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SOME PROPERTIES OF JACOBI POLYNOMIALS

Zoran -Dord̄ević1, Ćemal Dolićanin2

Abstract. A main motivation for this paper is the search for the
sufficient condition of the primality of an integer n in order that the
congruence 1n−1 + 2n−1 + 3n−1 + · · · + (n− 1)n−1 ≡ −1 (mod n) holds.
Some properties of Jacobi polynomials were investigated using certain
Kummer results. Certain properties of Bernoulli polynomials as well as
the Staudt–Clausen theorem for prime factors were also used. In this
paper, several new properties of the coefficients of the polynomial

d(m, k) = (−1)k · 2k
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have been obtained, and they are formulated in Theorem 1 and Theorem
2.

AMS Mathematics Subject Classification (2000): 11A07, 11B50, 11B68

Key words and phrases: Jacobi polynomials, Bernoulli polynomials and
numbers, congruences

1. Introduction

For almost three centuries, the properties of Bernoulli numbers and poly-
nomials have been investigated (they were introduced in the work of Jacob
Bernoulli in 1713 [1]), and yet there are still important unsolved problems in
this theory.

Bernoulli numbers and polynomials give important connections between var-
ious solved and unsolved problems in different mathematical theories. This fact
is rather attractive for further research.

We begin with the remark that in the year 1950, G. Ging gave the following
conjecture:

n is a prime number if and only if the following congruence holds

(1) 1n−1 + 2n−1 + 3n−1 + · · ·+ (n− 1)n−1 ≡ −1 (mod n).

That this condition is necessary for the primality of n has been proved, but
whether it is sufficient is still unknown, although it is known that the hypothesis
holds for all numbers which do exceed 101000.
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It is easy to conclude (see [7]) that the natural number n will satisfy the
condition (1) if and only if for every prime factor p of n one has

(2) n− 1 ≡ 0 (mod p)− 1,

(3) n ≡ p (mod p)2.

The condition (2) points out to the fact that if the number n is not prime it
has to be a number with Fermat properties, see p.p. 331–338.

Therefore, the composite number n, has to be an odd number. We prove
that the conditions (2) and (3) are equivalent to the condition

(4) n ·Bn−1 ≡ −1 (mod n),

where Bn−1 is a Bernoulli number in the so-called ”system of symbols with even
indices” (see [6]). It is not difficult to see that the condition (4) is a congruence
among the n-integers. The rational number a

b is an n-integer if (b, n) = 1. In
this paper we will often use congruences in the ring of n-integers. For two n-
integers a

b and c
d we write a

b ≡ c
d (mod n) if and only if ad − bc ≡ 0 (mod n).

It is obvious that the n-integer a−1 = 1
a may be seen as the solution of the

congruence
ax ≡ 1 (mod n)

Let us consider the congruence (4). Suppose p ia any prime factor of n. Ob-
viously, Bn−1 cannot be a p-integer, therefore from the Staudt-Clausen theorem
it follows the condition (2), and then, by repeated application, the condition (3).
Conversely, from the relation (2) it follows that n− 1 = k(p− 1), where k ∈ Z.
It is known (see [2]) that for the Bernoulli numbers one has

p ·Bk·(p−1) ≡ −1 (mod p),

and so we may represent the condition (3) in the following form

n

p
≡ 1 (mod p).

By multiplying the corresponding sides of the last two congruences, we arrive
at the condition (4). In this way, we have shown that the aforementioned
conjecture reduces to the hypotheses that the condition (4) may be satisfied
then and only then when n is a prime number.

If we try to give an indirect proof of the Ging conjecture, we quickly arrive
at the conclusion that it is very important to know an estimate for the following
sum

Wm(r) =
r∑

i=1

am
i ,

where m is a natural number, ai are natural numbers such that ai < ai+1, for
i ∈ {1, . . . , r − 1} (see [8]). These estimates should be made in such a way that
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the error is the smallest when ai = i, i ∈ {1, . . . , r}. If we introduce notation
s = W1(r), we prove the following relations

W3(r) ≥ C2(s), W5(r) ≥ C3(s),

where C2(s) and C3(s) are Jacobi polynomials.
A prime number p ≥ 3 is regular if and only if it is not a factor of any

numerator of the Bernoulli numbers B2, B4, B6 . . . Bp−3. If p is a regular prime
number, the equation

xp + yp = zp

does not have solutions in Z. Kumer [4] proved the following statement:
If not both of the numerators of Bp−3 and Bp−5 are divisible by p, then one

of the numbers in a solution (x, y, z) of the above Diophantine equation must
be divisible by p.

2. Jacobi polynomials

The following polynomials

(5) Cm(t) =
m∑

k=1

α(m, k) · tk, m ∈ {1, 2, 3, . . .}

(6) α(m, k) =
1
k
· 2k−1 ·

2m−2k∑
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(
2m− 1

2

)
·
(

2m− 2− k − 1
k − 1

)
·Bs

where k ∈ {1, 2, . . . , m} are known as Jacobi polynomials since they were first
discovered by Jacobi in 1834 (see [3]).

It is important to emphasize that the formula (6), which establishes the
connection between the coefficients α(m, k) and Bernoulli numbers, is not de-
termined uniquely. It is not hard to use this formula for computation of the
coefficients if k is close to m. One also proves that α(1, 1) = 1 and α(m, 1) = 0
for m ∈ {2, 3, . . .}. Nevertheless, the formula (6) may be transformed so as to
be appropriate for computation of the coefficients α(m, k) when k is close to 2.

We start with the Bernoulli polynomial

B2m−1(x) =
2m−1∑
s=0

(
2m− 1

s

)
· x2m−s−1 ·Bs

which we multiply by x−k and then find its k − 1st derivation. We then put
x = 1 and, using the fact that Bs(1) = Bs we get the relation
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Similarly, one proves the following relation
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From the formula (6) and the last two relations we get

(7) α(m, k) = (−1)k 2k−1

k

k−1∑
s=0

(1− (−1)s)
(
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s

)(
2k − s− 2
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)
B2m−s−1,

where m ∈ {1, 2, 3, . . .}, k ∈ {1, 2, . . . ,m}. If m ≥ 1 and k ∈ (1,m), we have

(8) α(m, k) = (−1)k · 2k

k
·

k−1∑

s≥ k
2

(
2m− 1

2k − 2s− 1

)
·
(

2s− 1
k − 1

)
·B2m−2k+2s.

We use (6) and (8) to calculate the coefficients of the Jacobi polynomials
(5):

α(m, m) = 1
m · 2m−1,m ≥ 1

α(m, m− 1) = −2m−2 · (m− 2) · 1
3! ,m ≥ 2

α(m, m− 2) = 2m−2

3!5! · (m− 1) · (m− 3) · (7m− 8),m ≥ 3
α(m, m− 3) = −2m−3

3!7! · (m− 1)(m− 2)(m− 4)(31m2 − 89m + 48),m ≥ 4
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
α(m, 3) = −8 · (2m− 1) ·B2m−2,m ≥ 3
α(m, 2) = 2 · (2m− 1) ·B2m−2,m ≥ 2.

Let us list a few Jacobi polynomials.

c1(t) = t
c2(t) = t2

c3(t) = 1
3 (4t3 − t2)

c4(t) = 1
3 (6t4 − 4t3 + t2)

c5(t) = 1
5 (16t5 − 20t4 + 12t3 − 3t2).

3. Some properties of Jacobi polynomials

By using the relation between the sum of odd degrees of natural numbers
S2m−1(r) and Jacobi polynomials Cm(t), i.e.

(9) S2m−1(r) = Cm(t)

we can discover one particular property of these polynomials. Namely, by
putting r = 1 we have t = 1 and

(10) Cm(1) = 1, m ∈ {1, 2, 3, . . .}
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The coefficients α(m, k) in general are not integers. In order to apply congruence
theory to these rational numbers, one should know more about prime factors of
the denominator. From the Staudt-Clausen theorem (see [5]) it follows that p
is a prime factor of the denominator N2m of the Bernoulli number B2m if and
only if (p− 1) | 2m.

Theorem 1. Denominators of the coefficients α(m, k), k ∈ {2, 3, 4, . . . , m} are
odd integers for all prime factors less than 2m− 1.

Proof. In the formula (8), the factor in front of the sum is 2k

k . Let a be the
maximum integer such that 2a | k. Then we have k ≥ 2a > a. Therefore,
2k−a ≥ 2. The denominator of the coefficient α(m, k) is consequently an odd
integer. The Bernoulli number with the highest index in the formula (8) is
B2m−2, which would have 2m− 1 as its highest prime factor, but this Bernoulli
number is multiplied by 2m− 1. ¤

For arbitrary real numbers a and b one has

r∑
n=1

(an + b)2m−1 = a2m−1
(
Cm

(v

a
+ c

)
− Cm(c)

)
,

where

v = at + br =
r∑

n=1

(an + b), c =
b(a + b)

2a2
.

Theorem 2. Let p be a prime number. Then

p−1
2∑

1≤i1≤···≤ik

ti1 · ti2 · · · tik
≡ − 1

k · · · 25k−1
·
(

2k − 2
k − 1

)
(mod p), (N)

p−1
2∑

1≤i1≤···≤ik

(ti1 · ti2 · · · tik
)−1 ≡ −2

k + 1

(
2k

k

)
(mod p), (¥)

where k ∈ {1, 2, 3, . . . , p−1
2 }.

Proof. Let p = 2m + 1. From the relation

r∑
n=1

n2m = S2m(r) =
2r + 1

2(2m + 1)
· C ′m+1(t),

by taking into account Theorem 1, we derive the congruence of mth degree

C ′m+1(u) ≡ 0 (mod p),

which holds for u ∈ {t0, t1, t2, . . . , t p−3
2
}. Let us suppose that some of these m

solutions are congruent
ti ≡ tk (mod p).
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In this case it follows that i − k ≡ 0 (mod p) or i + k + 1 ≡ 0 (mod p), which
is impossible.

Furthermore, from the known results, we have

C ′m+1(u) ≡ d(u− t0)(u− t1) · · · (u− t p−3
2

) (mod p), (∗)

where

d ≡ (m + 1)α(m + 1,m + 1) ≡ 2m ≡ 2
p−1
2 ≡

(
2
p

)
≡ (−1)

p2−1
8 (mod p).

For the coefficients of the polynomial C ′m+1(u), we may, using formula (6),
derive the congruence

k · α(m + 1, k) ≡ 2k−1 ·
( −k

k − 1

)
≡ (−2)k−1 ·

(
2k − 2
k − 1

)
(mod p),

since k > 1, and
(
p
s

)
is divisible by p for s ∈ {1, 2, . . . , p− 1}.

Comparing the coefficients in the conguence (∗) we find

α · (−1)k ·
p−3
2∑

1≤i1≤···≤ik

ti1 · ti2 · · · tik
≡ (−2)m−k−1 ·

(
2m− 2k − 2
m− k − 1

)
(mod p),

where k ≤ p−3
2 , from which, after simplification, we get

p−3
2∑

1≤i1≤···≤ik

ti1 · ti2 · · · tik
≡ 1

25k
·
(

2k

k

)
(mod p).

If we denote the last sum by sk, it is clear that

p−1
2∑

1≤i1≤···≤ik

ti1 · ti2 · · · tik
= sk + sk−1 · t p−1

2
.

From this the result (N) directly follows. After dividing the corresponding
sides of the congruence (N) and the congruence

t1 · t2 · · · t p−1
2
≡ 1

2
· (−1)

p2−1
8 + p+1

2 (mod p),

then by changing the index and simplifying we arrive at the congruence (¥). ¤
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[6] Nielsen, N., Traité Elémentaire des Nombres de Bernoulli. Paris: Gautier - Vilars,
1923.

[7] Sierpinski, W., Elementary Theory of Numbers. Warszawa, 1964.

[8] Uspensky, J. V., Heaslet, M. A., Elementary Number Theory, McGraw-Hill, 1939.

Received by the editors April 22, 2010


	Introduction
	Jacobi polynomials
	Some properties of Jacobi polynomials

