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MÖBIUS NUMBER SYSTEMS

Alexandr Kazda1

Abstract. Möbius number systems represent the extended real line or,
equivalently, the unit complex circle by sequences of Möbius transforma-
tions. A Möbius number system consists of an iterative system of Möbius
transformations and a subshift.

In this paper we give an overview of the area of Möbius number sys-
tems. We are particularly interested in the conditions, under which a
Möbius number system does or does not exists. We give an overview of
known sufficient and necessary conditions on the iterative system and then
introduce a necessary condition for the subshift.

As Möbius number systems use subshifts instead of the whole symbolic
space, we can ask what is the language complexity of these subshifts. We
present a more user-friendly version of an already known condition for a
number system to be sofic.
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1. Introduction

Numeral systems are recipes for expressing numbers in symbols. The most
common are positional systems (usually with base ten, two, eight or sixteen).
However, these systems are by no means the only possibility. Various historical
systems used different approaches (consider for example the Roman numerals).

Modern numeration theorists typically study positional systems with real
base (such as the golden mean or −2) or various modifications of continued
fractions. It turns out that numeration theory has connections to various other
fields, namely the study of fractals and tilings, symbolic dynamics, ergodic the-
ory, computability theory and even cryptography.

In this paper, we study Möbius number systems as introduced in [8]. A
Möbius number system represents numbers as sequences of Möbius transforma-
tions obtained by composing a finite starting set of Möbius transformations.

Möbius number systems display complicated dynamical properties and have
connections to other kinds of numeral systems. In particular, Möbius number
systems can generalize continued fractions as shown in [10].
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The first half of the paper consists of a survey of already known theory
(particularly from [4] and [7]). While in the other half we branch our study in
several directions: We present the results of a computer experiment suggesting
that known conditions on Möbius iterative systems are quite close to being
sufficient and necessary, then prove that a nontrivial class of subshifts does not
admit Möbius number systems and finally formulate a sufficient condition for a
number system to be sofic.

2. Preliminaries

2.1. Metric spaces and words

Denote by T the unit circle and by D the closed unit disc in the complex
plane.

Let A be a finite alphabet. Any sequence of elements of A is a word over A.
Let λ be the empty word. Denote by A? the monoid of all finite words over A,
by A+ the set A? \ {λ} and by Aω the set of all one-sided infinite words over A.
Let |w| denote the length of the word w. If n is finite, let An be the set of all
words over A of length precisely n. We use the notation w = w0w1w2 · · · and
w[i,j] = wiwi+1 · · ·wj . When u is a finite word and v any word we can define
the concatenation of u and v as uv = u0u1 . . . u|u|−1v0v1 . . .

Let v ∈ A? be a word of length n. Then we write

[v] = {w ∈ Aω : w[0,n−1] = v}
and call the resulting subset of Aω the cylinder of v. A word u is a factor of a
word v if there exist i, j such that u = v[i,j].

Let X be a metric space. We denote by ρ the metric function of X, by
Int(V ) the interior of the set V and by Br(x) the open ball of radius r centered
at x. If I is an interval, denote by |I| the length of I.

We equip C with the metric ρ(x, y) = |x − y| and T with the circle dis-
tance metric (i.e. metric measuring distances along the circle). The shift
space Aω of one-sided infinite words comes equipped with the metric ρ(u, v) =
max

({2−k : uk 6= vk} ∪ {0}
)
. A subshift Σ ⊆ Aω is a set that is both topologi-

cally closed and invariant under the shift map σ(w)i = wi+1 (i.e. σ(Σ) ⊆ Σ).
As shown in [6, pages 5 and 179], subshifts of Aω are precisely the subsets

of Aω that can be defined by some set of forbidden factors. More precisely, Σ
is a subshift iff there exists F ⊆ A+ such that

Σ = {w ∈ Aω : ∀v ∈ F, v is not a factor of w}.
We are going to occasionally define shifts using some such set of forbidden
factors.

The language of a subshift L(Σ) is the set of all the words v ∈ A? for which
there exists w ∈ Σ such that v is a factor of w. See [6] for a more detailed
treatment of this topic.

We will mainly consider symbolic representations of T, although representa-
tions of the extended real line R = R ∪ {∞} will make an appearance as well.
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Figure 1: The stereographic projection of T onto R

Note that R is homeomorphic to T via the stereographic projection (see Fig. 1).

u : T→ R, u : z 7→ −iz + 1
z − i

.

Therefore, as long as we are not interested in arithmetics, representing T is
equivalent to representing the extended real line.

2.2. Möbius transformations

A Möbius transformation (MT for short) of the complex sphere C = C∪{∞}
is any map of the form

F : z 7→ az + b

cz + d

where (a, b), (c, d) are linearly independent vectors from C2.
Note that the stereographic projection u as defined above is actually a

Möbius transformation. Therefore, if we represent T using the system {Fa : a ∈
A} of MTs, we can represent R in the same way with the system {u ◦Fa ◦ u−1 :
a ∈ A}.

To every regular 2× 2 complex matrix A =
(

a b
c d

)
we can associate the MT

defined by FA(z) = az+b
cz+d . While the map A 7→ FA is surjective, every MT has

many preimages: if A is a matrix for F then so is cA for any c ∈ C, c 6= 0. Even
normalizing the matrices by demanding detA = 1 is not enough, as it leaves
two preimages A and −A for each F .

This ambiguity is, however, a small price to pay: An easy calculation shows
that composition of MTs corresponds to multiplying their respective matrices:
FA ◦ FB = FA·B . This is why we will often think of MTs as of matrices. It
follows that the set of all MTs together with the operation of composition is a
group (isomorphic to SL(2,C)/{E,−E}). In particular, MTs are bijective on
C ∪ {∞}.

Unless noted otherwise, we will assume all Möbius transformations to be disc
preserving, i.e. demand that they map D onto itself. Obviously, disc preserving
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transformations form a subgroup of the group of all MTs. It turns out that F
is disc preserving iff it has the form

F =
(

α β

β α

)

with the normalizing condition |α|2 − |β|2 = 1. We provide a detailed proof in
the Appendix as Lemma 21.

The geometrical theory of MTs is quite rich and has a strong link to hy-
perbolic geometry (see [3]). In this paper, we will need only a handful of basic
fragments of this theory. We will use the fact that MTs take circles and lines
to circles and lines (possibly turning a circle into a line or vice versa) and the
observation that disc preserving transformations also preserve orientation of in-
tervals on the circle (clockwise versus counterclockwise), so the image of the
interval [x, y] is the interval [F (x), F (y)] (as compared to [F (y), F (x)]).

We can establish a taxonomy of disc preserving MTs by considering the
trace of the normalized matrix representing F . While TrF does not have a well
defined sign, the number (Tr F )2 is unique and real for each disc preserving F .

Definition 1. Let F 6= id be a disc preserving MT. We call F :

1. elliptic if (TrF )2 < 4,

2. parabolic if (Tr F )2 = 4,

3. hyperbolic if (TrF )2 > 4.

To better understand this classification, consider the fixed points of F . We
claim (Lemma 22 in the Appendix) that:

1. F is elliptic iff it has one fixed point inside and one fixed point outside of
T (the outside point might be ∞),

2. F is parabolic iff it has a single fixed point which lies on T,

3. F is hyperbolic iff it has two distinct fixed points, both lying on T.

Remark. Let F be a hyperbolic transformation with fixed points x1, x2. Then
one of these points (say, x1) is stable and the other is unstable. It is F ′(x1) <
1 < F ′(x2) and for every z ∈ C, z 6= x2, we have limn→∞ Fn(z) = x1.

Similarly, when F is parabolic with the fixed point x, we have Fn(z) → x
for all z ∈ C and F ′(x) = 1. See Lemmas 23 and 24 in the Appendix for proofs
of these facts.

We will show the significance of this classification in the following sections.



Möbius number systems 31

2.3. Number representation

Möbius number systems assign numbers to sequences of mappings. This
principle is actually less exotic than it appears to be. Consider the usual binary
representation of the interval [0, 1]. Let A = {0, 1} be our alphabet. We want
to assign to each word w ∈ Aω the number Φ(w) = 0.w and so obtain the map
Φ : Aω → [0, 1]. We need to use some sort of limit process: Taking longer and
longer prefixes of w, we obtain better and better approximations, ending with
the unique number 0.w.

The usual construction of the binary system involves letting Φ(w) to be equal
to the limit of the sequence {0.w[0,k)}∞k=1. However, we can also define binary
numbers in the language of mappings.

Consider the two maps

F0 : x 7→ x/2
F1 : x 7→ (x + 1)/2.

For v ∈ An let Fv = Fv0 ◦ Fv1 ◦ · · · ◦ Fvn−1 . Both maps F0, F1 are continuous
and, more importantly, contractions on the interval [0, 1]: For each x, y ∈ [0, 1]
and each i = 0, 1 we have |Fi(x) − Fi(y)| = 1

2 |Fi(x) − Fi(y)|. Therefore, for
any w ∈ Aω, the set

⋂∞
k=1 Fw[0,k) [0, 1] is a singleton. What is more, a proof

by induction reveals that Fw[0,k) [0, 1] is actually precisely the set of all the real
numbers whose binary expansion begins with 0.w[0,k). We have obtained that⋂∞

k=1 Fw[0,k) [0, 1] = {Φ(w)} = {0.w}. If we wished, we could go on to prove
that Φ is continuous and surjective, both very desirable properties for a number
system.

We would like to do the same for Möbius transformations in place of F0, F1

and call the result a Möbius number system. However, as MTs are bijective
on the complex sphere, we cannot use the contraction property like we did
above. To fix this, [8] defined Φ using convergence of measures. We will see
that there are other (equivalent) definitions in Theorem 4 but let us give the
original definition first.

Denote m(T) the set of all Borel probability measures on T. If ν is a Borel
measure on T and F : T → T an MT, we define the measure Fν by Fν(E) =
ν(F−1(E)) for all measurable sets E on T. The Dirac measure centered at point
x is the measure δx such that

δx(E) =

{
1 if x ∈ E

0 otherwise

for any E measurable subset of T. It is a quite straightforward idea to identify
δx with the point x itself.

Before we define what does it mean for a sequence of MTs to represent a
point, let us give some brief background. Denote by C(T,R) the vector space of
all continuous functions from T to R (with the supremum norm). Finite Borel
measures act on C(T,R) as continuous linear functionals: Measure ν assigns
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to f ∈ C(T,R) the number
∫

fdν and if ν 6= ν′ then the two measures define
different functionals by the Riesz representation theorem (see [1, page 184]).

We have the embedding m(T) ⊆ C(T,R)∗, where C(T,R)∗ is the dual space
to C(T,R). There are three usual topologies on C(T,R)∗ (listed in the order of
strength): The norm topology, the weak topology and the weak* topology.

Definition 2. Denote by µ the uniform probability measure on T. Let {Fn}∞n=1

be a sequence of Möbius transformations. We say that the sequence {Fn}∞n=1

represents the point x ∈ T if and only if limn→∞ Fnµ = δx. Here µ is the
uniform probability measure on T and the convergence of measures is taken in
the weak∗ topology, i.e. νn → ν if and only if for all f : T → R continuous we
have

∫
fdνn →

∫
fdν.

Remark. The reader might wonder why did we choose weak∗ topology here
instead of any of the two other common topologies.

One answer is that this is the usual way to define convergence of measures
in fields such as ergodic theory. Another answer is that even weak topology
is too strong to provide any representation of points at all: Consider any se-
quence {Fn}∞n=1 of MTs. To obtain limn→∞ Fnµ = δx in the weak topology,
we would have to satisfy α(Fnµ) = α(δx) for any continuous linear functional
α ∈ C(T,R)∗∗.

By the Riesz representation theorem, the space C(T,R)∗ can be identi-
fied with the space of all Radon signed measures on T. For λ Radon signed
measure on T, define α(λ) = λ({x}). This is a continuous linear functional
on C(T,R)∗ (see Lemma 25 in the Appendix). Obviously, α(δx) = 1, while
α(Fnµ) = µ({F−1

n (x)}) = 0, so the sequence {Fn}∞n=1 does not represent x. As
this is true for all sequences and all values of x, Definition 2 would be meaning-
less in the weak topology and the same is true in the norm topology (which is
even stronger that the weak topology).

3. Representing T and R

As in the rest of this paper, we will assume all MTs to be disc preserving.
If we wish to represent R, we can use MTs which preserve the upper half plane
and obtain similar results.

Let α ∈ [0, 2π), r ∈ [1,∞). Call the transformation Rα(z) = eiαz a rota-
tion. It turns out that rotations are precisely those disc preserving MTs whose
matrices are diagonal.

Denote by F •(x) the modulus of the derivative of F at x. Direct calculation
gives us that when F =

(
α β

β α

)
, det F = 1 then

F •(x) = |F ′(x)| = 1∣∣βx + α
∣∣2 .

This number measures whether and how much F expands or contracts the neigh-
borhood of x.
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Definition 3. Let F be a Möbius transformation. Then, inspired by [8] and
[3], we define the expansion interval of F−1 as V = {x ∈ T : (F−1)•(x) > 1}
and expansion set of F−1 by D = {x ∈ C : (F−1)•(x) ≥ 1}.

A straightforward calculation gives us that if F is not a rotation then V is
an interval on T and D is a disc in the complex plane.

Recall that a sequence of Möbius transformations {Fn}∞n=1 represents the
point x ∈ T if and only if limn→∞ Fnµ = δx in the weak* topology. We will
now list several equivalent definitions of what does it mean to represent a point.
Our list is essentially Theorem 9 in [4].

Theorem 4. Let {Fn}∞n=1 be a sequence of disc preserving MTs only finitely
many of which are rotations. Denote by Vn the expansion interval of F−1

n , by
Dn the expansion set of F−1

n and by dn the center of Dn. Then the following
statements are equivalent:

1. The sequence {Fn}∞n=1 represents x ∈ T.
2. For every open interval I on T containing x we have limn→∞(Fnµ)(I) = 1.

3. There exists a number c > 0 such that for every open interval I on T
containing x it is true that lim infn→∞(Fnµ)(I) > c.

4. lim
n→∞

dn = x

5. lim
n→∞

Dn = {x}

6. lim
n→∞

V n = {x}

7. For all K ⊆ Int(D) compact we have lim
n→∞

Fn(K) = {x}.

8. For all z ∈ Int(D) we have lim
n→∞

Fn(z) = x .

9. There exists z ∈ Int(D) such that lim
n→∞

Fn(z) = x.

10. The sequence {Fn}∞n=1 converges to the constant map cx : z 7→ x in mea-
sure, that is

∀ε > 0, lim
n→∞

µ({z : ρ(Fn(z), x) > ε}) = 0.

Here, µ is the uniform probability measure on T and ρ the metric on T. In
(5), (6) and (7), we take convergence in the Hausdorff metric on the space of
nonempty compact subsets of C, T and D respectively. In particular, En → {x}
if and only if for every ε > 0 there exists n0 such that ∀n > n0 it is En ⊆ Bε(x).

As an easy corollary of Theorem 4, we can prove that two intuitive ideas are
true.
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Corollary 5. Let {Fn}∞n=1 be a sequence of MTs representing the point x. Let
M be a disc preserving MT. Then

1. The sequence {Fn ◦M}∞n=1 represents x.

2. The sequence {M ◦ Fn}∞n=1 represents M(x).

Proof. In both cases, we use the fact that if Gn(z) → x for some z ∈ Int(D)
then the sequence {Gn}∞n=1 represents x.

1. As M(0) lies inside D, we have Fn(M(0)) → x, therefore (Fn◦M)(0) → x.

2. As Fn(0) → x and M is continuous, we have M(Fn(0)) → M(x).

We now have enough tools to show, like in [8], how do the three classes of
MTs behave with respect to point representation:

1. Let F be an elliptic disc preserving transformation. Then the sequence
{Fn}∞n=1 does not represent any point.

2. Let F be a parabolic disc preserving transformation. Then the sequence
{Fn}∞n=1 represents the fixed point of F .

3. Let F be a hyperbolic disc preserving transformation. Then the sequence
{Fn}∞n=1 represents the stable fixed point of F .

For all three claims, we will need part (8) of Theorem 4.
To prove (1), recall that if F is elliptic, there exists a fixed point of F inside

T. Denote this point by x. Then for all n, Fn(x) = x 6∈ T, so {Fn}∞n=1 can not
represent anything.

In the parabolic and hyperbolic case, denote by x the (stable) fixed point of
F . We now use Lemma 24 in the Appendix to obtain that for all z ∈ Int(D) we
have Fn(z) → x. Therefore, {Fn}∞n=1 represents x, proving (2) and (3).

4. Möbius number systems

In order to introduce Möbius number system, we need some sort of connec-
tion between words in Aω and sequences of MTs. The notion of Möbius iterative
system allows us to draw such a connection.

Definition 6. Let A be an alphabet. Assume we assign to every a ∈ A a
Möbius transformation Fa. The set {Fa : a ∈ A} is then called a Möbius
iterative system.

Given an iterative system, we assign to each word v ∈ An the mapping
Fv = Fv0 ◦ Fv1 ◦ · · · ◦ Fvn−1 .

Definition 7. Given w ∈ Aω, we define Φ(w) as the point x ∈ T such that the
sequence {Fw[0,n)}∞n=1 represents x. If {Fw[0,n)}∞n=1 does not represent any point
in T, let Φ(w) be undefined. Denote the domain of the resulting map Φ by XF .
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Figure 2: The three parabolic maps system

We are finally ready to say what a Möbius number system is:

Definition 8. The subshift Σ ⊆ Aω is a Möbius number system for a given
Möbius iterative system if Σ ⊆ XF , Φ(Σ) = T and Φ|Σ is continuous.

Using Corollary 5, we observe that if Φ(w) = x then Φ(σ(w)) = F−1
w0

(x). We
will use this simple property later.

We now give three examples of Möbius number systems, although the proof
that they indeed are Möbius number systems will have to wait until Section 6
when we have suitable tools.

Example 9. Let A,B,C be three vertices of an equilateral triangle inscribed
in T. Take Fa, Fb, Fc the three parabolic transformations satisfying.

Fa(A) = A, Fa(C) = B

Fb(B) = B, Fb(A) = C

Fc(C) = C, Fc(B) = A.

See Fig. 2. A quick calculation reveals that Fa, Fb, Fc are in fact uniquely
determined by the triangle ABC.

Let us define the shift Σ by the three forbidden factors ac, ba, cb. We claim
that Σ is a Möbius number system for the iterative system {Fa, Fb, Fc}.

The following two examples are due to Petr Kůrka, see [10].
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Figure 3: The regular continued fractions (as appear in Fig. 3 in [10])

Example 10. The connection between MTs and continued fraction systems
is well known. We show how to implement continued fractions as a Möbius
number system. Let us take the following three transformations:

F̂1(x) = x− 1, F̂0(x) = − 1
x

, F̂1(x) = x + 1.

These transformations are not disc preserving; instead, they preserve the up-
per half plane (representing R ∪ {∞} instead of T). Conjugating F̂1, F̂0, F̂1

with the stereographic projection, we obtain the following three disc preserving
transformations:

F1 =
1
2

(
2− i −1
−1 2 + i

)

F0 =
(−i 0

0 i

)

F1 =
1
2

(
2 + i 1

1 2− i

)
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Words 00, 11 and 11 correspond to the identity maps while Φ((01)∞) and
Φ((01)∞) are not defined (as F01 and F01 are parabolic). This is why we define
the shift Σ by the set of forbidden words 00, 11, 11, 101, 101.

It turns out that Σ is the regular continued fraction system as depicted in
Fig. 3. In this picture, the labelled points represent the images of the point
0 under the corresponding sequence of transformations, while curves connect
images of 0 that are next to each other in a given sequence. Observe that the
images of 0 converge to the boundary of the disc, ensuring convergence.

A slight complication not present in the usual continued fraction system
is that we need to juggle with signs, using the transformation −1/x instead
of 1/x because the latter does not preserve the unit disc (the map x 7→ 1/x
preserves the unit circle but turns the disc inside out). Otherwise, the function
Φ|Σ : Σ → T mirrors the usual continued fraction numeration process.

Remark. Even a quick glance on Fig. 3 reveals that parts of the circle seem
to be missing. While Φ is indeed surjective, the convergence of the images of 0
is sometimes quite slow in this system and so the depth used in the computer
graphics was not enough to get near certain points. We can improve the speed
of convergence by adding more transformations like in [10].

Example 11. As a last example, we obtain a circle variant of the signed binary
number system. Take the following four upper half plane preserving transfor-
mations:

F̂1(x) = (x− 1)/2

F̂0(x) = x/2
F̂1(x) = (x + 1)/2
F̂2(x) = 2x.

Again, we conjugate these MTs with the stereographic projection to be disc
preserving:

F1(x) =
1

2
√

2

(
3− i −1− i
−1 + i 3 + i

)

F0(x) =
1

2
√

2

(
3 −i
i 3

)

F1(x) =
1

2
√

2

(
3 + i 1− i
1 + i 3− i

)

F2(x) =
1

2
√

2

(
3 i
−i 3

)

We take these transformations as our iterative system and then define the
shift Σ ⊆ {0, 1, 1, 2}ω by forbidding the words 20, 02, 12, 12, 11 and 11.

Why are we forbidding these words? The reason for disallowing 2 and 0 next
to each other is that these transformations are inverse to each other. The first
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Figure 4: The Möbius signed binary system (as appears in Fig. 1 in [10])

four forbidden pairs ensure that twos are going to appear only at the beginning
of any word, making the system easier to study, while the last two forbidden
words ensure continuity of the function Φ at 2∞ and, as a side-effect, make the
representation nicer (in cryptography, for example, we often wish to only deal
with redundant representations of integers without 1 and 1 next to each other).

The result is the Möbius number system depicted in Fig. 4. On [−1, 1], this
is essentially the redundant binary system with 1 playing the role of the digit
−1. To represent numbers outside of [−1, 1], we use F2.

5. Systems defined by intervals

The goal of this section is to give the reader enough background to under-
stand Theorem 15 which represents the best available tool to prove that a given
iterative system and a subshift form a Möbius number system. We will use the
formalism from [10] (we have, however, translated the propositions from R to T
to better correspond the rest of the paper).

Definition 12. Let {Fa : a ∈ A} be a Möbius iterative system and Σ ⊆ Aω a
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subshift. An interval system almost compatible with {Fa : a ∈ A} and Σ is any
family of sets W = {Wv : v ∈ A?} such that:

1. Each Wv is a finite union of disjoint open intervals on T.

2. We have Wv = T iff v = λ.

3. For all u, v words we have Wuv = Wu ∩ Fu(Wv).

4. For all words v we have W v =
⋃{W va : va ∈ L(Σ)}.

Observe that thanks to (2) and (3), any interval system almost compatible
with a given iterative system is uniquely described by the sets Wa, a ∈ A, as
we must have:

Wv = Wv0 ∩ Fv0(Wv1) ∩ · · · ∩ Fv[0,n−1)(Wvn−1).

Observation 13. If Σ is the full shift Aω then condition (4) in the definition
of almost compatibility can be replaced by T =

⋃
a∈A W a.

Proof. Observe that if (2) and (4) hold then, letting v = λ, we obtain T =⋃
a∈A W a.
On the other hand, assume that we have a family W = {Wv : v ∈ A?}

satisfying (1–3) and T =
⋃

a∈A W a. We want to prove that then W v =
⋃{W va :

a ∈ A}. A little thought gives us the chain of equalities

⋃

va∈L(Σ)

(
W v ∩ Fv(W a)

)
= W v ∩ Fv

( ⋃

a∈A

W a

)
= W v ∩ Fv(T) = W v.

Now observe that the sets W va = Wv ∩ Fv(Wa) and W v∩Fv(W a) differ only in a
finite number of points (because all members ofW are finite unions of intervals).
Therefore D =

⋃{W va : a ∈ A} \W v is finite. But then D is an open set in the
space

⋃{W va : a ∈ A} which is a disjoint union of (nondegenerate) intervals.
But the only finite open subset of

⋃{W va : a ∈ A} is the empty set. Therefore,
D = ∅ and W v =

⋃{W va : a ∈ A} and we are done.

Definition 14. Let {Fa : a ∈ A} be a Möbius iterative system, Σ ⊆ Aω a
subshift and W an interval system almost compatible with {Fa : a ∈ A} and Σ.
We then define the expansion subshift of Σ and W by

ΣW = {u ∈ Σ : ∀n ∈ N, Wu[0,n) 6= ∅}.
The following theorem can be found in [5] as Corollary 27, however we have

changed the notation to that of [7]:

Theorem 15. Let {Fa : a ∈ A} be a Möbius iterative system, Σ a subshift and
B ⊆ B+ a finite set of words. Assume that W is such an interval system almost
compatible with Σ that Wb ⊆ Vb for every b ∈ B and each w ∈ ΣW contains as
a prefix some b ∈ B.

Then ΣW is a Möbius number system for the iterative system {Fa : a ∈ A}.
Moreover, Φ([v] ∩ ΣW) = W v for all v ∈ A?.
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6. Examples revisited

We now return to the three number systems presented at the end of Section 4
and prove that they indeed are Möbius number systems. The main practical
advantage of using Theorem 15 is that it turns verifying convergence, continuity
and surjectivity of Φ|Σ into combinatorial problems (findingW and Σ, describing
ΣW and finding B so that Wb ⊆ Vb).

First, let us revisit Example 9. We have the three parabolic transformations
Fa, Fb and Fc. Observe that Va = (A,B), Vb = (B,C) and Vc = (C,A). Let W
be the interval system generated by Wa = Va,Wb = Vb and Wc = Vc, i.e.

Wu = Wu0 ∩ Fu0(Wu1) ∩ · · · ∩ Fu[0,|u|−1)(W|u|−1).

then W is almost compatible with {Fa, Fb, Fc}.
What is more, the expansion subshift Σ of Aω and W is precisely the shift

Σ obtained by forbidding the words ac, ba, cb. One way to show this is to first
show that Wac = Wba = Wcb = ∅ and then verify that whenever u ∈ An does
not contain any forbidden factor then Wu = Fu[0,n−1)(Wun−1).

We can prove the last equality by induction on n: For n = 1 the claim is
trivial, while for n = 2 we can examine all the (finitely many) cases. Assume
that the claim is true for some n and let u ∈ An+1. Then:

Wu = Wu[0,n) ∩ Fu[0,n)(Wun) = Fu[0,n−1)(Wun−1) ∩ Fu[0,n)(Wun)
= Fu[0,n−1)(Wun−1 ∩ Fun−1(Wun)) = Fu[0,n−1)(Wu[n−1,n]).

Now Wu[n−1,n] = Fun−1(Wun) by the induction hypothesis for n = 2 and so:

Wu = Fu[0,n−1)(Fun−1(Wun)) = Fu[0,n)(Wun).

To finish the proof, we let B = {a, b, c} and apply Theorem 15.
In the case of the continued fraction system from Example 10, let

W1 = (i,−1),W0 = (−1, 1) and W1 = (1, i).

and again consider the interval system W generated by these sets.
It is straightforward to see that then (Aω)W is precisely the subshift Σ

defined by forbidding 00, 11, 11, 101, 101. It remains to choose the set B =
{01, 01, 1, 1} (which contains a prefix of every word w ∈ Σ) and verify that
Wb ⊆ Vb for each b ∈ B.

By Theorem 15, we again conclude that Σ together with {F1, F0, F1} is a
Möbius number system.

Finally, we analyze the signed binary system from Example 11. Proving
that this system is indeed a Möbius number system requires a reasonable amount
of computation which we have decided to skip here, presenting only the main
points of the proof.

Define the shift Σ0 by forbidding the words 02, 20, 12 and 12. Then let
v : R → T denote the inverse of the stereographic projection and consider the
interval almost cover W generated by

W1 = (−1, q−),W0 = (h−, h+),W1 = (q+, 1),W2 = (h−, h+),
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where

q− = v(−1/4) =
−8− 15i

17

q+ = v(1/4) =
8− 15i

17

h− = v(−1/2) =
−4− 3i

5

h+ = v(1/2) =
4− 3i

5
.

Next, we should show thatW is compatible with Σ0 and that (Σ0)W = Σ is the
subshift defined by the forbidden words 20, 02, 12, 12, 11, 11. This follows from
the set of identities:

F2(W 2) ∪ F2(W 1) ∪ F2(W 1) = W 2

F0(W 0) ∪ F0(W 1) ∪ F0(W 1) = W 0

F1(W 0) ∪ F1(W 1) = W 1

F1(W 0) ∪ F1(W 1) = W 1

together with
F1(W1) ∩W1 = F1(W1) ∩W1 = ∅.

It remains to take B = {0, 1, 1, 21, 21, 22} and check the requirements of Theo-
rem 15. It is easy to see that each w ∈ Σ contains as a prefix a member of B.
Finally, a detailed calculation (which we omit here) will verify that for every
b ∈ B we have Wb ⊆ Vb, therefore the signed binary system is a Möbius number
system by Theorem 15.

7. Existence results
The most basic existence question one might ask is whether there exists any

Möbius number system at all for a given iterative system. This problem is not
solved yet, however, we can offer a partial answer based on Theorem 9 in [10]
and Theorem 15.

Theorem 16. Let F : A+ × T→ T be a Möbius iterative system.

1. If
⋃

u∈A+ Vu 6= T then Φ(XF ) 6= T and so there is no Möbius number
system for {Fa : a ∈ A}.

2. If there exists a finite set B ⊆ A+ such that {V u : u ∈ B} is a cover
of T then there exists a subshift Σ that is a Möbius number system for
{Fa : a ∈ A}.

While Theorem 16 gives a necessary condition for a Möbius number system
to exist, this condition is not very comfortable to use. In the spirit of [9], we
offer a condition that is easier to check.

Let {Fa : a ∈ A} be a Möbius iterative system. A nonempty closed set
W ⊆ T is inward if

⋃
a∈A Fa(W ) ⊆ Int(W ). All iterative systems have the

trivial inward set T and some systems have nontrivial inward sets as well.
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Theorem 17. Let {Fa : a ∈ A} be an iterative system with a nontrivial inward
set. Then there is no Möbius number system for {Fa : a ∈ A}.
Proof. Assume that W is a nontrivial inward set. Let z 6∈ W . Because W c is
open there exists an open interval I disjoint with W and containing z. Assume
that Φ(w) = z. Then limk→∞ |F−1

w[0,k)
(I)| = 2π. However, IntW is nonempty so

there exists an open interval J ⊆ IntW . Now for all k we have Fw[0,k)(J) ⊆ W

so J ∩ F−1
w[0,k)

(I) = ∅. But then |F−1
w[0,k)

(I)| ≤ 2π − |J |, a contradiction.

Searching for the solution to the existence problem, we have used a numerical
simulation to obtain insight in the behavior of MTs. The results suggest that
closing the gap in Theorem 16 is an achievable task.

We have studied the behavior of the iterative system {Fa, Fb} consisting
of two hyperbolic transformations. The transformation Fa has fixed points 1
(stable) and −i (unstable), while the transformation Fb has fixed points −1
(stable) and i (unstable). We have parameterized Fa, Fb by the values qa, qb of
(Fi)

• at stable points, so we have:

Fa =
1

2
√

qa

(
1 + qa − i(1− qa) 1− qa + i(1− qa)
1− qa − i(1− qa) 1 + qa + i(1− qa)

)

Fb =
1

2
√

qb

(
1 + qb − i(1− qb) −1 + qb − i(1− qb)
−1 + qb + i(1− qb) 1 + qb + i(1− qb)

)
.

Denote

Y = {(qa, qb) : qa, qb ∈ (0, 1), there exists a Möbius number syst. for {Fa, Fb}}.

We wrote a C program that tries various pairs (qa, qb), constructs Fa, Fb, then
computes the intervals {V v : |v| ≤ m} (where m is the number of iterations to
consider) and finally checks whether these intervals cover the whole T. If they
do, the program puts a white dot on the corresponding place in the graph,
otherwise we leave it black.

As we are interested in characterization, we have plotted (in gray) a second
set in the graph: The set U of all choices of (qa, qb) such that the iterative
system {Fa, Fb} has a nontrivial inward set. The formula for U , as shown in [9],
is U =

⋃
n∈Z Un, where for n > 0 we have:

U0 = Uab ∩
(

0,
1
2

)
×

(
0,

1
2

)

Un = Uanb ∩ Uan+1b ∩
(

1
n
√

2
,

1
n+1
√

2

)
×

(
0,

1
2

)

U−n = Uabn ∩ Uabn+1 ∩
(

0,
1
2

)
×

(
1

n
√

2
,

1
n+1
√

2

)

and Uv = {(qa, qb) : Fv is hyperbolic} for v ∈ A?. For practical reasons, we have
only drawn the sets Un with |n| ≤ m (the same m as the number of iterations in
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the first part of the program). The result for m = 10 and resolution 1000×1000
is shown in Fig. 5.

By Theorem 17, U ∩Y = ∅. We are interested in the size of the complement
of U ∪ Y in (0, 1)2. It turns out that U ∪ Y covers most of the unit square and
U and Y appear to fit rather well together. The area between the two sets is
likely to get smaller and smaller as we let m grow, possibly shrinking to zero in
the limit. However, there might still exist points that do not belong either to U
or to Y . We conjecture, that U ∪ Y is equal to the whole (0, 1)2 perhaps up to
some countable set of exceptional points.

0

1

1 qa

qb

1

2

1

2

Figure 5: The graph of U and Y for the depth m = 10 and resolution 1000×1000.
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8. Subshifts not admitting Möbius number systems
An interesting question one can pose is whether a given subshift Σ ⊆ Aω

admits a Möbius number system, i.e. whether there exists an iterative system
{Fa : a ∈ A} such that Σ is a Möbius number system for {Fa : a ∈ A}.

Trivially, the cardinality of Σ must be precisely continuum, as for smaller Σ
there is no projection from Σ onto T. We offer a less trivial necessary condition.

A (non-erasing) substitution is any mapping ψ : B → A+. We can extend
ψ to a map from Bω to Aω in a natural way, expanding each letter and gluing
thus obtained words together. As there is no risk of confusion, we will denote
the resulting map by ψ as well and call it a substitution map. Observe that
ψ : Bω → Aω is continuous in the product topology.

Theorem 18. Let Σ ⊆ Aω be a Möbius number system for an iterative system
{Fa : a ∈ A}. Then for all alphabets B and all substitution maps ψ we have
Σ 6= ψ(Bω).

Proof. Assume that there exist B and ψ for which the claim is false. Then
Bω together with the maps {Gb : b ∈ B} such that Gb = Fψ(b) is a Möbius
number system. Denote by Φ the resulting projection of Bω to T and observe
that Φ = ΦΣ ◦ ψ where ΦΣ : Σ → T is the number system on Σ. We see that Φ
is surjective and continuous on Bω.

Let us choose any x ∈ T and u ∈ Bω. There exists v ∈ Bω with Φ(v) = x.
Consider the sequence {Φ(u[0,k)v)}∞k=1. We have

Φ(u[0,k)v) = Gu[0,k)(Φ(v)) = Gu[0,k)(x).

We know that Φ is continuous, so Φ(u[0,k)v) tends to Φ(u) when k tends to
infinity. Therefore, Gu[0,k)(x) → Φ(u). As x, u were arbitrary, we have shown
that for every u ∈ Bω and each point x of T, the sequence {Gu[0,k)(x)}∞k=1

converges to Φ(u).
Let u be periodic with some period w ∈ B+. Then Φ(u) is the (stable) fixed

point of Gw. Therefore Gw may not be elliptic (Φ(u) would not be defined) nor
hyperbolic (the images of the unstable fixed point of Gw would not converge).
This means that for all w ∈ B+ the transformation Gw must be parabolic.

If all the transformations Gb, b ∈ B were parabolic with the same fixed point
x then all the transformations Gw, w ∈ B+ would be parabolic with fixed point
x and we would not be able to represent anything except x. Therefore, there
exist a, b ∈ B such that Ga, Gb have different fixed points. The rest of the proof
consists of a straightforward (but technical) calculation that such a situation is
impossible.

Choose a, b ∈ B so that Ga, Gb have different fixed points. We know that
Gab and Gaab must both be parabolic. Without loss of generality assume that

Ga is similar to the matrix J =
(

1 1
0 1

)
. Write Ga = MJM−1 where M is a

regular matrix. Recall that a transformation F is parabolic iff Tr(F )2 = 4 and
observe that:

Tr(Gab) = Tr(MJM−1Gb) = Tr(JM−1GbM)
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and
Tr(Gaab) = Tr(MJ2M−1Gb) = Tr(J2M−1GbM),

where we used the equality Tr(AB) = Tr(BA). Let

M−1GbM =
(

a b
c d

)

and observe that (a + d)2 = Tr(Gb)2 = 4.
We now have

JM−1GbM =
(

a + c b + d
c d

)
, J2M−1GbM =

(
a + 2c b + 2d

c d

)
.

Calculating the traces, we obtain the equalities

(a + 2c + d)2 = (a + c + d)2 = (a + d)2 = 4

that can only be satisfied when c = 0. But then matrices J and M−1GbM
share the eigenvector (1, 0)T and so Ga = MJM−1 and Gb share the eigenvector
M · (1, 0)T . However, eigenvectors of matrices are in one to one correspondence
with fixed points of Möbius transformations (see the proof of Lemma 22 in the
Appendix) and so Ga, Gb have the same fixed point, a contradiction.

Theorem 18 tells us in particular that there are no Möbius number systems
on the full shift. We must always forbid some words in order to get rid of
undesirable concatenations.

A rather unfortunate flaw of Theorem 18 is that the set ψ(Bω) need not be
a subshift: while ψ(Bω) is always closed, σ-invariance is not guaranteed.

However, there are cases when ψ(Bω) is a nontrivial subshift. Consider the
Fibonacci shift ΣF defined on the alphabet {0, 1} by forbidding the factor 11.
It is easy to see that ΣF = ψ({0, 1}ω) under the substitution

ψ : 0 7→ 0, 1 7→ 10.

Therefore, ΣF can never be a Möbius number system.

9. Sofic Möbius number systems

In this section, we will explore another facet of Möbius number systems. As
every number system is a subshift, we can ask how complicated (in the sense of
formal language theory, not information theory) is the language of this subshift.

A subshift Σ is of finite type if Σ can be defined using a finite set of forbidden
words (note that this was the case in all our example subshifts). A subshift Σ
is called sofic if and only if the language of Σ is regular (recognizable by a finite
automaton). It is straightforward to show that subshifts of finite type are always
sofic. Sofic subshifts and subshifts of finite type are quite popular in practice,
as they are easier to manipulate than general subshifts. There are numerous
results and algorithms available for sofic subshifts and subshifts of finite type.
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The papers [8] and [10] contain several examples of Möbius number systems
that are subshifts of finite type. Furthermore, Proposition 5 in [10] states a
sufficient condition for a number system to be of finite type, while Theorem 24
in [4] offers a rather complicated condition for a number system to be sofic. We
now present two similar but easier to understand conditions, one sufficient and
one necessary.

Theorem 19. Let {Fa : a ∈ A} be an iterative system, Σ be a sofic subshift
and W such an interval system almost compatible with {Fa : a ∈ A} that the set
{F−1

v (Wv) : v ∈ A?} is finite. Then ΣW is sofic.

Proof. We construct a finite automaton A that recognizes all the words v ∈ A?

such that Wv 6= ∅. We then intersect the resulting regular language with the
language L(Σ) to obtain L(ΣW). Because regular languages are closed under
intersection, L(ΣW) is regular.

The states of our automaton will be all the sets Zv = F−1
v (Wv), v ∈ A?. We

let Zλ to be the initial state and all states except ∅ to be accepting states. A
transition labelled by the letter a leads from Zv to Zva for every v ∈ A? and
every a ∈ A.

We verify that when Zv = Zu then Zva = Zua, so the definition of our
automaton is correct:

Zva = F−1
a F−1

v (Wv ∩ Fv(Wa)) = F−1
a (F−1

v (Wv)) ∩ F−1
a (Wa) = F−1

a (Zv) ∩ Za

Similarly, Zua = F−1
a (Zu) ∩ Za and as Zu = Zv we obtain Zva = Zua.

To finish the proof, we observe that the automaton A accepts the word v iff
Zv 6= ∅. Because Zv 6= ∅ iff Wv 6= ∅, A recognizes precisely those v ∈ A? with
Wv 6= ∅.

Under an additional assumption, we can prove the converse of Theorem 19:

Theorem 20. Assume that W is an interval almost cover compatible with the
subshift Σ. Let the subshift ΣW be a sofic Möbius number system such that
Φ([v]∩ΣW) = W v for every word v. Then the set {F−1

v (Wv) : v ∈ A?} is finite.
Proof. To prove this theorem we define a chain of several finite sets, each ob-
tained from the previous, with the final set being {F−1

v (Wv) : v ∈ A?}.
Denote by F(v) the follower set of v in ΣW , i.e. the set of all words u ∈ A?

such that vu ∈ L(ΣW). By the Myhill-Nerode theorem, we have that if ΣW
is sofic, then {F(v) : v ∈ A?} is a finite set. Let v ∈ A? and denote Fω(v) =
{w ∈ Aω : ∀k,w[0,k) ∈ F(v)}. The set {Fω(v) : v ∈ A?} is finite as each Fω(v)
depends only on F(v).

A little thought gives us that Fω(v) = {w ∈ Aω : vw ∈ ΣW}. Finally,
denote Zv = Φ(Fω(v)) and observe again that the set {Zv : v ∈ A?} is finite.
It remains to notice that

Zv = Φ({w ∈ Aω : vw ∈ ΣW}) = F−1
v (Φ([v] ∩ ΣW)) = F−1

v (Wv)

to see that the set {F−1
v (Wv) : v ∈ A?} must be finite.
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Observe that Theorems 19 and 20 give us that if Σ is sofic then the interval
shift considered in Theorem 15 is sofic if and only if {F−1

v (Wv) : v ∈ A?} is a
finite set. Therefore, we have obtained a tool to decide whether ΣW is sofic.

10. Conclusions and open problems

In the whole paper we have explored various topics in the theory of Möbius
number systems. We have reviewed tools to prove that a subshift is a Möbius
number system for a given iterative system as well as various existence results
and criteria for sofic number systems. However, there remain quite a few open
problems, practical as well as theoretical, in this area.

Expansion subshifts seem to be useful when dealing with concrete examples.
Theorem 15 offers practical tools to prove that a given subshift is a Möbius
number system for a given iterative system. We wonder how the available
toolbox for this kind of proof could be further improved. We see numerous
areas open to incremental improvements.

For the sake of examples and applications, we would like to have a suffi-
cient and necessary condition for the existence of a Möbius number system for
a given iterative system. Ideally, this condition should be effectively verifiable
(for reasonable iterative systems, say when real and imaginary parts of coeffi-
cients are rational). While we doubt that a general effective algorithm exists,
improvements in the tools for proving the existence of Möbius iterative systems
would be welcome indeed.

Another, perhaps less practical, but combinatorially interesting problem is
when a given subshift Σ can be a Möbius number system. So far, we have some
sufficient and some necessary conditions and a large gap in between.

To manipulate number systems, it would be nice to have a sofic Möbius num-
ber system. Theorems 19 and 20 offer useful checks to perform when verifying if
a number system is sofic. What is completely missing is a condition, similar to
Theorem 15, for the existence of a sofic number system for a given iterative set.
We are hoping that obtaining such a result is possible but the current amount
of knowledge on sofic number systems is rather small. For example, we can not
even tell whether existence of a Möbius number system implies existence of a
sofic system for the same iterative system or not.

A large part the complexity of above problems seems to come not from the
number systems themselves but from the fact that we don’t properly understand
how do large numbers of MTs compose (or, equivalently, how long sequences of
matrices multiply). This suggests that maybe the way forward lies in study-
ing the limits of products of matrices. Unfortunately, this area is full of hard
questions, see for example [2].

Hard problems notwithstanding, we conclude on a positive note: Although
there are numerous open questions about Möbius number systems, and some
properties of these systems might turn out to be undecidable, current tools do
allow us to deal with systems that are likely to be used elsewhere (for example,
the continued fraction number system).
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11. Appendix

The Appendix contains various proofs that we felt should be included in this
paper, yet their length or technical nature would disturb the flow of the rest of
the text. Note that these are all well known results; the proofs here are just for
the sake of completeness and better understanding of the topic.

Let us first show that all the disc preserving Möbius transformations have a
rather simple form.

Lemma 21. A Möbius transformation F is disc preserving (i.e. F (D) = D) iff
it is of the form

F =
(

α β

β α

)
,

where |α|2 − |β|2 = 1.

Proof. Let F have the given form. We prove that then F (D) = D. First,
consider z = eiφ. We have:

∣∣βeiφ + α
∣∣ =

∣∣∣(αeiφ + β)eiφ
∣∣∣ =

∣∣αeiφ + β
∣∣ .

And so

|F (eiφ)| =
∣∣αeiφ + β

∣∣
∣∣βeiφ + α

∣∣ = 1.

Therefore F (T) ⊆ T. Because F is an MT, the image of T must be a circle,
so F (T) = T. The unit circle divides C into two components: The inside
(containing zero) and the outside (containing ∞). As F is a bijection on C, all
we have to do to obtain F (D) = D is prove that F (0) lies inside D . But this is
simple: F (0) = β

α and |β| < |α|, so |F (0)| < 1.
On the other hand, consider any disc preserving MT F =

(
a b
c d

)
where

det F = 1. Because F is continuous, it must be F (T) = T. Therefore, for every
φ, we must have

∣∣aeiφ + b
∣∣ =

∣∣ceiφ + d
∣∣ . A little thought gives us that if a = 0

then d = 0 and similarly b = 0 implies c = 0; in both cases we are done. Assume
a, b, c, d 6= 0 and continue.

Choose φ so that the quantity
∣∣aeiφ + b

∣∣ =
∣∣ceiφ + d

∣∣ is maximal. The
maximal value of the function on the left side is |a| + |b|, on the right side
|c| + |d|, thus |a| + |b| = |c| + |d|. Similarly, by choosing the minimal quantity,
we obtain that ||a| − |b|| = ||c| − |d||. Moreover, as φ is the same on the right
and left, we also have arg a − arg b = arg c − arg d. These three equalities will
be enough to complete the proof.
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Assume for a moment that the equality ||a| − |b|| = ||c| − |d|| actually means
|a| − |b| = |c| − |d|. Then, together with |a| + |b| = |c| + |d|, we have |a| = |c|
and |b| = |d|, obtaining a matrix of the form F =

(
a b

aeiψ beiψ

)
. But this matrix

is singular, a contradiction.
Therefore, we must have |a| − |b| = |d| − |c|, which implies |a| = |d|, |b| = |c|

and, after a brief calculation,

F =
(

a b

beiψ aeiψ

)

for a suitable ψ.
Now it remains to use the normalization formula detF = 1 to see that ψ

is either 0 or π. If ψ = 0, we are done. Otherwise, we would have detF =
|b|2 − |a|2 = 1, so |b| > |a|. But then |F (0)| = |b|

|a| > 1, so F would turn the disc
inside out, a contradiction.

We now present a series of three lemmas concerning the classification of disc
preserving MTs into elliptic, parabolic and hyperbolic transformations. We will
use a bit of linear algebra machinery. We will understand each disc preserving
Möbius transformation F both as a map and as the corresponding normalized
matrix

F =
(

α β

β α

)
, |α|2 − |β|2 = 1.

An important role in the following proofs belongs to the eigenvalues of the
matrix F . However, these eigenvalues are not uniquely defined: The Möbius
transformation F always has two corresponding normalized matrices F,−F ,
therefore it also has two different sets of eigenvalues. We deal with this problem
by always fixing one matrix of F for the whole proof.

Lemma 22. Let F be a disc preserving Möbius transformation. Fix a matrix
of F such that detF = 1. Then the following holds:

1. F is elliptic iff the eigenvalues of F are not real iff F has one fixed point
inside and one fixed point outside of T (the outside point might be ∞),

2. F is parabolic iff F has the single eigenvalue equal to 1 or −1 iff F has a
single fixed point and it lies on T,

3. F is hyperbolic iff F has two different real eigenvalues iff F has two dif-
ferent fixed points, both lying on T.

Proof. We begin by providing a connection between (Tr F )2 and the eigenvalues
of F . The characteristic polynomial of F is:

(α− λ)(α− λ)− ββ = |α|2 − |β|2 − Tr F · λ + λ2 = 1− Tr F · λ + λ2.

We see that for (TrF )2 < 4, F has two distinct complex conjugate eigenval-
ues, while if (Tr F )2 > 4, then F has two distinct real eigenvalues. Finally, if
(Tr F )2 = 4, there is only one eigenvalue λ = 1 or λ = −1.
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Observe that for all z ∈ C such that F (z) 6= ∞ we have:

F ·
(

z
1

)
=

(
αz + β

βz + α

)
= (βz + α) ·

(
F (z)

1

)
.

We see that z ∈ C is a fixed point of F iff (z, 1)T is an eigenvector of F .
Similarly, the point ∞ is fixed iff (1, 0)T is an eigenvector of F .

Let λ be an eigenvalue of F . If F is not the identity, then the eigenspace of
λ must have dimension 1 (otherwise all the points of C would be fixed points
of F ). Therefore, we have a one to one correspondence between the eigenvalues
and fixed points of F .

Let v = (v1, v2)T be an eigenvector corresponding to the eigenvalue λ. Then:

F ·
(

v1

v2

)
=

(
αv1 + βv2

βv1 + αv2

)
=

(
λv1

λv2

)
= λ

(
v1

v2

)

F ·
(

v2

v1

)
=

(
βv1 + αv2

αv1 + βv2

)
=

(
βv1 + αv2

αv1 + βv2

)
=

(
λv2

λv1

)
= λ

(
v2

v1

)
.

If λ is real, then the vectors (v1, v2)T and (v2, v1)T must be linearly dependent as
they both belong to the same eigenspace. In particular, if v2 = 0 we would have
v1 = 0, so we can assume that v1 = z, v2 = 1. But then the linear dependence
is equivalent with

det
(

z 1
1 z

)
= 0

which is equivalent with |z| = 1 and so z ∈ T.
On the other hand, if λ is not real then λ 6= λ and the vectors (v1, v2)T

and (v2, v1)T must be linearly independent as they are eigenvectors of different
eigenvalues. Assume z ∈ C is a fixed point of F . Were |z| = 1 then the determi-
nant argument above would give us a contradiction with linear independence.
Therefore z 6∈ T. But there is more: If z is a fixed point of F then so is 1

z , the
image of z under circle inversion with respect to T:

F ·
(

1
z
1

)
=

1
z
F ·

(
1
z

)
=

1
z
λ

(
1
z

)
= λ

(
1
z
1

)
.

Similarly, if ∞ is a fixed point then so is 0. Therefore, if F has an eigenvalue
that is not real, then F has one fixed point outside T and one inside T (and we
can even map one onto another using the circle inversion with respect to T).
This is precisely the case of elliptic F .

On the other hand, if F is hyperbolic, then F has two distinct real eigenvalues
and, therefore, two distinct fixed points on T.

If F is elliptic then there is a single real eigenvalue of F and so the Möbius
transformation F has a single fixed point on T.
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Lemma 23. Assume F is a hyperbolic transformation, x1 and x2 its fixed
points. Then F ′(x1) = λ2/λ1 and F ′(x2) = λ1/λ2 where λ1, λ2 are the eigen-
values of F associated to x1 and x2.

Similarly, if F is a parabolic transformation and x is its fixed point then
F ′(x) = 1.

Proof. First observe that the ratio of λ1 and λ2 does not depend on the choice
of the matrix for F so the claim is sensible.

Let us again fix a normalized matrix corresponding to F . Let J be the
Jordan matrix similar to the matrix F , i.e. there exists an MT M such that
F = M ◦ J ◦M−1. We can understand J as a Möbius transformation.

Let x be a fixed point of F . Then we have:

F ′(x) = (M ◦ J ◦M−1)′(x) = M ′(J ◦M−1(x)) · J ′(M−1(x)) · (M−1)′(x).

Because F (x) = x, we must have J ◦M−1(x) = M−1(x), so:

F ′(x) = M ′(M−1(x)) · J ′(M−1(x)) · (M−1)′(x),

and using the formula M ′(M−1(x)) · (M−1)′(x) = 1 we get

F ′(x) = J ′(M−1(x)).

However, J ′(M−1(x)) is easy to compute because M−1(x) is the fixed point
of J corresponding to the same eigenvalue as x. The only problem is that we
have to ensure M−1(x) 6= ∞ to have the derivative well defined. We deal with
this problem by carefully choosing our J .

Let us begin with the hyperbolic case. To calculate, x1 choose the Jordan
matrix J =

(
λ2 0
0 λ1

)
(note the switched order of λ1, λ2). Now J(z) = λ2

λ1
z and

M−1(x1) = 0. Thus F ′(x1) = J ′(0) = λ2
λ1
. Similarly, we calculate F ′(x2) = λ1

λ2

from the Jordan form J =
(

λ1 0
0 λ2

)
.

In the parabolic case, we avoid problems with the point at ∞, by taking a
matrix similar to the usual Jordan form but with different interpretation as a
Möbius transformation: J =

(
1 0
∓1 1

)
(the sign in the lower left corner depends

on the Jordan matrix for F ; there are two possibilities). Now J(z) = z
∓z+1 and

M−1(x) = 0, so F ′(x) = J ′(0) = 1 and we are done.

Lemma 24. Let F be a parabolic or a hyperbolic transformation, let x be the
(stable, for F hyperbolic) fixed point of F . Let z ∈ C (assume that z is not the
unstable fixed point of F in the hyperbolic case). Then limn→∞ Fn(z) = x.

Proof. Let us again fix a matrix of F such that detF = 1. Denote by J the
Jordan matrix similar to F . Then F = M · J ·M−1 and Fn = M · Jn ·M−1.
We know that Jn has one of the two possible forms:

(
1 ±n
0 1

)
, or

(
λn

1 0
0 λn

2

)
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where without loss of generality |λ1| > 1 > |λ2|. Let z ∈ C (if F is hyperbolic,
let z be different from the unstable fixed point of F ) and consider the vector

Fn

(
z
1

)
= M−1 · Jn ·M ·

(
z
1

)
.

It is easy to see that the first component of Jn · M · ( z
1 ) tends to infinity,

while the second is bounded. Therefore (understanding J and M as Möbius
transformations), we have limn→∞ Jn ◦M(z) = ∞.

However, M−1(∞) = x as (x, 1)T and (1, 0)T are eigenvectors of F and J
belonging to the same eigenvalues. It follows that

lim
n→∞

M−1 ◦ Jn ◦M(z) = M−1(∞) = x.

We conclude the Appendix with a consequence of the Riesz representation
theorem. (See [1, page 184] for details). In its statement, we are going to identify
C∗(T,R) with the space of signed Radon measures on T.

Lemma 25. Let E be a measurable set on T. Then the map α : λ 7→ λ(E) from
C∗(T,R) to R is linear and continuous on C∗(T,R).

Proof. Linearity of α is obvious. To obtain continuity, it is enough to show that
|α(λ)| is bounded whenever |λ| is bounded. By definition,

|λ| = sup{λ(f) : f ∈ C(T,R), |f | ≤ 1}.
We first observe that every λ can be written as λ1 − λ2 where λ1, λ2 are

positive measures. Moreover, as shown in [1], we can choose λ1, λ2 so that

λ1(f) = sup{λ(g) : 0 ≤ g ≤ f}
λ2(f) = sup{λ(g) : −f ≤ g ≤ 0}

for all f ≥ 0.
Then we have

|λ| ≥ sup{λ(f) : 0 ≤ f ≤ 1} = λ1(1) = λ1(T) ≥ λ1(E) ≥ λ(E)

as well as

|λ| ≥ sup{λ(f) : −1 ≤ f ≤ 0} = λ2(1) = λ2(T) ≥ λ2(E) ≥ −λ(E).

Therefore, |λ| ≥ |λ(E)| = |α(λ)| for every λ, proving the continuity of α.
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