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ON LALLEMENT’S LEMMA1

Stojan Bogdanović2, Žarko Popović3, Miroslav Ćirić4

Abstract. Idempotent-consistent semigroups are defined by the prop-
erty that each idempotent in a homomorphic image of a semigroup has an
idempotent pre-image. In a manner this property is an another formula-
tion for a well known Lallement’s lemma. In this paper on an arbitrary
semigroup we introduce a system of congruence relations and using them
we give a new version of the proof of Lallement’s lemma.
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1. Introduction and preliminaries

It is known that Lallement’s lemma does not hold true in arbitrary semi-
groups. In fact, this lemma fails to hold in the semigroup of all positive integers
under addition, since it does not have any idempotent element but the entire
semigroup can be mapped onto a trivial semigroup, which of course is an idem-
potent.

The Lallement’s lemma for regular semigroups says that if ρ is a congruence
on a regular semigroup S and aρ is an idempotent in the quotient S/ρ then
a ρ e for some idempotent e ∈ S. We can formulate this property in terms
of homomorphic images. The property featured in the conclusion of the lemma
therefore has merited a name of its own and so we say that a congruence relation
ξ on a semigroup S is idempotent-consistent (or idempotent-surjective) if for
every idempotent class aξ of S/ξ there exists e ∈ E(S) such that aξe. This
property is in the conclusion of the well known Lallement’s lemma. A semigroup
is idempotent-consistent if all of its congruences enjoy this property. These
notions were explored by P. M. Higgins [11], [12], P. M. Edwards [9], P. M.
Edwards, P. M. Higgins and S. J. L. Kopamu [10], S. Bogdanović [3], and H.
Mitsch [16].
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By Z+ we denote the set of all positive integers. By S1 we denote a semigroup
S with identity 1. By E(S) we denote the set of all idempotents of a semigroup
S. A semigroup which all its elements are idempotents is a band.

The notion of regularity was introduced by J. von Neumann [18], and it
play the important role in a ring and a semigroup theory. An element a of a
semigroup S is regular if there exists x ∈ S such that a = axa. A semigroup S
is regular if all its elements are regular.

As a generalization of regularity R. Arens and I. Kaplansky in [1] were
introduced the notion of π-regularity. An element a ∈ S is π-regular if there
exists n ∈ Z+ and x ∈ S such that an = anxan. A semigroup S is π-regular if
all its elements are π-regular, i.e. if some power of every its element is regular.

The class of regular semigroups certainly does not exhaust the class of
idempotent-consistent semigroups as it is a simple matter to check that every pe-
riodic semigroup, or more generally every (completely) π-regular, is idempotent-
consistent. A generalization of Lallement’s lemma that includes all the cases
mentioned so far was provided by P. M. Edwards [9], where it was shown that
the class of idempotent-consistent semigroups includes all π-regular semigroups.
For the related result see also [4].

Although the class of π-regular semigroups does not contain all idempotent-
consistent semigroups it was shown however in [17] by P. Murty, V. Ramana
and K. Sudharani, that any idempotent-consistent and weakly commutative
semigroup is also π-regular. A semigroup S is weakly commutative if for all
a, b ∈ S there exists n ∈ Z+ such that (ab)n ∈ bSa.

The converse implication does not generally hold however in that not all
idempotent-consistent semigroups are π-regular. This was first shown by S. J.
L. Kopamu [15] through the introduction of the class of structurally regular
semigroups which are defined using a special family of congruences. Some char-
acterizations of semigroups, by congruences which are more general then ones
introduced by S. J. L. Kopamu in [14], are considered by S. Bogdanović, Ž.
Popović and M. Ćirić in [6] and [7]. S. J. L. Kopamu proved that Lallement’s
lemma holds for the class of all structurally regular semigroups.

Here, on an arbitrary semigroup, for m, n ∈ Z+, we define a family of con-
gruence relations τ (m,n) and using them we prove: if the quotient semigroup
S/τ (m,n) is π-regular, then a semigroup S is idempotent-consistent. This state-
ment is one new version of Lallement’s lemma. Also, we describe the structure
of semigroups in which the relation τ (m,n) is a band congruence. The results pre-
sented in this paper are generalizations of results obtained by above mentioned
authors.

Let % be an arbitrary relation on a semigroup S. Then the radical R(%) of
% is a relation on S defined by:

(a, b) ∈ R(%) ⇔ (∃p, q ∈ Z+) (ap, bq) ∈ %.

The radical R(%) was introduced by L. N. Shevrin in [19].
An equivalence relation ξ is a left (right) congruence if for all a, b ∈ S, a ξ b

implies ca ξ cb (ac ξ bc). An equivalence ξ is a congruence if it is both left and
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right congruence. A congruence relation ξ is a band congruence on S if S/ξ is
a band, i.e. if a ξ a2, for all a ∈ S.

Let ξ be an equivalence on a semigroup S. By ξ[ we define the largest
congruence relation on S contained in ξ. It is well-known that

ξ[ = {(a, b) ∈ S × S | (∀x, y ∈ S1) (xay, xby) ∈ ξ}.
Let k ∈ Z+ be a fixed integer. On a semigroup S we define the following

relation by
(a, b) ∈ ηk ⇔ ak = bk.

It is easy to verify that ηk is an equivalence relation on a semigroup S. This
relation was introduced by S. Bogdanović, Ž. Popović and M. Ćirić in [7].

For undefined notions and notations we refer [4], [5], [11] and [13].
The following two lemmas will be used to establish our main theorems.

Lemma 1. Let ξ be a congruence relation on a semigroup S. Then R(ξ) = ξ
if and only if ξ is a band congruence on S.

This lemma was proved by S. Bogdanović, Ž. Popović and M. Ćirić in [7].
Let ξ be a congruence relation on a semigroup S. An element a ∈ S is

ξ-regular if there exists b ∈ S such that aξ = (aba)ξ. A semigroup S is ξ-regular
if all its elements are ξ-regular, i.e. if S/ξ is a regular semigroup. An element
b ∈ S such that aξ = (aba)ξ and bξ = (bab)ξ is a ξ-inverse of the element a.

Lemma 2. For any ξ-regular element of a semigroup S there exists a ξ-inverse
element.

Proof. Let a, b ∈ S such that aξ = (aba)ξ, then it is easily to verify that

(aξ) (bab)ξ (aξ) = aξ and (bab)ξ (aξ) (bab)ξ = (bab)ξ.

Thus aξ and (bab)ξ are mutually inverses.

2. The system of τ (m,n) congruences

Further, by previously defined relations on a semigroup S we define the
following relations:

(a, b) ∈ τ ⇔ (∃k ∈ Z+) (a, b) ∈ ηk;

(a, b) ∈ τ [ ⇔ (∀x, y ∈ S1) (xay, xby) ∈ τ.

It is easy to verify that the relation τ is an equivalence on a semigroup S.
Let m, n ∈ Z+. On a semigroup S we define a relation τ (m,n) by

(a, b) ∈ τ (m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ τ.

The main characteristic of previous defined relation gives the following the-
orem.
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Theorem 1. Let S be a semigroup and let m,n ∈ Z+. Then τ (m,n) is a
congruence relation on S.

Proof. It is clear that τ (m,n) is reflexive and symmetric. Assume a, b, c ∈ S such
that a τ (m,n) b and b τ (m,n) c. Then for every x ∈ Sm and y ∈ Sn there exist
k, l ∈ Z+ such that

(xay)k = (xby)k and (xby)l = (xcy)l

whence
(xay)kl = (xby)kl = (xby)lk = (xcy)lk.

So, we have that xay ηlk xcy, i.e. xay τ xcy. Thus τ (m,n) is transitive.
Also, it is easy to prove that τ (m,n) is a compatible relation on S. Therefore

τ (m,n) is a congruence on S.

If instead of τ we assume the equality relation, then we obtain relations
which discussed by S. J. L. Kopamu in [14] and [15].

Remark 1. Let µ be an equivalence relation on a semigroup S and let m, n ∈
Z+. Then a relation µ(m,n) defined on S by

(a, b) ∈ µ(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ µ

is a congruence relation on S. But, there exists a relation µ which is not equiv-
alence, for example µ = , for which the relation µ(m,n) is a congruence on
S.

The complete description of the µ(m,n) congruence, for µ = , was given
by S. Bogdanović, Ž. Popović and M. Ćirić in [8].

If the τ (m,n) relation is a band congruence, then the following two statements
hold.

Theorem 2. Let m,n ∈ Z+. Then the following conditions on a semigroup S
are equivalent:

(i) τ (m,n) is a band congruence on S;
(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay τ xa2y;
(iii) R(τ (m,n)) = τ (m,n).

Proof. (i)⇔(ii) This equivalence follows immediately.
(i)⇔(iii) This equivalence immediately follows by Lemma 1.

Proposition 1. Let m,n ∈ Z+. If τ (m,n) is a band congruence on a semigroup
S, then τ ⊆ τ (m,n).

Proof. Since τ (m,n) is a band congruence on S, then xay τ xaiy, for every i ∈ Z+

and for all x ∈ Sm, y ∈ Sn, a ∈ S. Assume a, b ∈ S such that a τ b. Then
ak = bk, for some k ∈ Z+. Thus for every x ∈ Sm, y ∈ Sn and k ∈ Z+ we have
that

xay τ xaky = xbky τ xby.

Since τ is transitive, then a τ (m,n) b. Therefore τ ⊆ τ (m,n).
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3. The proof of Lallement’s lemma

Before we present the main result of this paper, we give the following helpful
lemma.

Lemma 3. Let m,n ∈ Z+. An element a ∈ S is τ (m,n)-regular if and only if a
has a τ (m,n)-inverse element.

Proof. Let a ∈ S is τ (m,n)-regular. Then aτ (m,n)axa, for some x ∈ S, i.e.
(uav)p = (uaxav)p, for every u ∈ Sm and every v ∈ Sn and some p ∈ Z+. Put
x′ = xax. Since xav ∈ Sn+2 ⊆ Sn then we have that (uax′av)q = (uaxaxav)q =
(uaxav)q, for some q ∈ Z+. Hence,

(uax′av)qp= ((uax′av)q)p= ((uaxav)q)p= ((uaxav)p)q= ((uav)p)q= (uav)pq.

Thus, aτ (m,n)ax′a. Since ux ∈ Sm+1 ⊆ Sm and xaxv ∈ Sn+3 ⊆ Sn we have
that (ux′ax′v)k = (uxaxaxaxv)k = (uxaxaxv)k, for some k ∈ Z+. Also, since
ux ∈ Sm and xv ∈ Sn we have and (uxaxaxv)t = (uxaxv)t = (ux′v)t, for some
t ∈ Z+. Hence,

(ux′ax′v)kt = ((ux′ax′v)k)t = ((uxaxaxv)k)t =

= ((uxaxaxv)t)k = ((ux′v)t)k = (ux′v)tk.

Thus, x′ax′τ (m,n)x
′. Therefore, x′ is a τ (m,n)-inverse of a.

The converse follows immediately.

By the following theorem we give a new result of the type of Lallement’s
lemma. This theorem is a generalization of results obtained by P. M. Edwards,
P. M. Higgins and S. J. L. Kopamu [10].

Theorem 3. Let m,n ∈ Z+. Let φ be a homomorphism from a semigroup S
onto T and let S/τ (m,n) be a π-regular semigroup. Then for every f ∈ E(T )
there exists e ∈ E(S) such that eφ = f .

Proof. Since φ is surjective, then there exists a ∈ S such that aφ = f . Assume
a2(mn) ∈ S, then by Lemma 3 we have that

(1) a2(mn)iτ (m,n) = (a2(mn)ixa2(mn)i)τ (m,n), xτ (m,n) = (xa2(mn)ix)τ (m,n),

for some x ∈ S and i ∈ Z+, whence

((a(mn)ixa(mn)i)j)2 = ((a(mn)ixa(mn)i)2)j = (a(mn)i(xa2(mn)ix)a(mn)i)j

= (a(ni)m(xa2(mn)ix)a(mi)n)j = (a(ni)mxa(mi)n)j

= (a(mn)ixa(mn)i)j ∈ E(S),

for some j ∈ Z+. Let e = (a(mn)ixa(mn)i)j , then

eφ = ((a(mn)ixa(mn)i)j)φ = ((a(mn)iφ)(xφ)(a(mn)iφ))j

= ((aφ)(mn)i(xφ)(aφ)(mn)i)j

= ((aφ)3(mn)i(xφ)(aφ)3(mn)i)j , (since (aφ)2 = aφ = f = f2)
= ((a3(mn)iφ)(xφ)(a3(mn)iφ))j = ((a3(mn)ixa3(mn)i)j)φ
= ((a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)j)φ.
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By (1) there exists k ∈ Z+ such that

(a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)k = (a(ni)m(a2(mn)ixa2(mn)i)a(mi)n)k =

(a(ni)ma2(mn)ia(mi)n)k = a4(mn)ik.

Finally,

(eφ)k = (((a(mn)i(a2(mn)ixa2(mn)i)a(mn)i)j)φ)k

= (((ai(mn)(a2(mn)ixa2(mn)i)a(mn)i)k)φ)j = ((a4(mn)ik)φ)j

= (a4(mn)ikj)φ = (aφ)4(mn)ikj = f4(mn)ikj = f.

Therefore, eφ = f .

The proof of the following corollary immediately follows by the previous
theorem.

Corollary 1. Let m,n ∈ Z+. Every semigroup S for which S/τ (m,n) is π-
regular is idempotent-consistent.

The relation τ (1,1) we simply denote by τ . On a semigroup S this relation
is defined by

(a, b) ∈ τ ⇔ (∀x, y ∈ S) (xay, xby) ∈ τ.

By Theorem 1 it is evident that:

Corollary 2. Let S be an arbitrary semigroup, then τ is a congruence relation
on S.

For m = 1 and n = 1 by previously obtained results we give the following
corollaries which refer to the relation τ .

Corollary 3. An element a ∈ S is τ -regular if and only if a has a τ -inverse
element.

Corollary 4. Let φ be a homomorphism from a semigroup S onto T and let
S/τ be a π-regular semigroup. Then for every f ∈ E(T ) there exists e ∈ E(S)
such that eφ = f .

Corollary 5. Every semigroup S for which S/τ is π-regular is idempotent-
consistent.
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