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ON N(k)−QUASI EINSTEIN MANIFOLD

R. N. Singh1, M. K. Pandey2, D. Gautam3

Abstract. In the present paper we have studied an N(k)-quasi Einstein
manifold satisfying R(ξ, X).P̃ , where P̃ is the pseudo-projective curvature
tensor. Among others, it is shown that if quasi-Einstein manifold with
constant associated scalars is Ricci symmetric then the generator of the
manifold is a Killing vector field.
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1. Introduction

A quasi-Einstein manifold is a simple and natural generalization of the Ein-
stein manifold. A non-flat Riemannian manifold (Mn, g) (n > 2) is defined
to be a quasi-Einstein manifold [2] if the Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

(1.1) S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), X, Y ∈ TM

or equivalently, its Ricci operator Q satisfies

(1.2) Q = aI + bn⊗ ξ

for some smooth functions a and b 6= 0, where η is a non-zero 1-form such that,

(1.3) g(X, ξ) = η(X), g(ξ, ξ) = η(ξ) = 1

for the associated vector field ξ. The scalars a and b are called associated scalars,
η associated 1-form and ξ the generator of the manifold. An n-dimensional
manifold of this kind is denoted by the symbol (QE)n. It is obvious that if
b = 0 and a = r

n then this reduces to the well-known Einstein manifold. This
justifies the name ’Quasi-Einstein Manifold’, given to this type of manifolds.
In an n-dimensional quasi-Einstein manifold the Ricci tensor has precisely two
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distinct eigenvalues a and a + b, where a is of multiplicity of (n− 1) and a + b
is simple. A proper η-Einstein contact metric manifold ([1],[3]) is a natural
example of a quasi-Einstein manifold.

In 2007, M.M. Tripathi and J.S. Kim [9] studied a quasi-Einstein manifold
whose generator ξ belongs to the k-nullity distribution N(k) and called such
a manifold as N(k)-quasi Einstein manifold. In [9], the authors have proved
that conformally flat quasi-Einstein manifolds are certain N(k)-quasi Einstein
manifolds. The derivation conditions R(ξ,X).R = 0 and R(ξ, X).S = 0 have
also been studied in [8], where R and S denote the curvature and Ricci tensor,
respectively. Cihan Özgür and M.M. Tripathi [5] continued the study of the
N(k)-quasi Einstein manifold. In [5], the derivation conditions Z(ξ, X).R = 0
and Z(ξ, X).Z = 0 on N(k)-quasi Einstein manifold were studied, where Z is
the concircular curvature tensor. Moreover, in [5], for an N(k)-quasi Einstein
manifold it was proved that k = a+b

n−1 . C. Özgür [4], in 2008, studied the
condition R.P = 0 for an N(k)-quasi Einstein manifold, where P denotes the
projective curvature tensor and some physical examples of N(k)-quasi Einstein
manifolds are given. Again, in 2008, C. Özgür and Sibel Sular [6], studied N(k)-
quasi Einstein manifold satisfying R(ξ, X).C = 0 and R(ξ, X).C̃ = 0, where C
and C̃ represent the Weyl conformal curvature tensor and the quasi-conformal
curvature tensor, respectively. This paper is a continuation of previous studies.

The paper is organized as follows: After introduction in Section 2, we give the
brief account of N(k)-quasi Einstein manifold. In Section 3, we study N(k)-
quasi Einstein manifold satisfying R(ξ, X).P̃ = 0 and Section 4 deals with a
Ricci symmetric quasi-Einstein manifold with constant associated scalars. It is
shown that the generator of such manifold is a Killing vector field.

2. N(k)-quasi Einstein manifold

The k-nullity distribution N(k) of a Riemannian manifold Mn is defined by
[8]

N(k) : p −→ Np(k) = {Z ∈ TpM |R(X,Y, Z) = k(g(Y, Z)X − g(X,Z)Y }
for all X,Y ∈ TM , where k is some smooth function. If the generator ξ of
the quasi-Einstein manifold Mn belongs to the k-nullity distribution N(k) for
some smooth function k, then Mn is called N(k)-quasi Einstein manifold [9].
On N(k)-quasi Einstein manifold, we have [9]

(2.1) R(Y,Z)ξ = k(η(Z)Y − η(Y )Z).

The above equation is equivalent to

(2.2) R(ξ, Y )Z = k(g(Y, Z)ξ − η(Z)Y ).

In particular, the above two equations imply that

(2.3) η(R(Y, Z)ξ) = 0.

Moreover, it is known [5] that



On N(k)−quasi Einstein manifold 25

Lemma 2.1. In an n-dimensional N(k)-quasi Einstein manifold, it follows that

(2.4) k =
a + b

n− 1
.

3. N(k)-quasi Einstein manifold satisfying R(ξ, X).P̃ = 0.

In 2002, B. Prasad [7] introduced the notion of a pseudo-projective curva-
ture tensor. The pseudo-projective curvature tensor P̃ on a manifold Mn of
dimension n is defined as follows.

P̃ (X, Y )Z = αR(X, Y )Z + β[S(Y,Z)X − S(X,Z)Y ]

− r

n
[

α

n− 1
+ β][g(Y, Z)X − g(X, Z)Y ],

(3.1)

where α and β are the constants such that α, β 6= 0, R is the curvature tensor
and S is the Ricci tensor. It is obvious that if α = 1 and β = − 1

n−1 , then the
pseudo-projective curvature tensor reduces to a projective curvature tensor.

Let, N(k)-quasi Einstein manifold satisfy the condition

(3.2) R(ξ, Y ).P̃ = 0.

This implies

0 = R(ξ, Y )P̃ (U, V )Z − P̃ (R(ξ, Y )U, V )Z

− P̃ (U,R(ξ, Y )V )Z − P̃ (U, V )R(ξ, Y )Z.
(3.3)

Taking inner product of the equation (3.3) with ξ, we get

0 = g(R(ξ, Y )P̃ (U, V )Z, ξ)− g(P̃ (R(ξ, Y )U, V )Z, ξ)

− g(P̃ (U,R(ξ, Y )V )Z, ξ)− g(P̃ (U, V )R(ξ, Y )Z, ξ).

By virtue of (2.2), the above equation gives

0 = k[ ´̃P (U, V, Z, Y )− η(P̃ (U, V )Z)η(Y )

− g(Y, U)η(P̃ (ξ, V )Z) + η(U)η(P̃ (Y, V )Z)

− g(Y, V )η(P̃ (U, ξ)Z) + η(V )η(P̃ (U, Y )Z)

− g(Y, Z)η(P̃ (U, V )ξ) + η(Z)η(P̃ (U, V )Y )],

(3.4)

where ´̃P (U, V, Z, Y ) = g(P̃ (U, V )Z, Y ).
Now, from (1.1), (2.1), (3.1), we have

(3.5) η(P̃ (X, Y )Z) = λ[g(Y, Z)η(X)− g(X, Z)η(Y )],

where λ = [αk − r
n ( α

n−1 + β) − βa]; which, in view of Lemma 2.1, reduces to

λ = b(α−β)
n . From (3.6), it follows that

(3.6) η(P̃ (X,Y )ξ) = o,
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(3.7) η(P̃ (ξ, Y )Z) = λ[g(Y,Z)− η(Y )η(Z)]

and

(3.8) η(P̃ (X, ξ)Z) = λ[η(X)η(Z)− g(X, Z)].

Using (3.6), (3.7), (3.8) and (3.9) in (3.5), we obtain

(3.9) 0 = k[ ´̃P (U, V, Z, Y )− λ(g(Y,U)g(V,Z)− g(Y, V )g(U,Z)],

which, due to the equation (3.1), yields

0 = k[αŔ(X, Y, Z, W ) + β{S(Y, Z)g(X, W )− S(X, Z)g(Y, W )}
− { r

n
(

α

n− 1
+ β) + λ}(g(Y, Z)g(X, W )− g(X,Z)g(Y,W ))].

(3.10)

Contracting above equation (3.11) over X and W , we get

(3.11) 0 = k[S(Y, Z)− µg(Y, Z)],

where µ = 1
α+(n−1)β [λ(n − 1) + r

n{α + (n − 1)β}]. Since the manifold under
consideration is not an Einstein manifold, therefore it follows that k = 0.

Conversely, if k = 0, then in view of equation (2.2), we have R(ξ, X) = 0,
which gives R(ξ, X).P̃ = 0. Thus, we have the following theorem

Theorem 3.1. In an N(k)-quasi Einstein manifold, R(ξ, X).P̃ = 0 holds if
and only if k = 0.

4. Ricci-symmetric quasi-Einstein manifold

In this section we consider a quasi-Einstein manifold, whose associated scalars
a and b are constant.

Definition 4.1. A Riemannian manifold Mn is called a Ricci-symmetric man-
ifold if its Ricci tensor S satisfies the condition

(4.1) (∇XS)(Y, Z) = 0,

where ∇ is the Levi-Civita connection of the Riemannian metric g.

Definition 4.2. The Ricci tensor of Riemannian manifold is said to be cyclic
parallel if

(4.2) (∇XS)(Y, Z) + (∇Y S)(Z, X) + (∇ZS)(X,Y ) = 0.

Let Mn be a quasi-Einstein manifold, whose associated scalars are constant,
then by differentiating (1.1) covariantly with respect to Levi-Civita connection
we get

(4.3) (∇XS)(Y,Z) = b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )].
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If Ricci tensor of Mn is symmetric, then the equation (4.3) implies that

b((∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )) = 0,

which on putting Z = ξ gives,

(4.4) (∇Xη)(Y ) = 0 as b 6= 0.

Putting Y=X in equation (4.4), we find

(∇Xη)(X) = 0

or equivalently
g(∇Xξ, X) = 0,

and from (4.4), we also have

(4.5) (∇Xη)(Y ) + (∇Y η)(X) = 0.

Therefore, we have the following two theorems.

Theorem 4.1. If the quasi-Einstein manifold Mn with constant associated
scalars is Ricci symmetric, then its generator ξ satisfies g(∇Xξ, X) = 0.

Theorem 4.2. If the quasi-Einstein manifold Mn with constant associated
scalars is Ricci symmetric, then its generator ξ is a Killing vector field.

Next, from (4.3), we get

σ(X,Y,Z)(∇XS)(Y,Z) = b[(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )
+ (∇Y η)(Z)η(X) + (∇Y η)(X)η(Z)
+ (∇Zη)(X)η(Y ) + (∇Xη)(Y )η(X)],

(4.6)

where σ(X,Y,Z) denotes a cyclic sum with respect to X, Y and Z.

i.e. σ(X,Y,Z)(∇XS)(Y,Z) = (∇XS)(Y,Z) + (∇Y S)(Z, X) + (∇ZS)(X,Y ).

If a generator of the quasi-Einstein manifold is a Killing vector, then we have
the equation (4.5), which on using in (4.6), gives

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X, Y ) = 0.

Thus, we may have the following theorem:

Theorem 4.3. If the generator of the quasi-Einstein manifold Mn with constant
associated scalars is Killing, then its Ricci tensor is cyclic parallel.
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