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COSYMPLECTIC MANIFOLDS WITH PARALLEL
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Abstract

In this paper we study the lightlike hypersurface of an indefinite cosym-
plectic manifold with parallel symmetric bilinear forms which are tangent
to the structure vector field.
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1 Introduction

In the theory of submanifolds of semi-Riemannian manifolds it is interesting to
study the geometry of lightlike submanifolds due to the fact that the intersec-
tion of a normal vector bundle and the tangent bundle is non-trivial making
it more interesting and remarkably different from the study of non-degenerate
submanifolds. The geometry of lightlike hypersurfaces and submanifolds of in-
definite Kaehler manifolds was studied by Duggal and Bejancu [4]. On the
other hand, lightlike hypersurfaces of indefinite Sasakian manifolds was studied
in [2 B], whereas lightlike hypersurfaces in indefinite cosymplectic space form
was studied in [6]. In this paper we study lightlike hypersurface of an indefinite
cosymplectic manifold with parallel symmetric bilinear forms.

2 Preliminaries

An odd-dimensional semi-Riemannian manifold M is said to be an indefinite
almost contact metric manifold if there exist structure tensors {6,&,n,G}, where
¢ is a (1,1) tensor field, £ a vector field,  a 1-form and § is the semi-Riemannian

metric on M satisfying
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for any X,Y € I'(T'M), where I'(T'M) denotes the Lie algebra of vector fields
on M.

An indefinite almost contact metric manifold M is called an indefinite cosym-
plectic manifold if [6]

(2.2) (Vx9)Y =0, and V£ =0

for any X,Y € TM, where V denote the Levi-Civita connection on M.

A plane section [] in T}, M of a cosymplectic manifold M is called a ¢-section
if it is spanned by a unit vector X orthogonal to ¢ and ¢X, where X is a non null
vector field on M. The sectional curvature K(]]) with respect to [] determined
by X is called a ¢-sectional curvature. If M has a ¢-sectional curvature ¢ which
does not depend on the ¢-section at each point then c is a constant in M and
M s called an indefinite cosymplectic space form which is denoted by M (c).
The curvature tensor R of M(c) is given by [6]

Z = g
(2.3) +9(X, Z)n(YV)§ = g(Y, Z)n(X)E+9(0Y, Z)o

for any X,Y,Z € T'(TM).

Let (M,g) be a hypersurface of a (2n + 1)-dimensional semi-Riemannian
manifold (M, g) with index 5,0 < s < 2n+1and g = g5, Then M is a lightlike
hypersurface of M if g is of constant rank (2n—1) and the normal bundle TM* is
a distribution of rank 1 on M [4]. A non-degenerate complementary distribution
S(TM) of rank (2n—1) to TM* in TM, that is, TM = TM~ LS(TM), is called
screen distribution. The following result (cf. [4], Theorem 1.1, page 79) has an
important role in studying the geometry of lightlike hypersurfaces.

Theorem A. Let (M, g,S(TM)) be a lightlike hypersurface of M. Then, there
exists a unique vector bundle tr(TM) of rank 1 over M such that for any non-
zero section E of TM* on a coordinate neighbourhood U C M, there exists
a unique section N of tr(TM) on U satisfying g(N,E) = 1 and g(N,N) =

Then, we have the following decomposition:
(2.4) TM = S(TM)LTM*, TM = S(TM)L(TM* @ tr(TM)).

Throughout this paper, all manifolds are supposed to be paracompact and
smooth. We denote by T'(E) the smooth sections of the vector bundle E, and
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by L and @ the orthogonal and the non-orthogonal direct sum of two vector
bundles, respectively.

Let V, V and V* denote the linear connections on M, M and vector bundle
tr(TM), respectively. Then, the Gauss and Weingarten formulae are given by

(2.5) VxY =VxY +h(X,Y), VX,Y € I(TM),

(2.6) VxV =—-AvX + V&V, YV € D(tr(TM)),

where {VxY, Ay X} and {h(X,Y), V4 V} belong to T'(TM) and T'(tr(TM)),
respectively and Ay is the shape operator of M with respect to V. Moreover,
in view of decomposition (2.4), equations (2.5) and (2.6) take the form

(2.7) WXY = VXerB(X,Y)N

(2.8) VxN=—-AyX +7(X)N
for any X, Y e T(TM) and N € T'(tr(TM)), where B(X,Y) and 7(X) are local

second fundamental form and a 1-form on U, respectively. It follows that
B(X,Y)=9(VxY,E) =g(h(X,Y),E), B(X,E) =0, and
7(X)=9(VKN, E).
Let P denote the projection of TM on S(T'M) and V*, V** denote the linear

connections on S(T'M) and T M=, respectively. Then from the decomposition
of tangent bundle of lightlike hypersurface, we have

(2.9) VxPY = V%PY + h*(X, PY)
(2.10) VxE =-ALX + VYE

for any X,Y € T(TM) and E € T(TM*), where h*, A* are the second funda-
mental form and the shape operator of distribution S(T'M) respectively.

By direct calculations using the Gauss-Weingarten formulae, (2.9) and (2.10),
we find

(211)  g(ANY.PW) =G(N.1* (Y, PW)); G(ANY.N) =0

(2.12) g(ALX,PY)=9g(E,h(X,PY)); G(ALX,N)=0

for any X,Y,W € I(TM), E € T(TM*) and N € T'(tr(TM)).
Locally, we define on U

(2.13) C(X,PY)=9g(h*(X,PY),N), and A\(X) = E(VEEE,N).
Hence,
(2.14) h*(X,PY)=C(X,PY)E, and V}tE = AMX)E.

On the other hand, by using (2.7), (2.8), (2.10) and (2.13), we obtain
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AMX)=9g(VxE,N)=4(VxE,N)=—-g(E,VxN) = —1(X).

Thus, locally (2.9) and (2.10) become

(2.15)  VxPY = Vi PY + C(X,PY)E, and VxE = —ALX — 7(X)E.

Finally, (2.11) and (2.12), locally become

(2.16) Gg(ANY, PW) = C(Y, PW);  G(AxY,N) =0,

(2.17) g(ALX, PY) = B(X,PY); g(ALX,N)=0.

In general, the induced connection V on M is not a metric connection. Since
V is a metric connection, we have

0= (Vxg)(V,2) = X(G(Y, 2)) —g(VxY,Z) —g(Y,Vx Z).
By using (2.7) in this equation, we obtain
(2.18) (Vxg)(Y,2) = B(X,V)0(Z) + B(X, 2)8(Y) XY, Z € T(S(TM)].),

where 6 is a differential 1-form locally defined on M by 6(-) = g(N, ).
If R and R are the curvature tensors of M and M, then using (2.7) in the
equation
R(X,Y)Z =VxVyZ—-VyVxZ—-VxyZ,

we obtain

R(X,Y)Z = R(X,Y)Z + B(X, Z)ANY — B(Y, Z)Ax X

B ((VxB)Y. 2) — (Vv B)(X, 2) + 7(X)B(Y, Z) - 7(V) B(X, Z)}N

(2200 (VxB)(Y,Z) = XB(Y,Z) - B(VxY, Z) - B(Y,VxZ)

3 Lightlike hypersurfaces of indefinite
cosymplectic manifolds

Let (M, ¢,£,7m,9) be an indefinite cosymplectic manifold and (M, g) be its light-
like hypersurface, tangent to the structure vector field £ with g(§,¢&) = e = +1.
If E is a local section of TM*, then g(¢E,E) = 0 implies that ¢E is
tangent to M. Thus ¢(TM*1) is a distribution on M of rank 1 such that
@(TM+)TM* = {0}. This enables us to choose a screen distribution S(T'M)
such that it contains ¢(T M=) as vector subbundle.
Now, we consider a local section N of tr(T'M). Then ¢N is tangent to M and
belongs to S(TM) as g(¢N, E) = —g(N, ¢E) = 0 and g(¢N, N) = 0.
From (2.1), we have

9(¢N,9E) = g(N,E) — n(N)n(E) =g(N, E) = 1.
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Therefore, (T ML) @ (tr(TM)) is a direct sum but not orthogonal, and is a
non-degenerate vector subbundle of S(T'M) of rank 2.

It is known [I] that if M is tangent to the structure vector field &, then &
belongs to S(T'M). Since g(¢F, &) = g(¢N, &) = 0, there exists a non-degenerate
invariant distribution Dy of rank (2n — 4) on M such that

(3.1)  S(TM) = {$(TM*) @ d(tr(TM))}LDyL < € > and ¢(Dy) = Dy

where < £ > = span £.
Moreover, from (2.4) and (3.1), we obtain

(3.2) TM = {$(TM*) @ ¢(tr(TM))} LDoL < & > LTM*.
Now, we consider the distributions D and D’ on M as follows

D =TM*1¢(TM*) LDy, D' = ¢(tr(TM)).
Then D is invariant under ¢ and
(3.3) TM=D&D'L <>,

If Py and @ denote the projection morphisms of TM on D and D’ and
U= —¢N,V = —¢F are local lightlike vectors, respectively, then we write

(3.4) X =P X +QX +n(X)E

for X € T(TM), where QX = u(X)U, and u is a differential 1-form locally
defined on M by u(-) = ¢g(V, ).
From (3.1) and (3.4), we obtain

X = X + uw(X)N and ¢2°X = —X + n(X)é +u(X)U, VX € T(TM)

where ¢ is a tensor field of type (1, 1) defined on M by ¢X = ¢P; X.
Applying ¢ to $?>X and using the fact that ¢U = 0, we obtain

¢ +¢=0

which shows that ¢ is an f-structure [3] of constant rank.
Using (2.1), we get

9(dX, 9Y) = g(X,Y) = n(X)n(Y) — u(Y)r(X) — u(X)p(Y),

where v is a 1-form locally defined on M by v(-) = g(U,-).
From direct calculations, we have

(3.5) Vx&=0

(3.6) B(X,&) = 0 for any vector field X € I'(TM).

The Lie derivative with respect to the vector field V is given by
(Lyg)(X,Y) = Xu(Y)+ Yu(X) + u([X,Y]) — 2u(VxY)

for any X, Y € T(TM).
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4 Lightlike real hypersurfaces with parallel
symmetric bilinear forms

Let M(c) be an indefinite cosymplectic space form and M be a real lightlike
hypersurface of M (c). Let us consider the pair {E, N} on U C M as in Theorem
A. Then, using (2.19), we obtain

9(R(X,Y)Z,E) = (VxB)(Y,Z) - (VyB)(X, Z2) + 7(X)B(Y, 2)

(41) —7(Y)B(X, 2)

for any X,Y,Z € T'(TM|y). From (4.1) and (2.3), we have

(VxB)(Y,Z) = (VyB)(X, Z) = 7(Y)B(X, Z) = 7(X)B(Y, Z)
+5{9(0Y, 2)u(X) — G(6X, Z)u(Y) - 29(6X,Y)u(Z)}.

Definition 4.1. [2] (a) A distribution Z on M is a Killing distribution (respec-
tively D L¢- Killing distribution ) if (Lxg)(Y,Z) = 0, for any X € I'(Z) and
Y,Z e T'(T'M) (respectively Y, Z e (DL < £ >)).

(b) A distribution = on M is parallel (respectively D_L&-parallel) if VxY €
I'(2), for any X € (T M) (respectively X e (DL < £ >)) and Y € I'(=).

(4.2)

We prove the following theorem.

Theorem 4.2. Let M be a lightlike hypersurface of an indefinite cosymplectic
space form M (c) of constant curvature c. Then the Lie-derivative of the local
second fundamental form B with respect to & is given by

(4.3) (LeB)(X,Y) = —71(§)B(X,Y), VXY € I'(TM).

Proof. Replacing Z with £ in (2.20) and using (3.5), we obtain

(1.4) (VxB)(EY) =0,

By direct calculation, we have

(4.5) (VeB)(X,Y) = (LeB)(X.Y).

From (4.4) and (4.5), we obtain

(4.6) (VeB)(X,Y) = (VxB)(E,Y) = (LeB)(X, V).

From (4.2), we obtain

(4.7) (VeB)(X,Y) - (VxB)(EY) = —r(€)B(X,Y).

Using (4.6) and (4.7), we obtain the result. O
Definition 4.3. [2] A lightlike hypersurface M is said to be totally geodesic (re-

spectively DL or D’-totally geodesic) if B(X,Y) =0, for any X,Y € T'(TM)
(respectively X, Y e T'(DL < & >) or T'(D’)).
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From Theorem 4.2, we have the following result.

Corollary 4.4. Let M be a lightlike hypersurface of an indefinite cosymplectic
space form M(c) of constant curvature c, with & € TM. Then £ is a Killing
vector field with respect to the local second fundamental form B if and only if
7(&§) =0 or M is totally geodesic.

The second fundamental form & is said to be parallel if (Vzh)(X,Y) = 0,
which implies that

(4.8) (VzB)(X,Y) = —1(Z)B(X,Y) VX,Y, Z € I(TM).

Hence, in general, the parallelism of h does not imply the parallelism of B and
vice versa. Moreover,

(Vzh)(X,E) = (VzB)(X,E)N.

Theorem 4.5. Let M be a lightlike hypersurface of an indefinite cosymplectic
space form of constant curvature c. If the local second fundamental form B is
parallel on M and 7(§) # 0, then M is totally geodesic.

Proof. The result follows from (4.3), (4.4) and the parallelism of local second
fundamental form B. O

Proposition 4.6. There exists no lightlike hypersurface of indefinite cosym-
plectic space forms M(c)(c # 0) with parallel second fundamental form.

Proof. Suppose ¢ # 0 and the second fundamental form is parallel. Then, if we
take Y = E) and Z = U in (4.8), we obtain that {u(X) = 0. Taking X = U, we
have ¢ = 0, which is a contradiction. O

We have the following theorem.

Proposition 4.7. Let M be the lightlike hypersurface of an indefinite cosym-
plectic space form M (c) of constant curvature ¢ such that its local second funda-
mental form B is parallel. If 7(§) # 0, then ¢ =0 if and only if M is D’ totally
geodesic.

Proof. Suppose B is parallel. Then, taking Y = F in (4.2), we obtain
3—u(X)u(Z) =7(F)B(X, Z).

Taking X = Z = U, we have 37 = 7(E)B(U,U) and if 7(E) # 0, then the

equivalence follows. O

Theorem 4.8. Let M be a lightlike hypersurface of an indefinite cosymplectic
manifold (M,q) with & € T(TM). If the second fundamental form h of M is
parallel, then

(4.9) (LgB)(X,Y) = —7(E)B(X,Y) VX,Y € I(TM).
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Proof. Taking Z = E in (Vzh)(X,Y) =0, we have

(4.10) (VgB)(X,Y)=—-7(FE)B(X,Y).
Now,
(4.11) (LEB)(X,Y)=(VegB)(X,Y) - 2B(ApX.,Y).

On the other hand,
(4.12) 0 = g((Vxh)(Y, ), ) = B(A5X,Y).

Using (4.11) and (4.9) in (4.10), we have
(LgB)(X,Y) = —7(E)B(X,Y).

The following Corollary follows from Theorem 4.8.

Corollary 4.9. Let M be a lightlike hypersurface with parallel second funda-
mental form of an indefinite cosymplectic manifold (M,q) with ¢ € T(TM).
Then, M s totally geodesic or 7(E) =0 if (LgB)(X,Y)=0,VX,Y € T(TM)
and E € T(TM*1).

We now prove the following theorem.

Theorem 4.10. Let M be the lightlike hypersurface of an indefinite cosymplec-
tic manifold M with £€ € TM. Then M is D1 < & >-totally geodesic if and
only if for any X e T(DL < & >), A X = u(AnX)V.

Proof. Since A3 X € T'(S(T'M)) and
S(TM) = {p(TM*) ® ¢p(tr(TM))} LDy L < € > .
We can write

ApX =Y BOL 4 B(X,V)U + B(X,U)V, where B(X,€) = 0.

g(Fi, Fy)

Now, if M is D1 < £ > totally geodesic then B(X,Y) =0,VX,Y € DL < & >.
But, we have B(X,U) = g(AnX,V) = u(AnX). So, we have the required
result. O
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