ON THE UNIVALENCE OF AN INTEGRAL OPERATOR

Virgil Pescar¹

Abstract. In this paper we introduce an integral operator and derive some criteria for univalence of this integral operator for analytic functions in the open unit disk.

AMS Mathematics Subject Classification (2000): 30C45 Key words and phrases: Integral operator, univalence, starlike

1. Introduction

Let $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disk in the complex plane, and let \mathcal{A} be the class of functions which are analytic in the unit disk normalized with f(0) = f'(0) - 1 = 0.

We denote by \mathcal{P} the class of the functions p which are analytic in \mathcal{U} , p(0) = 1 and $\operatorname{Re} p(z) > 0$, for all $z \in \mathcal{U}$. Let S be the subclass of \mathcal{A} , consisting of all univalent functions f in \mathcal{U} , and we consider S^* the subclass of S, consisting of all starlike functions f in \mathcal{U} .

In this work we introduce a new integral operator, which is defined by

(1.1)
$$B_{\alpha,\beta}(z) = \left\{ \beta \int_{0}^{z} (g(u))^{\alpha} h(u) u^{\beta-\alpha-1} du \right\}^{\frac{1}{\beta}},$$

for some α , β be complex numbers, $\beta \neq 0$, $g \in \mathcal{A}$ and $h \in \mathcal{P}$.

For $\beta = a + bi$, a > 0, $b \in \mathbb{R}$, $\alpha = a$, $g \in \mathcal{A}$ and $h \in \mathcal{P}$ from (1.1) we have the integral operator

(1.2)
$$B_{a,b}(z) = \left\{ (a+bi) \int_{0}^{z} g^{a}(u) h(u) u^{ib-1} du \right\}^{\frac{1}{a+bi}}.$$

In the particular case $g \in S^*$, $B_{a,b}$ is the Bazilevič integral operator [1]. From (1.1) for $\alpha = \beta = \frac{1}{\gamma}$, γ be a complex number, let $\gamma \neq 0$ and h(z) = 1 for all $z \in U$, we obtain the integral operator

 $^{^1{\}rm Department}$ of Mathematics, "Transilvania" University of Braşov, 500091 Braşov România, e-mail: virgilpescar@unitbv.ro

(1.3)
$$J_{\gamma}(z) = \left\{ \frac{1}{\gamma} \int_{0}^{z} u^{-1} g^{\frac{1}{\gamma}}(u) du \right\}^{\gamma}.$$

Miller and Mocanu [4], have observed that the integral operator J_{γ} is in the class S for $f \in S^*$ and $\gamma > 0$.

For $\beta = 1$, let α be a complex number and h(z) = 1 for all $z \in \mathcal{U}$, from (1.1), we have the Kim-Merkes integral operator [2],

(1.4)
$$K_{\alpha}(z) = \int_{0}^{z} \left(\frac{g(u)}{u}\right)^{\alpha} du.$$

In the present paper, we consider some sufficient conditions for the integral operator $B_{\alpha,\beta}$ to be in the class S.

2. Preliminary results

We need the following theorems.

Theorem 2.1 ([6]). Let α be a complex number, Re $\alpha > 0$ and $f \in A$. If

(2.1)
$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in \mathcal{U}$, then for any complex number β , $\operatorname{Re} \beta \geq \operatorname{Re} \alpha$, the function

(2.2)
$$F_{\beta}(z) = \left\{ \beta \int_{0}^{z} u^{\beta - 1} f'(u) du \right\}^{\frac{1}{\beta}}$$

is in the class S.

Theorem 2.2 (Schwarz [3]). Let f be a regular function in the disk $\mathcal{U}_R = \{z \in \mathbb{C} : |z| < R\}$, with |f(z)| < M, M fixed. If f has in z = 0 one zero with multiply greater than or equal to m, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \quad z \in \mathcal{U}_R,$$

the equality (in the inequality (2.3) for $z \neq 0$) can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is a constant.

Theorem 2.3 ([5]). If the function g(z) is regular in \mathcal{U} and |g(z)| < 1 in \mathcal{U} , then for all $\xi \in \mathcal{U}$ and $z \in \mathcal{U}$, the following inequalities hold:

$$\left| \frac{g(\xi) - g(z)}{1 - \overline{g(z)}g(\xi)} \right| \le \left| \frac{\xi - z}{1 - \overline{z}\xi} \right|$$

and

$$|g'(z)| \le \frac{1 - |g(z)|^2}{1 - |z|^2},$$

the equalities hold only in the case $g\left(z\right)=\frac{\varepsilon\left(z+u\right)}{1+\overline{u}z},$ where $\left|\varepsilon\right|=1$ and $\left|u\right|<1.$

Remark 2.4 ([5]). For z = 0, from inequality (2.4) we have

$$\left| \frac{g(\xi) - g(0)}{1 - \overline{g(0)}g(\xi)} \right| < |\xi|$$

and, hence

$$|g(\xi)| \le \frac{|\xi| + |g(0)|}{1 + |g(0)||\xi|}.$$

Considering g(0) = a and $\xi = z$,

$$(2.8) |g(z)| \le \frac{|z| + |a|}{1 + |a||z|},$$

for all $z \in \mathcal{U}$.

3. Main results

Theorem 3.1. Let α be a complex number, $\operatorname{Re} \alpha > 0$, M_1 , M_2 real positive numbers, the functions $g \in \mathcal{A}$, $g(z) = z + a_2 z^2 + ...$ and $h \in \mathcal{P}$.

(3.1)
$$\left| \frac{zg'(z)}{g(z)} - 1 \right| \le M_1, \quad (z \in \mathcal{U}),$$

(3.2)
$$\left| \frac{zh'(z)}{h(z)} \right| \le M_2, \quad (z \in \mathcal{U})$$

and

$$(3.3) |\alpha| M_1 + M_2 \le \operatorname{Re} \alpha,$$

then for every complex number β , Re $\beta \geq \text{Re } \alpha$, the integral operator $B_{\alpha,\beta}$, given by (1.1), is in the class S.

Proof. We observe that

(3.4)
$$B_{\alpha,\beta}(z) = \left\{ \beta \int_{0}^{z} u^{\beta-1} \left(\frac{g(u)}{u} \right)^{\alpha} h(u) du \right\}^{\frac{1}{\beta}}.$$

Let us define the function

(3.5)
$$f(z) = \int_{0}^{z} \left(\frac{g(u)}{u}\right)^{\alpha} h(u) du, \quad (z \in \mathcal{U}),$$

for $g \in \mathcal{A}$ and $h \in \mathcal{P}$. The function f is regular in \mathcal{U} and f(0) = f'(0) - 1 = 0. We have

$$(3.6) \frac{zf''(z)}{f'(z)} = \alpha \left(\frac{zg'(z)}{g(z)} - 1\right) + \frac{zh'(z)}{h(z)}, \quad (z \in \mathcal{U}).$$

From (3.1), (3.2) and (3.6) we obtain

$$(3.7) \qquad \frac{1-\left|z\right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}\left|\frac{zf''(z)}{f'(z)}\right| \leq \frac{1-\left|z\right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}\left(\left|\alpha\right|M_{1}+M_{2}\right), \quad (z\in\mathcal{U}),$$

and by (3.3), we have

(3.8)
$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in \mathcal{U}$.

From (3.5), we obtain $f'(z) = \left(\frac{g(z)}{z}\right)^{\alpha} h(z)$ and using (3.8), by Theorem 2.1. it results that the integral operator $B_{\alpha,\beta}$, given by (1.1), is in the class S.

Theorem 3.2. Let α be a complex number, $\operatorname{Re} \alpha > 0$, M_1 , M_2 real positive numbers, $M_1 \in (0,1)$, the functions $h \in \mathcal{P}$, h'(0) = 0 and $g \in \mathcal{A}$, $g(z) = z + a_2 z^2 + \dots$ If

(3.9)
$$\left| \frac{zg'(z) - g(z)}{zg(z)} \right| < M_1, \quad (z \in \mathcal{U}),$$

(3.10)
$$\left| \frac{h'(z)}{h(z)} \right| < M_2, \quad (z \in \mathcal{U})$$

and

(3.11)
$$\frac{M_2}{1 - M_1} < |\alpha| \le \frac{1}{\max_{\substack{|z| \le 1 \\ |z| \le 1}} \left[\frac{1 - |z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha} |z| \frac{|z| + |a_2|}{1 + |a_2| \cdot |z|} \right]} ,$$

then for every complex number β , Re $\beta \geq \text{Re } \alpha$, the integral operator $B_{\alpha,\beta}$, defined by (1.1), is in the class S.

Proof. The integral operator $B_{\alpha,\beta}$ is of the form (3.4). We define the function

(3.12)
$$f(z) = \int_{0}^{z} \left(\frac{g(u)}{u}\right)^{\alpha} h(u) du, \quad (z \in \mathcal{U}),$$

for $g \in \mathcal{A}$ and $h \in \mathcal{P}$.

We consider the function

$$(3.13) k(z) = \frac{1}{|\alpha|} \frac{f''(z)}{f'(z)},$$

for all $z \in \mathcal{U}$. We have

$$(3.14) \qquad \frac{1}{|\alpha|} \left| \frac{f''(z)}{f'(z)} \right| \leq \left| \frac{zg'(z) - g(z)}{zg(z)} \right| + \frac{1}{|\alpha|} \left| \frac{h'(z)}{h(z)} \right|, \quad (z \in \mathcal{U}).$$

From (3.11) we have $|\alpha| > \frac{M_2}{1-M_1}$, $M_1 \in (0,1)$ and by (3.9), (3.10), (3.11) we obtain $|k\left(z\right)| < 1$, for all $z \in \mathcal{U}$.

We have $k(0) = \frac{\alpha}{|\alpha|} a_2$ and using Remark 2.4, we get

$$(3.15) |k(z)| \le \frac{|z| + |a_2|}{1 + |a_2||z|}, (z \in \mathcal{U}).$$

Let us consider the function

$$Q(x) = \frac{1 - x^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha} x \frac{x + |a_2|}{1 + |a_2| x}, \quad (x = |z|; \ z \in \mathcal{U}).$$

Because $Q\left(\frac{1}{2}\right) > 0$ it results that $\max_{x \in [0,1]} Q\left(x\right) > 0$.

Using this result and from (3.13), (3.15), we obtain

$$(3.16) \qquad \frac{1-\left|z\right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}\left|\frac{zf''\left(z\right)}{f'\left(z\right)}\right| \leq \left|\alpha\right| \max_{|z|<1} \left[\frac{1-\left|z\right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}\left|z\right| \frac{\left|z\right|+\left|a_{2}\right|}{1+\left|a_{2}\right|\cdot\left|z\right|}\right],$$

for all $z \in \mathcal{U}$.

From (3.11) and (3.16) we have

(3.17)
$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad (z \in \mathcal{U}).$$

Consequently, in view of Theorem 2.1, we obtain that the integral operator $B_{\alpha,\beta}$, is in the class S.

4. Corollaries

Corollary 4.1. Let a+bi be a complex number, a>0, M_1 , M_2 real positive numbers, $M_1\in(0,1)$, the functions $g\in\mathcal{A}$ and $h\in\mathcal{P}$.

$$\left| \frac{zg'(z)}{g(z)} - 1 \right| \le M_1, \quad (z \in \mathcal{U}),$$

(4.2)
$$\left| \frac{zh'(z)}{h(z)} \right| \le M_2, \quad (z \in \mathcal{U})$$

and

(4.3)
$$a \ge \frac{M_2}{1 - M_1} ,$$

then the integral operator $B_{a,b}$, given by (1.2), is in the class S.

Proof. We take, in Theorem 3.1, $\beta=a+bi,\ a>0,\ b\in\mathbb{R},\ \alpha=a$ and obtain Corollary 4.1.

Corollary 4.2. Let γ be a complex number, $\gamma \neq 0$, Re $\frac{1}{\gamma} > 0$ and the function $g \in \mathcal{A}, \ g(z) = z + a_2 z^2 + ...$ If

(4.4)
$$\left| \frac{zg'(z)}{g(z)} - 1 \right| \le |\gamma| \operatorname{Re} \frac{1}{\gamma}, \quad (z \in \mathcal{U}),$$

then the integral operator J_{γ} , given by (1.3), is in the class S.

Proof. For $\alpha = \beta = \frac{1}{\gamma}$ and h(z) = 1 for all $z \in \mathcal{U}$, from Theorem 3.1 we have Corollary 4.2.

Corollary 4.3. Let α be a complex number $0 < \operatorname{Re} \alpha \leq 1$ and the function $g \in A, \ g(z) = z + a_2 z^2 + ...$ If

$$\left|\frac{zg'\left(z\right)}{g\left(z\right)} - 1\right| \le \frac{\operatorname{Re}\alpha}{|\alpha|}, \quad (z \in \mathcal{U}),$$

then the integral operator K_{α} , defined by (1.4), is in the class S.

Proof. For $\beta = 1$, and h(z) = 1 for all $z \in \mathcal{U}$, from Theorem 3.1 we obtain that K_{α} belongs to the class S.

Corollary 4.4. Let a+bi be a complex number, a>0, M_1 , M_2 real positive numbers, $M_1 \in (0,1)$, the functions $h \in \mathcal{P}$, h'(0)=0 and $g \in \mathcal{A}$, $g(z)=z+a_2z^2+...$ If

$$\left| \frac{zg'(z) - g(z)}{zg(z)} \right| < M_1, \quad (z \in \mathcal{U}),$$

$$\left| \frac{h'(z)}{h(z)} \right| < M_2, \quad (z \in \mathcal{U})$$

and

$$\frac{M_2}{1 - M_1} < a \le \frac{1}{\max_{|z| < 1} \left[\frac{1 - |z|^{2 \operatorname{Re} \alpha}}{\operatorname{Re} \alpha} |z| \frac{|z| + |a_2|}{1 + |a_2| \cdot |z|} \right]} ,$$

then the integral operator $B_{a,b}$, defined by (1.2), is in the class S.

Proof. For $\beta=a+bi,\ a>0,\ b\in\mathbb{R},\ \alpha=a$ from Theorem 3.2 we obtain Corollary 4.4.

Corollary 4.5. Let γ be a complex number, $\gamma \neq 0$, Re $\frac{1}{\gamma} > 0$ and the function $g \in A$, $g(z) = z + a_2 z^2 + ...$ If

$$\left|\frac{zg'\left(z\right)-g\left(z\right)}{zg\left(z\right)}\right|<1,\quad\left(z\in\mathcal{U}\right)$$

and

(4.10)
$$|\gamma| \ge \max_{|z| < 1} \left[\frac{1 - |z|^{2\operatorname{Re}\frac{1}{\gamma}}}{\operatorname{Re}\frac{1}{\gamma}} |z| \frac{|z| + |a_2|}{1 + |a_2| \cdot |z|} \right],$$

then the integral operator J_{γ} , given by (1.3), is in the class S.

Proof. From Theorem 3.2 for $\alpha = \beta = \frac{1}{\gamma}$ and h(z) = 1, for all $z \in \mathcal{U}$ we obtain Corollary 4.5.

Corollary 4.6. Let α be a complex number, $0 < \operatorname{Re} \alpha \le 1$, the function $g \in \mathcal{A}$, $g(z) = z + a_2 z^2 + ...$

$$\left| \frac{zg'(z) - g(z)}{zg(z)} \right| < 1, \quad (z \in \mathcal{U})$$

and

$$|\alpha| \le \frac{1}{\max_{|z| \le 1} \left[\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \, |z| \, \frac{|z| + |a_2|}{1 + |a_2| \cdot |z|} \right]} \quad ,$$

then the integral operator K_{α} , given by (1.4), is in the class S.

Proof. For $\beta = 1$ and h(z) = 1, for all $z \in \mathcal{U}$, from Theorem 3.2 we obtain that the integral operator K_{α} , is in the class S.

References

- [1] Bazilevič, I. E., On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 37 (1955), 471-476.
- [2] Kim, Y. J., Merkes, E. P., On an integral of powers of a spirallike function. Kyungpook Math. J. 12 (1972), 249-253.
- [3] Mayer, O., The Functions Theory of One Variable Complex. Bucureşti, 1981.
- [4] Miller, S. S., Mocanu, P. T., Differential Subordinations, Theory and Applications. Monographs and Text Books in Pure and Applied Mathematics, 225, New York: Marcel Dekker, 2000.
- [5] Nehari, Z., Conformal Mapping. New York: Mc-Graw-Hill Book Comp., 1952, (Dover. Publ. Inc., 1975).
- [6] Pascu, N. N., An improvement of Becker's univalence criterion. Proceedings of the Commemorative Session Simion Stoilow, University of Braşov (1987), 43-48.

Received by the editors June 10, 2009