{W})$. For $E \in \mathcal{E}(\mathcal{U})$, let

$$S_E = X - \bigcup \{ F \in \mathcal{F}(\mathcal{W}) \mid F \cap E = \emptyset \}.$$

Since the collection $\mathcal{F}(\mathcal{W})$ of (\mathcal{P}) closed sets is $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite, and since $\bigcup_{n \neq m} \mathcal{P}_n \subset \mathcal{P}$, by 9.2 (Dugundji [3], p. 82), it follows that the set $\bigcup \{F \in \mathcal{F}(\mathcal{W}) \mid F \cap E = \emptyset\}$ is (\mathcal{P}) closed, and hence S_E is (\mathcal{P}) open. Since $\mathcal{E}(\mathcal{U})$ is a cover of X, $\mathcal{S} = \{S_E \mid E \in \mathcal{E}(\mathcal{U})\}$ is a (\mathcal{P}) open cover of X. \mathcal{S} is also $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite. For, consider a set $D_x \in \bigcup_{n \neq m} \mathcal{P}_n$ containing x and intersecting $F_1, F_2, \ldots, F_k \in \mathcal{F}(\mathcal{W})$ $\mathcal{F}(\mathcal{W})$. Now

 $D_x \cap S_E \neq \emptyset,$ $\Rightarrow \quad F_i \cap S_E \neq \emptyset \text{ for some } i = 1, 2, \dots, k,$ $\Rightarrow \quad F_i \cap E \neq \emptyset \text{ for some } i = 1, 2, \dots, k.$

Since each F_i is contained in some W_x , it can intersect at most finitely many $E \in \mathcal{E}(\mathcal{U})$. Therefore D_x can intersect at most finitely many $S_E \in \mathcal{S}$.

For every $E \in \mathcal{E}(\mathcal{U})$, we take $U_E \in \mathcal{U}$ such that $E \subset U_E$. Then the collection $\{U_E \cap S_E \mid E \in \mathcal{E}(\mathcal{U})\}$ is a $(\bigcup_{n \neq m} \mathcal{P}_n)$ locally finite (\mathcal{P}) open refinement of \mathcal{U} . Therefore X is $(\beta \cdot \aleph_0)$ paracompact.

Acknowledgement. We are grateful to the referee for careful reading the paper and for certain suggestions towards the improvement of the paper.

References

- Bose, M.K., Tiwari, R., On increasing sequences of topologies on a set. Riv. Mat. Univ. Parma (7) 7 (2007), 173-183.
- [2] Datta, M.C., Paracompactness in bitopological spaces and an application to quasi-metric spaces. Indian J. Pure Appl. Math. 8 (1977), 685-690.
- [3] Dugundji, J., Topology. Boston: Allyn and Bacon 1966.
- [4] Fletcher, P., Hoyle III, H.B., Patty, C.W., The comparison of topologies. Duke Math. J. 36 (1969), 325-331.
- [5] Kelly, J.C., Bitopological spaces. Proc. Lond. Math. Soc. (3) 13 (1963), 71-89.
- [6] Kovár, M.M., On 3-topological version of θ-regularity. Int. J. Math. Math. Sci. 23 (2000), 393-398.
- [7] Michael, E., A note on paracompact spaces. Proc. Amer. Math. Soc. 4 (1953), 831-838.
- [8] Raghavan, T.G., Reilly, I.L., A new bitopological paracompactness. J. Aust. Math. Soc. (Series A) 41 (1986), 268-274.
- [9] Steen, L.A., Seebach Jr., J.A., Counterexamples in topology. New York: Holt, Rinehart and Winston Inc. 1970.

Received by the editors April 12, 2008

16