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HOW TO DEVELOP FOURTH AND SEVENTH
ORDER ITERATIVE METHODS?

Sanjay K. Khattri1, Ioannis K. Argyros2

Abstract. The work contributes two new iterative methods of con-
vergence orders four and seven for solving nonlinear equations. During
each iteration, the fourth order method requests three functional evalua-
tions while the seventh order method requests four functional evaluations.
Computational results demonstrate that the methods are efficient and ex-
hibit equal or better performance as compared with other well known
methods and the classical Newton method.
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1. Introduction

Many problems in science and engineering require solving the nonlinear equa-
tion

(1) f(x) = 0,

[1–13]. One of the best known and probably the most used method for solving
the preceding equation is the Newton’s method. The classical Newton method
is given as follows (NM):

(2) xn+1 = xn − f(xn)
f ′(xn)

, n = 0, 1, 2, 3, . . . , and |f ′(xn)| 6= 0.

The Newton’s method converges quadratically [1–13]. There exist numerous
modifications of the Newton’s method which improve the convergence rate (see
[1–13] and references therein). In this work, we develop two new iterative
methods of fourth and seventh orders. The fourth order iterative method re-
quire three functional evaluations during each iteration, while the seventh order
method needs four functional evaluations during each iteration. To construct
the methods, we express the derivative at the next step as a linear combination
of derivatives at the previous steps, and slopes. The next section presents our
contribution.
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2. Construction of new iterative methods

Consider the double Newton method

(3)
{

yn = xn − f(xn)/f ′(xn),
xn+1 = yn − f(yn)/f ′(yn).

It is known that the double Newton method converges with fourth order. Ac-
cording to the Kung and Traub conjecture [7] an optimal iterative method with-
out memory based on n evaluations could achieve an optimal convergence order
of 2n−1. Since the double Newton method converges with fourth order and it
requires four evaluations during each step. Therefore for the double Newton
method to be optimal it must require only three function evaluations. Our aim
is to develop an approximation for f ′(yn) in terms of f(xn), f ′(xn) and f(yn).
Let us express f ′(yn) as a linear combination of f ′(xn) (slope at the point xn)
and (f(yn)− f(xn))/(yn − xn) (slope of the line joining the points xn and yn)

(4) f ′(yn) = α f ′(xn) + (1− α)
f(yn)− f(xn)

yn − xn
,

where α is a real number. Combining the preceding equation and the equation
(3), we propose the following iterative method (M-1)

(5)





yn = xn − f(xn)
f ′(xn)

,

xn+1 = yn − f(yn)(
α f ′(xn) + (1− α)

f(yn)− f(xn)
yn − xn

) .

We prove the fourth order convergent behavior of the iterative families (5)
through the following theorem.

Theorem 1. Let γ be a simple zero of a sufficiently differentiable function
f : D ⊂ R 7→ R in an open interval D. If x0 is sufficiently close to γ, the
convergence order of the method (5) is 4 if and only if α = −1. The error
equation for the method is given as

en+1 = −
(
c3c1 − c2

2

)
c2

c3
1

e4
n + O

(
e5
n

)
.

Here, en = xn − γ, cm = fm(γ)/m! with m ≥ 1.

Proof. The Taylor’s expansion of f(x) and f ′(xn) around the solution γ is given
as

f(xn) = c1en + c2e
2
n + c3e

3
n + c4e

4
n + O

(
e5
n

)
,(6)

f ′(xn) = c1 + 2 c2en + 3 c3e
2
n + 4 c4e

3
n + O

(
e4
n

)
.(7)
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Here, we have accounted for f(γ) = 0. Dividing the equations (6) and (7) we
obtain

(8)
f(xn)
f ′(xn)

= en−c2

c1
en

2−2
c3c1 − c2

2

c1
2

en
3−3 c4c1

2 − 7 c3c2c1 + 4 c2
3

c1
3

en
4+O

(
en

5
)
.

By the Taylor’s expansion of f(yn) around xn and using the first step of the
method (5), we get

(9) f(yn) = f(xn) + f ′(xn)
(
− f(xn)

f ′(xn)

)
+

1
2
f ′′(xn)

(
− f(xn)

f ′(xn)

)2

+ · · · ,

the successive derivatives of f(xn) are obtained by differentiating (7) repeatedly.
Substituting these derivatives and using the equations (8) in the former equation

(10) f(yn) = c2e
2
n + 2

c3c1 − c2
2

c1
e3
n +

3 c4c1
2 − 7 c2c3c1 + 5 c2

3

c1
2

e4
n + O

(
e5
n

)
.

Finally, substituting from the equations (6), (7) and (10) into the second step of
the contributed method (5), we obtain the error equation for the method. There-
fore, the contributed method (5) is fourth order convergent. This completes our
proof. Note that the method (5) is the well-known Ostrowski’s method [11].
Here, we have presented an alternative derivation of the Ostrowski’s method
[11].

Similarly, to construct a higher order method, we consider a three-step
method (M-2)

(11)





yn = xn − f(xn)
f ′(xn)

,

zn = yn − f(yn)(
−f ′(xn) + 2

f(yn)− f(xn)
yn − xn

) ,

xn+1 = zn − f(zn)
FD(zn)

,

where FD(zn) is defined as a linear combination of the slopes of the three lines
passing through the points xn and yn; yn and zn; xn and zn.

FD(zn) = α1
f(yn)− f(xn)

yn − xn
+α2

f(zn)− f(yn)
zn − yn

+(1−α1−α2)
f(zn)− f(xn)

zn − xn
.

Theorem 2. Let γ be a simple zero of a sufficiently differentiable function
f : D ⊂ R 7→ R in an open interval D. If x0 is sufficiently close to γ, the
convergence order of the method (11) is 7 if and only if α1 = −1 and α2 = 1.
The error equation for the method (11) is given as

en+1 =

(
c3c1 − c2

2

)
c2
2c3

c5
1

e7
n + O

(
e8
n

)
.
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Proof. Substituting from the equations (6), (7), (8), (10) into the second step
of the contributed method (11) yields
(12)

zn = γ−
(
c3c1 − c2

2

)
c2

c3
1

e4
n−2

c2c4c1
2 + c3

2c1
2 − 4 c3c1c2

2 + 2 c2
4

c1
4

en
5 +O

(
en

6
)
.

Here, we have used the first step of the method (11). To find a Taylor expansion
f(zn), we consider the Taylor’s series of f(x) around yn

(13) f(zn) = f(yn) + f ′(yn) (zn − yn) +
f ′′(yn)

2
(zn − yn)2 + · · · ,

substituting from equation (10) and using the second step of the contributed
method (11), we obtain
(14)

f(zn) = −
(
c3c1 − c2

2
)
c2

c1
2

en
4−2

c2c4c1
2 + c3

2c1
2 − 4 c3c1c2

2 + 2 c2
4

c1
3

en
5+O

(
en

6
)
.

Here, the higher order derivatives of f(x) at the point yn are obtained by dif-
ferentiating the equation (10) with respect en. Finally, to obtain the error
equation for the method (11), substituting from the equations (6), (10), (14)
into the third step of the contributed method (11) yields the error equation

en+1 =
c2
2[(−1 + α2)c1c3 + (1− α2)c2

2]e5
n

c4
1

+
c2

c5
1

[2 (1− α2)c1
2c2c4

+ 3 (1− α2)c1
2c2

3 + (α1 − 10 + 12 α2 − α2
2)c1c2

2c3

+ (−7 α2 − α1 + α2
2 + 5)c2

4]e6
n −

1
c6
1

[3(1− α2)c1
3c2

2c5

+ 10((1− α2)c3
1c2c3 + (19 α2 − 15− 2 α2

2 + 2 α1)c2
1c

3
2)c4

+ 2(1− α2)c3
1c

3
3 + (5 α1 − 30 + 38 α2 − 4 α2

2)c2
1c

2
2c

2
3

+ (−α2
3 − 15 α1 + 15 α2

2 − 71 α2 + 45 + 2 α2α1)c1c
4
2c3

+ (−2 α2α1 + 29 α2 + 8 α1 − 9 α2
2 + α2

3 − 15)c2
6]e7

n + O(e8
n),

which shows that the convergence order of the method (11) is 7 iff α1 = −1 and
α2 = 1. This completes our proof. The first two steps of the derived method
(11) formulates the well known Ostrowski’s method [11]. For optimal methods,
requiring evaluation of four functions and that comply with the Kung-Traub
conjecture [7], we refer to [12, 15, 16, and references therein].

The Kung-Traub conjecture (still unproved) states that an optimal itera-
tive method without memory based on n evaluations could achieve an optimal
convergence order of 2n−1. The method (5) requires three evaluations (f(xn),
f ′(xn) and f(yn)) during each iteration. Therefore the method (5) is optimal in
the sense of the King-Traub conjecture [7]. On the other hand, the method (11)
requests four evaluations (f(xn), f ′(xn), f(yn) and f(zn)) during each iteration.
Consequently according to the Kung-Traub conjecture for the method (11) to
be optimal its convergence order must be eight.
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3. Numerical examples

The convergence order ξ of an iterative method is defined as

lim
n→∞

|en+1|
|en|ξ = c 6= 0,

and furthermore this leads to the following approximation of the computational
order of convergence (COC)

ρ ≈ ln |(xn+1 − γ)/(xn − γ)|
ln |(xn − γ)/(xn−1 − γ)| .

For convergence it is required: |xn+1 − xn| < ε and |f(xn)| < ε. Here, ε =
10−320. We test the methods for the following functions

f0(x) = sin(x)− x/100, γ = 0.0. f1(x) = x3 + 4 x2 − 10, γ ≈ 1.365.

f2(x) = tan−1(x) , γ = 0.0. f3(x) = x4 + sin
(
π/x2)− 5, γ =

√
2.

f4(x) = exp
(−x2 + x + 2

)− 1, γ = −1.0. f5(x) = 1/3x4 − x2 − 1/3x + 1, γ = 1.0.

Computational results (number of functional evaluations, COC during the sec-
ond last iterative step) for various methods are presented in Table 1. In the
table, various methods are abbreviated as follows: CM the Chebyshev method
[4, 14]; HM the Halley method [4, 14]; EM the Euler method also referred
to as the Cauchy method [2, 4, 5, 7, 14]; NM the Newton iterative method
[4, 14]; RWB method proposed by Ren et al. [7]; NETA method proposed
by Neta et al. [6]; CH the method developed by Chun et al. [2]; WKL the
method developed by Wang et. al. [10], and finally the contributed methods
M-1 and (M-2). Free parameters are randomly selected as: for the method
RWB a = b = c = 1, in the method by Chun et al. (CH) β = 1, in the method
WKL α = β = 1 and in the method NETA a = 10.

f(x) x0 HM CM EM NM RWB NETA CH WKL M-1 M-2

f0(x) 0,9 (33, 3) (36, 3) (33, 3) (40, 2) (44, 6) (36, 6) (36, 6) (44, 6) (30, 4) (28, 7)

f1(x) 1,0 (36, 3) (39, 3) (39, 3) (20, 2) (20, 3) (20, 6) (20, 6) (20, 3) (18, 4) (16, 7)

f2(x) 0,5 (21, 3) (21, 3) (21, 3) (18, 2) (20, 6) (16, 7) (16, 7) (20, 6) (18, 5) (16, 8)

f3(x) 0,85 div (54, 3) (24, 3) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (21, 4) (20, 7)

f4(x)−0,45 (24, 3) (24, 3) (21, 3) (20, 2) (20, 6) (20, 6) (20, 6) (20, 6) (18, 4) (21, 7)

f5(x) 0,5 (24, 3) (27, 3) (24, 3) (26, 2) (20, 6) (20, 6) (20, 6) (20, 6) (21, 4) (16, 7)

Table 1: (number of functional evaluations, COC) for various iterative methods.

An optimal iterative method for solving nonlinear equations must require
least number of function evaluations. In Table 1, the methods which require
least number of function evaluations are marked in bold. We acknowledge,
through Table 1 that the methods contributed in this article are equal to or
better than the performance of the existing methods in the literature.
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