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SOME FORCING RELATED CONVERGENCE
STRUCTURES ON COMPLETE BOOLEAN

ALGEBRAS

Miloš S. Kurilić1, Aleksandar Pavlović2

Abstract. Let convergences λi : Bω → P (B), i ≤ 4, on a complete
Boolean algebra B be defined in the following way. For a sequence x =
〈xn : n ∈ ω〉 in B and the corresponding B-name for a subset of ω,
τx = {〈ň, xn〉 : n ∈ ω}, let

λi(x) =

{ {‖τx is infinite‖} if bi(x) = 1B,
∅ otherwise,

where b1(x) = ‖τx is finite or cofinite‖, b2(x) = ‖τx is not unsupported‖,
b3(x) = ‖τx is not a splitting real‖ and b4(x) = 1B. Then λ1 is the al-
gebraic convergence generating the sequential topology on B, while the
convergences λ2, λ3 and λ4, although different on each Boolean algebra
producing splitting reals, generate the same topological convergence - a
generalization of the convergence on the Aleksandrov cube, considered in
[18].
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1. Introduction

In this paper we compare four convergence structures defined on complete
Boolean algebras in terms of set-theoretic forcing. One is the algebraic con-
vergence [20], [2] related to the von Neumann and the Maharam problem and
generalizing the convergence on the Cantor cube. Another one is a generaliza-
tion of the convergence on the Aleksandrov cube considered in [18].

In order to make the paper self-contained, in the first part of the paper we
collect the relevant facts concerning convergence structures. Some of them are
folklore, some scattered in the literature and, for more specific ones a reference
is given, whenever it was available to the authors.

Our notation is mainly standard. So, ω denotes the set of natural numbers
and Y X denotes the set of all functions f : X → Y . By ω↑ω we denote the
set of all strictly increasing functions from ω into ω. A sequence in a set X
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is each function x : ω → X. Then instead of x(n) we usually write xn and
also x = 〈xn : n ∈ ω〉. If xn = a, for each n ∈ ω, the corresponding constant
sequence will be denoted by 〈a〉. If f ∈ ω↑ω then the sequence y = x ◦ f is
said to be a subsequence of the sequence x, and we write y ≺ x.

2. The topology induced by a convergence

If 〈X,O〉 is a topological space, a point a ∈ X is said to be a limit point
of a sequence x ∈ Xω (we will write: x →O a) iff each neighborhood U of
a contains all but finitely many members of the sequence. A space 〈X,O〉 is
called sequential iff a set A ⊂ X is closed whenever it contains each limit of
each sequence in A.

If X is a non-empty set, each mapping λ : Xω → P (X) will be called a
convergence on X and the mapping uλ : P (X) → P (X), defined by uλ(A) =⋃

x∈Aω λ(x), will be called the operator of sequential closure determined by
λ. If λ1 : Xω → P (X) is another convergence on X, then we will write λ ≤ λ1

iff λ(x) ⊂ λ1(x), for each sequence x ∈ Xω. Clearly, ≤ is a partial order on the
set Conv(X) = {λ : λ is a convergence on X}.

Natural examples of these notions appear in general topology: if 〈X,O〉 is a
topological space, then the operator limO : Xω → P (X) defined by limO(x) =
{a ∈ X : x →O a} is the convergence on X determined by the topology
O. In addition, we have the following fact (see [4]).

Fact 2.1. Let 〈X,O〉 be a topological space and λ = limO. Then
(a) The operator λ satisfies the following conditions:

(L1) ∀a ∈ X a ∈ λ(〈a〉);
(L2) ∀x ∈ Xω ∀y ≺ x λ(x) ⊂ λ(y);
(L3) ∀x ∈ Xω ∀a ∈ X ((∀y ≺ x ∃z ≺ y a ∈ λ(z)) ⇒ a ∈ λ(x)).

(b) For each subset A of X we have A ⊂ uλ(A) ⊂ A and, consequently, if A
is a closed set, then uλ(A) = A.

(c) The space 〈X,O〉 is sequential iff: A ⊂ X is closed iff uλ(A) = A.
(d) If O1 is another topology on X, then O ⊂ O1 implies limO1 ≤ limO.
(e) If O and O1 are sequential topologies and limO = limO1 , then O = O1.

A convergence λ : Xω → P (X) is called a topological convergence iff
there is a topology O on X such that λ = limO 3. Such a topology must not be
unique as the following example shows.

Example 2.2. An infinite family of topologies having the same convergence of
sequences. On the real line, the discrete and co-countable topology determine
the same convergence of sequences: only almost-constant sequences converge.
By Fact 2.1(d) the same holds for each topology between these two topologies.

3The problem of characterization of topological convergences was considered by Fréchet [6,
7], Urysohn [21] and, for the single-valued convergences, solved by Kisyńsky [13]. Concerning
the multivalued convergences, several conditions for a convergence to be topological were
obtained by many authors (see the papers of Antosik [1], Kamiński [10, 11, 12], Ferens,
Kamiński and Klís [5] and Koutńık [14].)
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Clearly, if λ : Xω → P (X) is a topological convergence, then Fact 2.1 holds
for each topology O on X such that λ = limO.

If a convergence λ : Xω → P (X) is not topological, it can be extended to a
topological one, namely there is a topology O on X such that λ ≤ limO, that is

(1) ∀x ∈ Xω λ(x) ⊂ limO(x).

Clearly, the antidiscrete topologyOad on X satisfies (1), because limOad(x) = X,
for each sequence x in X. By Fact 2.1(d), finer topologies produce smaller limits
and, in fact, it is known that there is the maximal topology on X satisfying (1).
This topology is described in the following theorem. Parts (b), (c) and (d) can
be found in [11].

Theorem 2.3. Let λ : Xω → P (X) be a convergence on a non-empty set X.
Then

(a) There is the maximal topology Oλ on X satisfying (1);
(b) Oλ = {O ⊂ X : ∀x ∈ Xω (O ∩ λ(x) 6= ∅ ⇒ ∃n0 ∈ ω ∀n ≥ n0 xn ∈ O)};
(c) 〈X,Oλ〉 is a sequential space;
(d) Oλ = {X \ F : F ⊂ X ∧ uλ(F ) = F}, if λ satisfies (L1) and (L2);
(e) limOλ

= min{λ′ ∈ Conv(X) : λ′ is topological and λ ≤ λ′};
(f) OlimOλ

= Oλ;
(g) If λ1 : Xω → P (X) and λ1 ≤ λ, then Oλ ⊂ Oλ1 .

Proof. (a) Let Ωλ be the set of all topologies O on X satisfying (1) and let Oλ

be the topology on X generated by the subbase
⋃

Ωλ. It remains to be proved
that Oλ ∈ Ωλ. Let x ∈ Xω and a ∈ λ(x). If U is an open neighborhood of the
point a in the space 〈X,Oλ〉, then there is a finite subset {O1, . . . , Ok} of

⋃
Ωλ

such that a ∈ ⋂k
i=1 Oi ⊂ U . For i ≤ k let Oi be an element of Ωλ such that

Oi ∈ Oi. Since a ∈ λ(x) ⊂ limOi(x), there is ni ∈ ω such that xn ∈ Oi, for each
n ≥ ni. Thus, if m = max{n1, . . . , nk}, then xn ∈

⋂k
i=1 Oi ⊂ U , for all n ≥ m.

So a ∈ limOλ
(x) and we are done.

(b) Let Tλ denote the given family of subsets of X. First we prove that Tλ

is a topology on X. Clearly ∅, X ∈ Tλ.
Let O1, O2 ∈ Tλ, and let x be a sequence in X. If (O1 ∩ O2) ∩ λ(x) 6= ∅,

then there exist n1
0 and n2

0 such that for all n ≥ n1
0 we have xn ∈ O1, and for

all n ≥ n2
0 we have xn ∈ O2. Therefore, for n0 = max{n1

0, n
2
0} and each n ≥ n0

we have that xn ∈ O1 ∩O2, which proves that O1 ∩O2 ∈ Tλ.
Let Oi ∈ Tλ, i ∈ I. If

⋃
i∈I Oi ∩ λ(x) 6= ∅, then there exists i0 such that

Oi0 ∩ λ(x) 6= ∅. Therefore, there exists ni0
0 such that for all n ≥ ni0

0 we have
that xn ∈ Oi0 ⊂

⋃
i∈I Oi, which implies that

⋃
i∈I Oi ∈ Tλ.

Now we prove that Tλ satisfies (1). Let x be a sequence in X, a ∈ λ(x)
and a ∈ O ∈ Tλ. Since O ∩ λ(x) 6= ∅, there exists an n0 such that xn ∈ O, for
n ≥ n0, thus, a ∈ limTλ

(x).
Since the topology Tλ satisfies (1), by the maximality ofOλ we have Tλ ⊂ Oλ.

Let us prove that each O ∈ Oλ belongs to Tλ. Let x ∈ Xω and O ∩ λ(x) 6= ∅.
By (1), for an a ∈ O ∩ λ(x) we have a ∈ limOλ

(x). Therefore, there is n0 such
that xn ∈ O, for each n ≥ n0, hence O ∈ Tλ indeed.
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(c) Using (b), we show that the space 〈X, Tλ〉 is sequential. Let A ⊂ X and
limTλ

(y) ⊂ A, for each sequence y in A. Suppose that X \ A 6∈ Tλ. Then there
are x ∈ Xω and b ∈ λ(x) \ A such that xn ∈ A, for infinitely many n ∈ ω and,
hence, x has a subsequence y ∈ Aω. Since b ∈ λ(x), by (1) we have b ∈ limTλ

(x),
and, since limTλ

satisfies (L2), we have b ∈ limTλ
(y) ⊂ A. A contradiction. Thus

X \A ∈ Tλ, that is A is a closed set in the space 〈X, Tλ〉.
(d) First we prove

Claim 1. If λ satisfies conditions (L1) and (L2) then
(i) uλ(∅) = ∅;
(ii) A ⊂ uλ(A);
(iii) A ⊂ B ⇒ uλ(A) ⊂ uλ(B);
(iv) uλ(A ∪B) = uλ(A) ∪ uλ(B).

Proof of Claim 1. The statements (i) and (iii) are obvious, (ii) follows from (L1)
and (iii) implies uλ(A) ∪ uλ(B) ⊂ uλ(A ∪ B). If a ∈ uλ(A ∪ B), then a ∈ λ(x)
for some x ∈ (A∪B)ω. Clearly, there is a subsequence y of x such that y ∈ Aω

or y ∈ Bω and, by (L2), we have a ∈ λ(y). Thus a ∈ uλ(A) or a ∈ uλ(B) and
(iv) is proved.

Let us prove that the family F = {F ⊂ X : uλ(F ) = F} satisfies the axioms for
closed sets. By (i), (ii) and (iv) of Claim 1 we have ∅, X ∈ F and F is closed
under finite unions. If Fi ∈ F , i ∈ I, then, by (ii),

⋂
i∈I Fi ⊂ uλ(

⋂
i∈I Fi). By

(iii), for each j ∈ I we have uλ(
⋂

i∈I Fi) ⊂ uλ(Fj) = Fj , thus uλ(
⋂

i∈I Fi) ⊂⋂
i∈I Fi, so

⋂
i∈I Fi ∈ F .

For a proof that O = {X \ F : F ⊂ X ∧ uλ(F ) = F} ⊂ Oλ it is sufficient to
show that O satisfies (1). So for x ∈ Xω and a ∈ λ(x) we show that a ∈ limO(x).
Let a ∈ O ∈ O. Then O = X\F for some F ⊂ X satisfying uλ(F ) = F . Suppose
xn ∈ F for infinitely many n ∈ ω. Then there is a subsequence y of x such that
y ∈ Fω and by (L2), a ∈ λ(y) ⊂ uλ(F ) = F which is not true. Thus there is
n0 ∈ ω such that xn ∈ O for all n ≥ n0. Consequently, a ∈ limO(x).

In order to prove that Oλ ⊂ O we take O ∈ Oλ and show that X \ O ∈ F
or, equivalently, uλ(X \ O) ∩ O = ∅. Suppose there is a ∈ uλ(X \ O) ∩ O.
Then there is x ∈ (X \ O)ω such that a ∈ λ(x). Since Oλ satisfies (1) we have
a ∈ limOλ

(x). So a ∈ O implies there is n0 ∈ ω such that xn ∈ O for all n ≥ n0

which is impossible because x ∈ (X \O)ω. Thus X \O ∈ F that is O ∈ O.
(e) Clearly limOλ

is a topological convergence and, by (1), λ ≤ limOλ
. If

λ′ = limO′ and λ ≤ λ′, then, by the maximality of Oλ, we have O′ ⊂ Oλ which,
by Fact 2.1(d), implies limOλ

≤ limO′ = λ.
(f) Applying (a) to the convergence limOλ

we conclude that for each topology
O on X satisfying limOλ

≤ limO we have O ⊂ OlimOλ
so, for O = Oλ we obtain

Oλ ⊂ OlimOλ
. On the other hand, since λ ≤ limOλ

, we have ΩlimOλ
⊂ Ωλ and

since OlimOλ
∈ ΩlimOλ

, we have OlimOλ
∈ Ωλ, which implies OlimOλ

⊂ Oλ.
(g) Using notation of (a) we have Ωλ ⊂ Ωλ1 . Since Oλ ∈ Ωλ we have

Oλ ∈ Ωλ1 thus Oλ ⊂ Oλ1 by the maximality of Oλ1 . 2

If λ : Xω → P (X) is a convergence, then the topological convergence limOλ

corresponding to the topology Oλ provided by Theorem 2.3 will be called the a
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posteriori convergence determined by λ. It is natural to ask when does the
equality λ = limOλ

hold?

Theorem 2.4. A convergence λ : Xω → P (X) is topological iff λ = limOλ
.

Proof. The implication “⇐” is trivial. Let λ = limO for some topology O on
X. Since Oλ satisfies (1) we have λ ≤ limOλ

. Since λ ≤ limO, by the maximality
of Oλ we have O ⊂ Oλ, which by Fact 2.1(d) implies limOλ

≤ limO = λ. 2

Remark 2.5. If 〈X,O〉 is a topological space and limO the corresponding con-
vergence, then the maximal topology OlimO provided by Theorem 2.3 can be
finer than O. (For example, if O is the co-countable topology on R, then OlimO
will be the discrete topology, see Example 2.2). But, by Theorem 2.4 we have
limO = limOlimO

, namely these two topologies have the same convergence of
sequences.

Theorem 2.6. A space 〈X,O〉 is sequential iff O = Oλ, where λ = limO.
Consequently, in the set of topologies on X having the same convergence of
sequences, λ, Oλ is the unique sequential topology.

Proof. The implication “⇐” follows from Theorem 2.3(c). Let O be a se-
quential topology. By Theorem 2.4 we have limO = limOλ

and since Oλ is a
sequential topology as well, by Fact 2.1(e) we have O = Oλ. 2

A convergence λ : Xω → P (X) such that |λ(x)| ≤ 1, for each x ∈ Xω will
be called a single-valued convergence. (Somewhere such convergences are
called Hausdorff, but the topology generated by them must not be Hausdorff,
see [4, 1.6.E] or [2].) By Fact 2.1(a) and the following theorem of Kisyński
[13] (see also [4, 1.7.18–20]), a single-valued convergence λ is topological iff it
satisfies conditions (L1)-(L3).

Theorem 2.7. Let λ be a single-valued convergence on X satisfying (L1)-(L3).
Then Uλ = {X \ F : F ⊂ X ∧ uλ(F ) = F} is a sequential T1 topology on X
and λ = limUλ

.

By Theorem 2.3(d), the topology Uλ from the previous theorem is equal to
Oλ.

If λ : Xω → P (X) is a multi-valued convergence, then conditions (L1)-(L3)
are not sufficient for λ to be a topological convergence or, equivalently, for the
equality λ = limOλ

(see Theorem 2.4). The following example showing this can
be found in [8].

Example 2.8. A convergence satisfying (L1)-(L3) which is not a topological
convergence. Let X = {1, 2, 3} and, for a sequence x = 〈xn : n ∈ ω〉 ∈ Xω let
r(x) = {k ∈ X : xn = k for infinitely many n ∈ ω}. It is easy to check that the
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convergence λ : Xω → P (X) defined by

λ(x) =





{1, 2} if r(x) = {1},
{2, 3} if r(x) = {2},
{3} if r(x) = {3},
{2} if r(x) = {1, 2},
∅ if r(x) = {1, 3},
{3} if r(x) = {2, 3},
∅ if r(x) = {1, 2, 3},

satisfies conditions (L1), (L2) and (L3) and we reconstruct the topology Oλ.
By Theorem 2.3(d), Fλ = {F ⊂ X : uλ(F ) = F} is the corresponding family
of closed sets. So, if 1 ∈ F ∈ Fλ, then λ(〈1〉) = {1, 2} ⊂ uλ(F ) = F thus
2 ∈ F . Consequently, {1}, {1, 3} 6∈ Fλ. Similarly 2 ∈ F ∈ Fλ implies 3 ∈ F and
hence {2}, {1, 2} 6∈ Fλ. Since uλ({3}) =

⋃
x∈{3}ω λ(x) = λ(〈3〉) = {3} we have

{3} ∈ Fλ and since uλ({2, 3}) =
⋃

x∈{2,3}ω λ(x) = {2, 3} we have {2, 3} ∈ Fλ.
Thus Oλ = {∅, {1}, {1, 2}, {1, 2, 3}}.

Finally, since X is the only neighborhood of the point 3, we have 3 ∈
limOλ

(〈1〉) although 3 6∈ λ(〈1〉), which implies that λ 6= limOλ
.

If a convergence λ : Xω → P (X) satisfies conditions (L1) and (L2), then the
closure operator in the space 〈X,Oλ〉 can be described in the following way.

Theorem 2.9. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2)
and let the mappings uα : P (X) → P (X), α ≤ ω1, be defined by recursion in
the following way: for A ⊂ X

u0(A) = A,
uα+1(A) = uλ(uα(A)) and
uγ(A) =

⋃
α<γ uα(A), for limit γ ≤ ω1.

Then uω1 is the closure operator in the space 〈X,Oλ〉.
Proof. By Theorem 2.3(d), a set F ⊂ X is closed in the space 〈X,Oλ〉 iff
uλ(F ) = F . Hence we show that for each A ⊂ X

(i) A ⊂ uω1(A),
(ii) uλ(uω1(A)) = uω1(A),
(iii) A ⊂ F = uλ(F ) ⇒ uω1(A) ⊂ F .

By (L1) we have A ⊂ uλ(A), so for each A ⊂ X and each α, β ≤ ω1 we have

(2) α < β ⇒ uα(A) ⊂ uβ(A).

Clearly, (i) is true. In (ii) we prove “⊂” only. Let x = 〈xn〉 ∈ (uω1(A))ω and
a ∈ λ(x). For n ∈ ω we have xn ∈

⋃
α<ω1

uα(A), thus there is αn < ω1 such
that xn ∈ uαn(A). Let α < ω1 where αn < α, for all n ∈ ω. Then by (2)
x ∈ (uα(A))ω and consequently a ∈ uλ(uα(A)) = uα+1(A) ⊂ uω1(A).

For a proof of (iii) we suppose A ⊂ F = uλ(F ) and using induction we show
that

(3) ∀α ≤ ω1 uα(A) ⊂ F.
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Clearly u0(A) ⊂ F . Let α ≤ ω1 and uβ(A) ⊂ F , for all β < α. If α is a limit
ordinal, then clearly uα(A) ⊂ F . If α = β +1, then by the induction hypothesis
uβ(A) ⊂ F , hence uα(A) = uλ(uβ(A)) ⊂ uλ(F ) = F so uα(A) ⊂ F again and
(3) is proved, which implies that uω1(A) ⊂ F . 2

3. The closure of λ under (L1)-(L3)

By Theorems 2.3(d) and 2.9, if a convergence λ satisfies conditions (L1)
and (L2), we obtain additional information about the topology Oλ and the a
posteriori convergence limOλ

. If, in addition, λ is a single-valued convergence
satisfying (L3), it is a topological convergence, that is λ = limOλ

, and Oλ is
described in Theorem 2.7. So, if λ does not satisfy conditions (L1)-(L3), it is
useful to find a new convergence producing the same topology and satisfying
conditions (L1)-(L3), which can be written in the following form:

(L1) ∀a ∈ X a ∈ λ(〈a〉),
(L2) ∀x ∈ Xω ∀f ∈ ω↑ω λ(x) ⊂ λ(x ◦ f),
(L3) ∀x ∈ Xω ∀a ∈ X ((∀f ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ(x ◦ f ◦ g)) ⇒ a ∈ λ(x)).

Theorem 3.1. Let λ : Xω → P (X) be a convergence. Then
(a) The convergence λ′ : Xω → P (X) defined by

λ′(x) =
{

λ(x) ∪ {a} if x = 〈a〉, for some a ∈ X,
λ(x) otherwise,

is the minimal convergence satisfying (L1) and λ ≤ λ′;
(b) If λ satisfies (L1), then the convergence λ̄ : Xω → P (X) defined by

λ̄(y) =
⋃

x∈Xω,f∈ω↑ω,y=x◦f λ(x)

is the minimal convergence satisfying (L1), (L2) and λ ≤ λ̄;
(c) If λ satisfies (L1) and (L2), the convergence λ∗ : Xω → P (X) defined by

(4) λ∗(y) =
⋂

f∈ω↑ω

⋃
g∈ω↑ω λ(y ◦ f ◦ g)

is the minimal convergence satisfying (L1)-(L3) and λ ≤ λ∗;
(d) If λ is an arbitrary convergence, then λ′¯∗ is the minimal convergence

≥ λ satisfying (L1), (L2) and (L3) and we have λ ≤ λ′ ≤ λ′¯ ≤ λ′¯∗ ≤ limOλ

and Oλ = Oλ′ = Oλ′¯ = Oλ′¯∗ .

Proof. (a) is evident.
(b) If y ∈ Xω, then y = y ◦ idω, where idω : ω → ω is the identity mapping,

so, by the definition of λ̄, we have λ(y) ⊂ λ̄(y). Thus λ ≤ λ̄.
Since λ satisfies (L1) and λ ≤ λ̄, for each a ∈ X we have a ∈ λ(〈a〉) ⊂ λ̄(〈a〉)

thus λ̄ satisfies (L1). In order to prove (L2) for λ̄ we take y ∈ Xω and g ∈ ω↑ω

and show that

(5) λ̄(y) ⊂ λ̄(y ◦ g).
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Let a ∈ λ̄(y). Then there are x ∈ Xω and f ∈ ω↑ω such that y = x ◦ f and
a ∈ λ(x). But then y ◦ g = x ◦ f ◦ g and f ◦ g ∈ ω↑ω, so λ(x) ⊂ λ̄(y ◦ g) hence
a ∈ λ̄(y ◦ g) and (5) is proved.

For a proof of the minimality of λ̄ suppose that λ1 : Xω → P (X) satisfies
(L1), (L2) and λ ≤ λ1. We prove that λ̄ ≤ λ1. Let y ∈ Xω and a ∈ λ̄(y). Then
there are x ∈ Xω and f ∈ ω↑ω such that y = x ◦ f and a ∈ λ(x). Since λ ≤ λ1

we have a ∈ λ1(x), and, since λ1 fulfills (L2), we have λ1(x) ⊂ λ1(x◦f) = λ1(y)
so a ∈ λ1(y). Thus λ̄(y) ⊂ λ1(y) for all y ∈ Xω, that is λ̄ ≤ λ1.

(c) Let a ∈ λ(y). If f ∈ ω↑ω, then for g = idω we have g ∈ ω↑ω and
λ(y ◦ f ◦ g) = λ(y ◦ f). Since λ satisfies (L2) there holds λ(y) ⊂ λ(y ◦ f) and
hence a ∈ λ(y ◦ f ◦ g). Thus a ∈ λ∗(y) and λ ≤ λ∗ is proved.

Since λ satisfies (L1) and λ ≤ λ∗, for each a ∈ X we have a ∈ λ(〈a〉) ⊂
λ∗(〈a〉) thus λ∗ satisfies (L1).

In order to prove that λ∗ satisfies (L2) we take y ∈ Xω, a ∈ λ∗(y) and
h ∈ ω↑ω and show that a ∈ λ∗(y ◦ h) that is

(6) ∀ϕ ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ(y ◦ h ◦ ϕ ◦ g).

Since a ∈ λ∗(y) there holds

(7) ∀f ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ(y ◦ f ◦ g).

So, if ϕ ∈ ω↑ω, then h ◦ ϕ ∈ ω↑ω and by (7) for f = h ◦ ϕ there is g ∈ ω↑ω such
that a ∈ λ(y ◦ f ◦ g) = λ(y ◦ h ◦ ϕ ◦ g) and (6) is proved.

For a proof that λ∗ satisfies (L3) we take y ∈ Xω, a ∈ X and suppose that
∀f ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ∗(y ◦ f ◦ g) or equivalently,

(8) ∀f ∈ ω↑ω ∃g ∈ ω↑ω ∀F ∈ ω↑ω ∃G ∈ ω↑ω a ∈ λ(y ◦ f ◦ g ◦ F ◦G).

We have to prove that a ∈ λ∗(y), that is

(9) ∀ϕ ∈ ω↑ω ∃ψ ∈ ω↑ω a ∈ λ(y ◦ ϕ ◦ ψ).

So, let ϕ ∈ ω↑ω. By (8), for f = ϕ there is g ∈ ω↑ω such that ∀F ∈ ω↑ω ∃G ∈
ω↑ω a ∈ λ(y ◦ ϕ ◦ g ◦ F ◦G) so in particular, for F = idω there exists G ∈ ω↑ω

such that a ∈ λ(y ◦ ϕ ◦ g ◦ G). Clearly ψ = g ◦ G ∈ ω↑ω and a ∈ λ(y ◦ ϕ ◦ ψ),
which proves (9).

For a proof of the minimality of λ∗ suppose that λ1 : Xω → P (X) satisfies
(L1)-(L3) and λ ≤ λ1. We prove that λ∗ ≤ λ1. Let y ∈ Xω and a ∈ λ∗(y). Then
∀f ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ(y◦f◦g). Since λ ≤ λ1 we have λ(y◦f◦g) ⊂ λ1(y◦f◦g)
so ∀f ∈ ω↑ω ∃g ∈ ω↑ω a ∈ λ1(y ◦ f ◦ g). But, since λ1 fulfills (L3), this implies
a ∈ λ1(y). Thus λ∗(y) ⊂ λ1(y) for all y ∈ Xω, that is λ∗ ≤ λ1.

(d) By Fact 2.1(a), the convergence limOλ
satisfies conditions (L1), (L2) and

(L3). So, since λ ≤ limOλ
and limOλ

satisfies (L1), we have λ′ ≤ limOλ
. Since

limOλ
satisfies (L1) and (L2), by (b) we have λ′¯ ≤ limOλ

. Finally, by (c) we
have λ′¯∗ ≤ limOλ

. Thus λ ≤ λ′ ≤ λ′¯ ≤ λ′¯∗ ≤ limOλ
which by Theorem

2.3(g) implies Oλ ⊃ Oλ′ ⊃ Oλ′¯ ⊃ Oλ′¯∗ ⊃ OlimOλ
. But, by Theorem 2.3(g),

we have OlimOλ
= Oλ which gives the desired equality. 2
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4. Weakly-topological convergences

A convergence λ : Xω → P (X) will be called weakly-topological iff it
satisfies conditions (L1) and (L2) and λ∗ is a topological convergence.

Theorem 4.1. For a convergence λ : Xω → P (X) satisfying (L1) and (L2) the
following conditions are equivalent:

(a) λ is a weakly topological convergence,
(b) λ∗ = limOλ∗ ,
(c) λ∗ = limOλ

, that is for each x ∈ Xω and a ∈ X

a ∈ limOλ
(x) ⇔ ∀y ≺ x ∃z ≺ y a ∈ λ(z).

Proof. (a) ⇔ (b) is Theorem 2.4 and (b) ⇔ (c) follows from Theorem 3.1,
because λ = λ′ = λ′¯. 2

For a single-valued convergence λ conditions (L1) and (L2) imply that λ is
a weakly-topological convergence. Namely, we have

Theorem 4.2. Let λ : Xω → P (X) be a single-valued convergence satisfying
(L1) and (L2). Then

(a) λ∗ is a single-valued convergence;
(b) λ∗ = limOλ

, that is λ is a weakly-topological convergence.

Proof. (a) Let x ∈ Xω and a, b ∈ λ∗(x). Since idω ∈ ω↑ω, by (4), there exists
ga ∈ ω↑ω such that a ∈ λ(x ◦ idω ◦ ga) = λ(x ◦ ga). Also, by (4), there exists gb

such that b ∈ λ(x ◦ ga ◦ gb). Since x ◦ ga ◦ gb ≺ x ◦ ga and λ satisfies (L2) we
have a ∈ λ(x ◦ ga ◦ gb), so |λ(x ◦ ga ◦ gb)| ≤ 1 implies a = b.

(b) By Theorem 3.1(d) we have Oλ = Oλ∗ . By (a) and since λ∗ satisfies
(L1)-(L3), by Theorem 2.7 λ∗ is a topological convergence, so, by Theorem 2.4,
λ∗ = limOλ∗ , that is λ∗ = limOλ

. 2

Example 4.3. A convergence satisfying (L1)-(L3) which is not weakly topo-
logical. The convergence λ defined in Example 2.8 satisfies (L1)-(L3) and, by
Theorem 3.1(c), we have λ∗ = λ. But λ is not a topological convergence.

5. Fréchet spaces and condition (L4)

A topological space 〈X,O〉 is called a Fréchet space iff the closure of a set
is equal to its sequential closure (i.e. A = {a ∈ X : ∃x ∈ Aω a ∈ limO(x)}, for
each A ⊂ X). It is known that each Fréchet space is sequential and that there
is a Hausdorff sequential space which is not Fréchet (see [4, 1.6.19]).

Although each convergence of sequences produces a sequential space, for
being Fréchet additional conditions are necessary 4.

4According to the results of Fréchet [6, 7], Urysohn [21] and Kisyńsky [13], a single-valued
convergence is topological and produces a Fréchet topology iff it satisfies conditions (L1)-(L4).
For multivalued convergence see the paper [8] of Gutierres and Hofmann.
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Fact 5.1. (a) If 〈X,O〉 is a Fréchet space and λ = limO, then

(L4) For each double sequence 〈xn
i : n, i ∈ ω〉 in X, each sequence 〈xn : n ∈ ω〉

in X and each a ∈ X such that xn ∈ λ(〈xn
i : i ∈ ω〉), for each n ∈ ω and

a ∈ λ(〈xn : n ∈ ω〉) there is a sequence y in the set {xn
i : n, i ∈ ω} such

that a ∈ λ(y).

(b) If λ : Xω → P (X) is a topological convergence such that 〈X,Oλ〉 is a
Fréchet space, then λ satisfies (L4).

Proof. (a) follows from the fact that each limit of a sequence in a set belongs
to its closure. (b) follows from (a) and Theorem 2.4. 2

Using Theorem 2.9 we obtain the following equivalents of condition (L4).

Theorem 5.2. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2).
Then the following conditions are equivalent

(a) u2
λ = uλ;

(b) uω1 = uλ;
(c) λ satisfies (L4).

Proof. (a)⇒(b) Let u2
λ = uλ and A ⊂ X. Using induction it is easy to prove

that uα(A) = uλ(A) for each α ∈ [1, ω1]. Thus uω1(A) = uλ(A).
(b)⇒(c). Suppose that uω1 = uλ. Let A = {xn

i : n, i ∈ ω} ⊂ X and
x = 〈xn : n ∈ ω〉, where xn ∈ λ(〈xn

i : i ∈ ω〉), n ∈ ω, and let a ∈ λ(x). Then
xn ∈ uλ(A), n ∈ ω, thus x ∈ uλ(A)ω so a ∈ λ(x) ⊂ uλ(uλ(A)) = uω1(uω1(A)) =
uω1(A) = uλ(A). Thus there is y ∈ Aω such that a ∈ λ(y).

(c)⇒(a). Suppose λ satisfies (L4). For A ⊂ X we prove uλ(uλ(A)) ⊂ uλ(A).
Let a ∈ uλ(uλ(A)). Then there is x = 〈xn : n ∈ ω〉 ∈ uλ(A)ω such that
a ∈ λ(x). For each n ∈ ω we have xn ∈ uλ(A) hence there is 〈xn

i : i ∈ ω〉 ∈ Aω

such that xn ∈ λ(〈xn
i : i ∈ ω〉). By (L4) there is y ∈ {xn

i : n, i ∈ ω}ω ⊂ Aω such
that a ∈ λ(y) so, since y ∈ Aω, we have a ∈ uλ(A). 2

Theorem 5.3. Let λ : Xω → P (X) be a convergence satisfying (L1) and (L2).
Then

(a) λ satisfies (L4) ⇒ 〈X,Oλ〉 is a Fréchet space.
(b) λ satisfies (L4) ⇔ 〈X,Oλ〉 is a Fréchet space, if λ is weakly-topological.

Proof. (a) Let A ⊂ X and let b ∈ A. By Theorems 2.9 and 5.2 we have
A = uω1(A) = uλ(A) so b ∈ uλ(A) and, hence, there is a sequence x in A such
that b ∈ λ(x) ⊂ limOλ

(x).
(b) Suppose that λ is a weakly-topological convergence and 〈X,Oλ〉 a Fréchet

space. Let A = {xn
i : n, i ∈ ω} ⊂ X and x = 〈xn : n ∈ ω〉, where xn ∈

λ(〈xn
i : i ∈ ω〉), n ∈ ω, and let a ∈ λ(x). Then, since λ ≤ limOλ

we have
xn ∈ limOλ

(〈xn
i : i ∈ ω〉), n ∈ ω, and a ∈ limOλ

(x). By Fact 5.1 there is a
sequence y in A such that a ∈ limOλ

(y). Since the convergence λ is weakly
topological, by Theorem 4.1 there is z ≺ y such that a ∈ λ(z). Clearly, z is a
sequence in A. 2

The following example shows that the converse of (a) of the previous theorem
is not true.
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Example 5.4. 〈X,Oλ〉 is a Fréchet space, although λ satisfies (L1)-(L3) and
does not satisfy (L4). Let X = {1, 2, 3} and let λ be the convergence considered
in Example 2.8. Since 〈X,Oλ〉 is a first countable space, it is a Frechét space.
But

uλ({1}) =
⋃

x∈{1}ω λ(x) = λ(〈1〉) = {1, 2},
uλ(uλ({1})) =

⋃
x∈{1,2}ω λ(x) = {1, 2} ∪ {2, 3} ∪ {2} = {1, 2, 3}

and, hence, u2
λ 6= uλ, so, by Theorem 5.2, λ does not satisfy (L4).

6. Forcing, sequences and reals

The assertions contained in the rest of the paper are mainly proved by the
method of forcing. Roughly speaking, the forcing construction has the following
steps. First, for a convenient complete Boolean algebra B belonging to the model
V of ZFC in which we work (the ground model), the class V B of B-names
(i.e. special B-valued functions) is constructed by recursion. Second, for each
ZFC formula ϕ(v0, . . . , vn) and arbitrary names τ0, . . . , τn the Boolean value
‖ϕ(τ0, . . . , τn)‖ is defined by recursion. Finally, if G ⊂ B is a B-generic filter
over V (i.e. G intersects all dense subsets of B+ belonging to V ) then for each
name τ the G-evaluation of τ , denoted by τG is defined by τG = {σG : σ ∈
dom(τ) ∧ τ(σ) ∈ G} and VB[G] = {τG : τ ∈ V B} is the corresponding generic
extension of V , the minimal model of ZFC such that V ⊂ VB[G] 3 G. The
properties of VB[G] are controlled by the choice of B and G and by the forcing
relation ° defined by

b ° ϕ(τ)
def⇐⇒ ∀G ∈ GBV (b ∈ G ⇒ VB[G] ² ϕ(τG)) .

(Here “G ∈ GBV ” will be an abbreviation for “G is a B-generic filter over V ”.)
If A ∈ V , then there is a B-name Ǎ = {〈a, 1〉 : a ∈ A} such that (Ǎ)G = A, in
each extension VB[G]. A proof of the following statement can be found in [9].

Fact 6.1. If ϕ and ψ are ZFC formulas and A ∈ V , then
(a) ‖ϕ ∧ ψ‖ = ‖ϕ‖ ∧ ‖ψ‖;
(b) ‖¬ϕ‖ = ‖ϕ‖′;
(c) ‖∀xϕ(x)‖ =

∧
τ∈V B ‖ϕ(τ)‖;

(d) ‖∀x ∈ Ǎ ϕ(x)‖ =
∧

a∈A ‖ϕ(ǎ)‖;
(e) b ° ϕ if and only if b ≤ ‖ϕ‖;
(f) 1 ° ϕ ⇒ ψ if and only if ‖ϕ‖ ≤ ‖ψ‖;
(g) If ZFC ` ϕ(x), then 1 ° ϕ(τ), for each τ ∈ V B;
(h) If VB[G] ² ϕ, then there is b ∈ G such that b ° ϕ;
(i) If 1 ° ∃xϕ(x), then 1 ° ϕ(τ), for some τ ∈ V B (The Maximum Principle).

Subsets of ω are called reals and can be coded by convenient names. Namely,
if x = 〈xn : n ∈ ω〉 is a sequence in B, then τx = {〈ň, xn〉 : n ∈ ω} is a B-
name, 1 ° τx ⊂ ω̌ and ‖ň ∈ τx‖ = xn, for each n ∈ ω. On the other hand, if
r ∈ P (ω) ∩ VB[G], then r = τG for some τ ∈ V B and there is b ∈ G such that
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b ° τ ⊂ ω̌. If we define xn = ‖ň ∈ τ‖, n ∈ ω, then b ° τ = τx, so each real
belonging to VB[G] can be represented by a nice name of the form τx.

A real r ∈ [ω]ω ∩ VB[G] will be called: new iff r 6∈ V ; dependent iff there
is A ∈ [ω]ω ∩ V such that A ⊂ r or A ⊂ ω \ r; independent or a splitting
real iff it is not dependent [16]; supported iff there is A ∈ [ω]ω ∩ V such that
A ⊂ r; unsupported iff it is not supported [15].

Theorem 6.2. Let x = 〈xn : n ∈ ω〉 be a sequence in a complete Boolean
algebra B, τx = {〈ň, xn〉 : n ∈ ω} and B an infinite subset of ω. Then

(a) ‖τx = ω̌‖ =
∧

n∈ω xn;
(b) ‖τx is cofinite ‖ =

∨
k∈ω

∧
n≥k xn (= lim inf x);

(c) ‖τx is supported ‖ =
∨

A∈[ω]ω
∧

n∈A xn;
(d) ‖τx is infinite ‖ =

∧
k∈ω

∨
n≥k xn (= lim supx);

(e) ‖B̌ ⊂∗ τx‖ =
∨

k∈ω

∧
n∈B\k xn (= lim infn∈B xn);

(f) ‖|τx ∩ B̌| = ω̌‖ =
∧

k∈ω

∨
n∈B\k xn (= lim supn∈B xn);

(g) ‖τx = ω̌‖ ≤ ‖τx is cofinite‖ ≤ ‖τx is old infinite‖ ≤ ‖τx is supported‖ ≤
‖τx is infinite dependent‖ ≤ ‖τx is infinite‖;

(h) ‖τx is cofinite‖ ≤ ‖B̌ ⊂∗ τx‖ ≤ ‖|τx ∩ B̌| = ω̌‖ ≤ ‖τx is infinite‖.

Proof. (c) By Fact 6.1, ‖τx is supported‖ = ‖∃A ∈ ([ω]ω)V ˇ ∀n ∈ A n ∈ τx‖ =∨
A∈[ω]ω

∧
n∈A ‖ň ∈ τx‖ =

∨
A∈[ω]ω

∧
n∈A xn. The proof of the rest is similar.

(g) Clearly, X = ω ⇒ X is cofinite ⇒ X is old infinite ⇒ X is supported ⇒
X is infinite dependent ⇒ X is infinite. Now we apply Fact 6.1(f) and (g).

(h) X is cofinite ⇒ B ⊂∗ X ⇒ X ∩B is infinite ⇒ X is infinite. 2

Lemma 6.3. If x = 〈xn : n ∈ ω〉 is a sequence in a c.B.a. B and f ∈ ω↑ω, then
y = x ◦ f is a subsequence of x and for the B-names τx and τx◦f we have

(a) 1 ° τx◦f = f−1[τx];
(b) lim sup x ◦ f = ‖|f [ω]̌ ∩ τx| = ω̌‖;
(c) lim inf x ◦ f = ‖f [ω]̌ ⊂∗ τx‖;
(d) lim inf x ≤ lim inf y ≤ lim sup y ≤ lim supx.

If by x′ we denote the sequence 〈x′n : n ∈ ω〉, then
(e) 1 ° τx′ = ω̌ \ τx.

Proof. (a) Suppose G ∈ GBV . Then n ∈ (τx◦f )G iff xf(n) ∈ G iff f(n) ∈ (τx)G

iff n ∈ f−1[(τx)G].
(b) By (a) and Theorem 6.2(d) we have lim sup x ◦ f = ‖|τx◦f | = ω̌‖ =

‖|f−1[τx]| = ω̌‖ = ‖|f [ω]̌ ∩ τx| = ω̌‖, since f is an injection.
The proof of (c) is similar and (d) follows from (b) and (c).
(e) is true since n ∈ (τx′)G iff x′n ∈ G iff xn 6∈ G iff n ∈ ω \ (τx)G. 2

We will use the following well-known fact (see [9]).

Fact 6.4. A c.B.a. B does not add new reals by forcing iff B is (ω, 2)-distributive.
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7. Convergence structures on Boolean algebras

If B is a Boolean algebra and A ⊂ B let A ↑= {b ∈ B : ∃a ∈ Aa ≤ b}.
We will say that a set A is upward closed iff A = A ↑. For simplicity, for a
sequence x = 〈xn : n ∈ ω〉 in B we introduce the following notation:

v1(x) = ‖τx is cofinite‖ = lim inf x,

v2(x) = ‖τx is supported‖,
v3(x) = ‖τx is infinite dependent‖,
v4(x) = ‖τx is infinite‖ = lim sup x,

where τx = {〈ň, xn〉 : n ∈ ω} is the B-name for a real corresponding to x. By
Theorem 6.2 we have

(10) v1(x) ≤ v2(x) ≤ v3(x) ≤ v4(x),

and we define convergences λi : Bω → P (B), i ≤ 4, on B by

(11) λi(x) =
{ {v4(x)} if vi(x) = v4(x)

∅ if vi(x) < v4(x)

Using (10), (11) and Theorem 2.3(g) we easily prove

Theorem 7.1. (a) λ1 ≤ λ2 ≤ λ3 ≤ λ4;
(b) Oλ4 ⊂ Oλ3 ⊂ Oλ2 ⊂ Oλ1 .

The convergence λ1

First we give a forcing characterization of this convergence.

Theorem 7.2. If B is a complete Boolean algebra, then for each sequence x in
B

λ1(x) =
{ {lim supx} if 1 ° τx is finite or cofinite,

∅ otherwise.(12)

Proof. By the definition of λ1 and Fact 6.1 we have

λ1(x) 6= ∅ ⇔ ‖τxis cofinite‖ = ‖τx is infinite‖
⇔ ‖τxis infinite‖ ≤ ‖τx is cofinite‖
⇔ 1 ° τx is infinite ⇒ τx is cofinite
⇔ 1 ° τx is finite or cofinite.

2

The convergence λ1 is the well known algebraic convergence, related to
the von Neumann - Maharam problem (see [20]) and generates the sequential
topology on B, usually denoted by τs (see [2]). It is known that
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• λ1 satisfies (L1) and (L2), it is single-valued and, by Theorem 4.2, weakly-
topological.

• λ1 is a topological convergence iff it satisfies (L3) (see Theorem 2.7) iff
the algebra B is (ω, 2)-distributive (see [17]).

• λ1 generates a Fréchet topology iff the algebra B is weakly-distributive
and b-cc, where b is the bounding number (see [3]).

• limOλ1
= a ⇒ a = ax = bx (see [17]), where

ax =
∧

A∈[ω]ω
∨

B∈[A]ω
∧

n∈B xn,

bx =
∨

A∈[ω]ω
∧

B∈[A]ω
∨

n∈B xn.

• limOλ1
= a ⇔ a = ax = bx, in Boolean algebras satisfying condition (~)

(see [17]) given by

∀x ∈ Bω ∃y ≺ x ∀z ≺ y lim sup z = lim sup y

More about condition (~) (implied by the ccc) can be found in [19].

The convergence λ4

Since λ4(x) = {lim supx}, for each sequence x in B, the convergence λ4

satisfies condition (L1).

Example 7.3. λ4 does not satisfy (L2). For the sequence x = 〈0, 1, 0, 1, . . .〉
we have λ4(x) = {1} but for its subsequence y = 〈0, 0, 0, . . .〉 we have λ4(y) =
{0} 63 1.

Theorem 7.4. The closure of the convergence λ4 under (L2) is given by

λ̄4(y) = {lim sup y}↑ .

Proof. By Theorem 3.1, we prove that, for each sequence y = 〈yn : n ∈ ω〉 in
B ⋃

x∈Bω, f∈ω↑ω, y=x◦f λ4(x) = {lim sup y}↑ .

(⊂) Suppose that x ∈ Bω, f ∈ ω↑ω, y = x ◦ f and b ∈ λ4(x), that is,
b = lim sup x. Since y ≺ x, by Lemma 6.3(d) we have lim sup y ≤ lim sup x = b,
which implies b ∈ {lim sup y}↑.

(⊃) Let b ≥ lim sup y. Let x = 〈y0, b, y1, b, y2, . . .〉 and f, g ∈ ω↑ω, where
f(k) = 2k and g(k) = 2k + 1, for k ∈ ω. Then y = x ◦ f and z = x ◦ g = 〈b〉.
By Theorem 6.2(d) and Lemma 6.3(b) we have

lim sup x = ‖|τx| = ω̌‖ = ‖|τx ∩ fˇ[ω]| = ω̌‖ ∨ ‖|τx ∩ gˇ[ω]| = ω̌‖
= ‖|τy| = ω̌‖ ∨ ‖|τz| = ω̌‖ = ‖|τy| = ω̌‖ ∨ b = lim sup y ∨ b = b
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and, hence, b ∈ λ4(x). Thus b ∈ ⋃
x∈Bω, f∈ω↑ω, y=x◦f λ4(x). 2

The convergence λ̄4, generalizing the convergence on the Aleksandrov cube, was
investigated in [18]. In particular, it is shown that

• λ̄4 is a topological convergence iff B is (ω, 2)-distributive,

• λ̄4 is a weakly topological convergence if B satisfies condition (~) or if λ̄4

satisfies (L4),

• Oλ4 is a T0 connected compact topology on B.

• Oλ4 and its dual generate the sequential topology, when B is a Maharam
algebra.

The convergences λ2 and λ3

First we give a forcing characterization of these convergences.

Theorem 7.5. If B is a complete Boolean algebra, then for each sequence x in
B

λ2(x) =
{ {lim supx} if 1 ° τx is finite or supported,

∅ otherwise.(13)

λ3(x) =
{ {lim supx} if 1 ° τx is not splitting,

∅ otherwise.(14)

Proof. By the definition of λ2 and λ3 and Fact 6.1 we have

λ2(x) 6= ∅ ⇔ ‖τxis supported‖ = ‖τx is infinite‖
⇔ ‖τxis infinite‖ ≤ ‖τx is supported‖
⇔ 1 ° τx is infinite ⇒ τx is supported
⇔ 1 ° τx is finite or supported;

λ3(x) 6= ∅ ⇔ ‖τxis infinite dependent‖ = ‖τx is infinite‖
⇔ ‖τxis infinite‖ ≤ ‖τx is infinite dependent ‖
⇔ 1 ° τx is infinite ⇒ τx is infinite dependent
⇔ 1 ° τx is finite ∨ τx is infinite dependent
⇔ 1 ° τx is not splitting.

2

Theorem 7.6. For each complete Boolean algebra B the following conditions
are equivalent:

(a) B is (ω, 2)-distributive;
(b) 1 ° ∀r ⊂ ω̌ (r is supported);
(c) λ2 = λ4;
(d) λ2 = λ3.
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Proof. (a) ⇔ (b). This is a well known fact (see [15]).
(b) ⇒ (c). Suppose that (b) holds and λ2 < λ4. Then there is a sequence

x in B such that λ2(x) = ∅ and, by Theorem 7.5, b ° “τx is unsupported”, for
some b ∈ B+. A contradiction.

(c) ⇒ (d). This follows from Theorem 7.1(a).
(d) ⇒ (b). Let λ2 = λ3. Suppose that there is an extension VB[G] and

X ∈ VB[G] ∩ P (ω) such that X is unsupported. Then there is a B-name σ such
that X = σG and

(15) 1 ° σ ⊂ ω̌.

For the function f : ω → ω, defined by f(k) = 2k, we have

(16) 1 ° f̌ [σ] ∩ {1, 3, 5, . . . }̌ = ∅.

Since f ∈ V , the set f [σG] is unsupported and, by Fact 6.1(h), there is b ∈ G
such that

(17) b ° f̌ [σ] is unsupported.

For n ∈ ω, let us define xn = ‖ň ∈ f̌ [σ]‖, let x = 〈xn : n ∈ ω〉 and τx =
{〈ň, xn〉 : n ∈ ω}. By (15) we have 1 ° f̌ [σ] ⊂ ω̌ and, hence,

(18) 1 ° f̌ [σ] = τx.

By (16) and (18), 1 ° “τx is not splitting”, which implies λ3(x) 6= ∅. By (17)
and (18) we have b ° “τx is unsupported” and, hence, λ2(x) = ∅. Thus λ2 6= λ3,
a contradiction. 2

Theorem 7.7. For each complete Boolean algebra B the following conditions
are equivalent:

(a) Forcing by B does not produce splitting reals;
(b) λ3 = λ4.

Proof. By Theorem 7.5, λ3 = λ4 iff 1 ° “τx is not splitting”, for each sequence
x in B. Since each real produced by forcing is coded by a nice name determined
by a sequence in B, the proof is over. 2

Concerning the inequalities λ2 ≤ λ3 ≤ λ4 we note that, by Theorem 7.6,
λ2 = λ3 < λ4 is impossible. In the following examples we show that, up to this
restriction, everything is possible.

Example 7.8. λ2 = λ3 = λ4. This holds in each (ω, 2)-distributive and, in
particular, in each atomic complete Boolean algebra.

Example 7.9. λ2 < λ3 = λ4. This holds in each complete Boolean algebra
which produces new reals, but does not produce splitting reals, for example in
r.o.(P), where P is the Sacks or the Miller forcing.
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Example 7.10. λ2 < λ3 < λ4. This holds in each complete Boolean algebra
which produces splitting reals, for example in r.o.(P), where P is the Cohen or
the random forcing.

The convergence λ2 satisfies condition (L1) because for a constant sequence
〈b : n ∈ ω〉 in B we have ‖τ〈b〉 is infinite‖ = ‖τ〈b〉 is supported‖ = b, thus
λ2(〈b〉) = {b}. Since λ2 ≤ λ3, the convergence λ3 satisfies (L1) as well.

Example 7.11. λ2 does not satisfy (L2). Namely, if x = 〈0, 1, 0, 1, . . .〉, then
1 ° τx = {1, 3, 5, . . .}̌ and we have ‖|τx| = ω̌‖ = ‖τx is supported‖ = 1, so
λ2(x) = {1}. But, for y = 〈0, 0, 0, . . .〉 ≺ x we have λ2(y) = {0} 63 1.

Theorem 7.12. The closure of the convergence λ2 under (L2) is given by

λ̄2(y) = {lim sup y}↑ .

Proof. (⊂) Since λ2 ≤ λ4 ≤ λ̄4, by Theorems 3.1 and 7.4 we have λ̄2(y) ⊂
λ̄4(y) = {lim sup y}↑.

(⊃) Let b ∈ {lim sup y}↑. By Theorem 3.1, we prove that

b ∈ ⋃
x∈Bω, f∈ω↑ω, y=x◦f λ2(x).

For x = 〈y0, b, y1, b, y2, . . .〉 and f ∈ ω↑ω, defined by f(k) = 2k we have y = x◦f .
By Theorem 7.4, ‖|τx| = ω̌‖ = b. Since b ° Ň ⊂ τx, where N is the set of
odd numbers, we have b ° τx is supported, so b ≤ ‖τx is supported‖. Thus
b ≤ ‖τx is supported‖ ≤ ‖|τx| = ω̌‖ = b and, hence, b ∈ λ2(x). 2

Theorem 7.13. (a) λ̄2 = λ̄3 = λ̄4;
(b) Oλ2 = Oλ3 = Oλ4 .

Proof. (a) By Theorem 7.1(a) we have λ2 ≤ λ3 ≤ λ4 and, by Theorem 3.1(b),
λ̄2 ≤ λ̄3 ≤ λ̄4. By Theorems 7.4 and 7.12 we have λ̄2 = λ̄4 and (a) is proved.

(b) follows from (a) and Theorem 3.1(d). 2
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[6] Fréchet, M., Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo
22 (1906), 1–74.
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