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THE RELATIONSHIP BETWEEN PROPER AND
INNER HYPERSUBSTITUTIONS

FOR VARIETIES OF RINGS

Jörg Koppitz1, Tiwadee Musunthia2

Abstract. A hypersubstitution maps an algebra to an algebra of the
same type, by replacing the operations by term operations. A hypersub-
stitution is called proper with respect to a variety if it is a mapping on
this variety and it is called inner if it is an identity mapping on this va-
riety. Proper as well as inner hypersubstitutions characterize a variety.
Each inner hypersubstitution is a proper one but not conversely. In the
present paper, we characterize the relationship between proper and inner
hypersubstitutions for varieties of rings satisfying xn+1 ≈ x, in particular
for n = 6.
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1. Introduction

The problem of transforming one algebra into another in one step occurs
in both theoretical and applied computer science. One way to realize such a
transformation algebraically is by derived algebras, whereby the fundamental
operations of an algebra are replaced by term operations of that algebra. This
procedure can be expressed using the concept of a hypersubstitution, introduced
by Denecke, Lau, Pöschel, and Schweigert ([5]). If A= (A; (fA

i )i∈I) is an algebra
of type τ = (ni)i∈I and σ is a hypersubstitution (of type τ) then the algebra
σ(A):= (A; (σ(fi)A)i∈I) is called a derived algebra. The derived algebra has the
same carrier set as the original one but instead of the operations fA

i for i ∈ I,
the algebra σ(A) has the term operations σ(fi)A for i ∈ I. Let us consider a
variety V of algebras of type τ . In general, V has need not be closed under σ, i.e.
σ(V ) := {σ(A) | A ∈ V } is in most cases not a subset of V . If σ(V ) is contained
in V then σ is called a proper hypersubstitution with respect to V ([10]). Each
hypersubstitution is a proper one with respect to a solid variety ([8]). But if V is
not solid then there are hypersubstitutions which are not proper. If σ(A) agrees
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with A for all A ∈ V then σ is called an inner hypersubstitution of V ([10]). Of
course, each inner hypersubstitution of V is a proper one with respect to V . But
the converse is not true. In several papers, proper hypersubstitutions of varieties
are studied (see also [7]). In particular in [4], proper hypersubstitutions of
varieties of bands are determined. In the present paper, we want to study proper
hypersubstitutions with respect to varieties of rings. Note that there is no non-
trivial solid variety of rings since the addition satisfies the commutative law (see
also [3]). Let us now recall the basic concepts of the theory of hypersubstitutions.
For more background see [7]. We fix an infinite alphabet X := {x1, x2, . . .} and a
type τ = (ni)i∈I . For i ∈ I, we denote by fi the corresponding ni-ary operation
symbol. Then Wτ (X) denotes the set of all terms of type τ over the alphabet X.
For 1 ≤ n ∈ N, a term of type τ over the n-element alphabet Xn := {x1, . . . , xn}
is called n-ary. In particular, a term of arity one is called a unary term, and a
term of arity two is called binary. For each algebra A, an n-ary term t induces
an n-ary term operation tA on the algebra A. For a natural number i ≥ 1,
we denote by cxi(t) the number of occurrence of xi in the term t. A mapping
σ : {fi | i ∈ I} → Wτ (X) which assigns each operation symbol fi an ni-ary
term is called a hypersubstitution of type τ . It is not difficult to see that the
algebra A= (A; (fA

i )i∈I) and the derived algebra σ(A):= (A; (σ(fi)A)i∈I) have
the same type. A hypersubstitution σ can be extended in a natural way to a
mapping σ̂ : Wτ (X) → Wτ (X) by the following inductive definition

(i) σ̂[xj ] := xj for 1 ≤ j ∈ N

(ii) σ̂[fi(t1, . . . , tni)] := σ(fi)(σ̂[t1], . . . , σ̂[tni ]) for composite terms
fi(t1, . . . , tni) ∈ Wτ (X).

(Here, σ(fi)(σ̂[t1], . . . , σ̂[tni ]) means that we replace x1, . . . , xni in σ(fi) by
σ̂[t1], . . . , σ̂[tni ].) One can define a product ◦h on the set Hyp(τ) of all hy-
persubstitutions of type τ by letting σ1 ◦h σ2 be the hypersubstitution which
maps each operation symbol fi to the term σ̂1[σ2(fi)]. This operation ◦h is asso-
ciative. There is an identity element in the semigroup (Hyp(τ); ◦h), namely the
hypersubstitution which maps the operation symbol fi to its fundamental term
fi(x1, . . . , xni

) for i ∈ I. So Hyp(τ) forms a monoid under ◦h. Additionally,
for a fixed variety V of type τ we denoted by IdV the set of all identities in V .
Then the elements of the set

P (V ) := {σ ∈ Hyp(τ) | u ≈ v ∈ IdV ⇒ σ̂[u] ≈ σ̂[v] ∈ IdV }

are exactly the proper hypersubstitutions with respect to V . Note that P (V )
forms a submonoid of the monoid of all hypersubstitutions. The elements of the
set

P0(V ) := {σ ∈ Hyp(τ) | σ(fi) ≈ fi(x1, . . . , xni) ∈ IdV, i ∈ I}
are exactly the inner hypersubstitutions with respect to V . If P (V ) = P0(V )
then V is called unsolid (see [1]). The relation ∼V is defined in [10] (σ1 ∼V σ2

if σ1(fi) ≈ σ2(fi) ∈ IdV for all i ∈ I). The number of equivalence classes of
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the relation ∼V on P (V ) is called the degree of V . The degree of particular
varieties is studied in [6]. If the degree of a variety V is one then V is unsolid.

In the next section, we will characterize the relationship between proper and
inner hypersubstitutions with respect to any variety of rings satisfying x ≈ xn

(2 ≤ n ∈ N). Moreover, we will verify that it is enough to consider the varieties
of rings generated by any subdirectly irreducible ring. Section 3 is devoted
the varieties of rings satisfying x ≈ x7. These twelve varieties of rings are of
particular interest since each ring with special involution satisfies x ≈ x7 ([11]).
We give the identity basis for each of the twelve subvarieties of the variety of all
rings satisfying x ≈ x7. For a particular atom in this lattice we determine all
proper hypersubstitutions, giving an algorithm to decide if a hypersubstitution
is proper with respect to this variety. The described methods can also be used
to determine P (V ) for other varieties V of rings.

2. Characterization of the relationship

The mapping σ̂ has as its domain the set Wτ (X) of terms. It replaces each
vertices, labelled with an operation symbol fi in the tree of a term by an ni-
ary term t. It can happen that t contains operation symbols different from fi.
From the point of view of theoretical and applied computer science it is often
interesting to replace any operation symbol fi in a term by a term containing
only fi as operation symbol. This can be realized by hypersubstitutions σ with
the following additional property: for each i ∈ I, σ(fi) contains only fi as
operation symbol (or σ(fi) ∈ Xni). The set of all such hypersubstitutions will
be denoted by Hypoc(τ).

Lemma 2.1. Hypoc(τ) forms a monoid.

Proof. Clearly, the identity element σid : fi 7→ fi(x1, . . . , xni), i ∈ I, belongs to
Hypoc(τ). Let σ1, σ2 ∈ Hypoc(τ) and i ∈ I. Then σ2(fi) ∈ Xni or fi is the only
operation symbol in σ2(fi). If σ2(fi) ∈ Xni then σ1 ◦h σ2(fi) = σ̂1[σ2(fi)] =
σ2(fi) ∈ Xni . If σ2(fi) = fi(t1, . . . , tni) we assume that σ̂1[tj ] ∈ Xni or fi is the
only operation symbol in σ̂1[tj ] for 1 ≤ j ≤ ni then σ1 ◦h σ2(fi) = σ̂1[σ2(fi)] =
σ1(fi)(σ̂1[t1], . . . , σ̂1[tni ]), i.e. σ1 ◦h σ2(fi) ∈ Xni or fi is the only operation
symbol in σ1 ◦h σ2(fi). This shows that σ1 ◦h σ2 ∈ Hypoc(τ).

In the following we fix the type τ = (2, 2, 1, 0) and consider varieties of rings.
We will use + and · as the binary operations, − as the unary operation as well as
0 as the 0-ary operation. Let us denote by VR(pk) the variety of rings generated
by the pk -element field GF (pk) for any prime number p and any natural number
k ≥ 1.

The next theorem characterizes the relationship between inner and proper
hypersubstitution with respect to VR(pk).

Theorem 2.2. Let p be a prime number, k ≥ 1 be a natural number. Then

Hypoc(τ) ∩ P (VR(pk)) = P0(VR(pk)).
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Proof. It is easy to see that P0(VR(pk)) j Hypoc(τ) ∩ P (VR(pk)). We will
discuss the other inclusion. Let σ ∈ Hypoc(τ) ∩ P (VR(pk)). Assume that
cx1(σ(+)) 6≡ 1 mod p. Then there is an a ∈ {0, 2, 3, ..., p − 1} such that
cx1(σ(+)) ≡ a mod p. We apply σ to the ring identity x + 0 ≈ x and ob-
tain cx1(σ(+))x ≈ x ∈ Id(VR(pk)). Since cx1(σ(+)) ≡ a mod p and px ≈ 0 ∈
Id(VR(pk)), the identity cx1(σ(+))x ≈ x provides ax ≈ x and finally x ≈ 0 ∈
Id(VR(pk)), a contradiction. In the same way we show that cx2(σ(+)) ≡ 1
mod p. This gives σ(+) ≈ cx1(σ(+))x1 + cx2(σ(+))x2 ≈ x1 + x2 ∈ Id(VR(pk)).
Now, we want to show cx1(σ(·)) ≡ cx2(σ(·)) ≡ 1 mod pk − 1. We apply σ to
the commutative law xy ≈ yx ∈ Id(VR(pk)). Then we get xcx1 (σ(·))ycx2 (σ(·)) ≈
ycx1 (σ(·))xcx2 (σ(·)) ∈ Id(VR(pk)). We have cx1(σ(·)), cx2(σ(·)) > 0. Otherwise,
there is an i ∈ {1, 2} with xcxi

(σ(·)) ≈ ycxi
(σ(·)) ∈ Id(VR(pk)), a contradiction.

Then there are a, b ∈ N+:= N\{0} with a, b < pk such that cx1(σ(·)) ≡ a mod
pk − 1 and cx2(σ(·)) ≡ b mod pk − 1. Assume that cx1(σ(·)) 6≡ cx2(σ(·)) mod

pk − 1. We replace y by xpk−1 in the previous identity xcx1 (σ(·))ycx2 (σ(·)) ≈
ycx1 (σ(·))xcx2 (σ(·)). Then we get xcx1 (σ(·)) ≈ xcx2 (σ(·)) ∈ Id(VR(pk)). Since
xpk ≈ x ∈ Id(VR(pk)), we have xa ≈ xcx1 (σ(·)) ≈ xcx2 (σ(·)) ≈ xb ∈ Id(VR(pk)).
This contradicts a 6≡ b mod pk − 1. Hence a ≡ cx1(σ(·)) ≡ cx2(σ(·)) mod
pk − 1. Assume that a 6≡ 1 mod pk − 1. We apply σ to the associative
law x(yz) ≈ (xy)z ∈ Id(VR(pk)). Then we get xa(yaza)a ≈ (xaya)aza ∈
Id(VR(pk)). We replace y and z by xpk−1 in the previous identity. Then we get
xa ≈ xa2 ∈ Id(VR(pk)). We want to show that σ̂[xk] ≈ xak for k ∈ N+ by induc-
tion. We have σ̂[x2] ≈ σ̂[xx] ≈ xaxa ≈ x2a ∈ Id(VR(pk)). Suppose that σ̂[xn] ≈
xna ∈ Id(VR(pk)) for some n ∈ N+. Then σ̂[xn+1] ≈ σ̂[xnx] ≈ σ(·)(σ̂[xn], x) ≈
σ(·)(xna, x) ≈ (xna)axa ≈ xna2

xa ≈ xnaxa ≈ x(n+1)a ∈ Id(VR(pk)). This
show that σ̂[xk] ≈ xka ∈ Id(VR(pk)) for all k ∈ N+. We apply σ to the
identity xpk ≈ x ∈ Id(VR(pk)). Then we get xapk ≈ x ∈ Id(VR(pk)). Since
xpk ≈ x ∈ Id(VR(pk)), the identity xapk ≈ x provides xa ≈ x ∈ Id(VR(pk)),
a contradiction. This shows that cx1(σ(·)) ≡ cx2(σ(·)) ≡ 1 mod pk − 1 and
σ(·) ≈ x

cx1 (σ(·))
1 · x

cx2 (σ(·))
2 ≈ x1 · x2 ∈ Id(VR(pk)). Finally, we consider

σ(−). We have two possibilities. First, suppose that the number of occur-
rences of ” − ” in σ(−) is odd. Then σ(−) ≈ −x ∈ Id(VR(pk)). Next, sup-
pose that the number of occurrence of ” − ” in σ(−) is even. Here we have
σ(−) ≈ x ∈ Id(VR(pk)). We want to show that σ(−) ≈ −x ∈ Id(VR(pk)).
In the case p = 2, we have x ≈ −x ∈ Id(VR(pk)). Then we get immedi-
ately σ(−) ≈ −x ∈ Id(VR(pk)). We consider the case p 6= 2. Assume that
σ(−) ≈ x ∈ Id(VR(pk)). We apply σ to the ring identity x + (−x) ≈ 0.
Then we get 2x ≈ x + x ≈ 0 ∈ Id(VR(pk)). Since px ≈ 0 ∈ Id(VR(pk)) and
p 6= 2, the identity 2x ≈ 0 provides x ≈ 0 ∈ Id(VR(pk)), a contradiction. So
σ(−) ≈ −x ∈ Id(VR(pk)). Altogether, this shows that σ ∈ P0(VR(pk)).

Some ∨-semilattices of varieties of rings generated by varieties of type VR(pk)
are of particular interest (see also [2]). We are going to characterize the rela-
tionship between inner and proper hypersubstitutions for all varieties in such
∨-semilattices. For this we show that the proper hypersubstitutions with re-
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spect to the join of two varieties are the proper hypersubstitutions with respect
to both varieties.

Lemma 2.3. Let V and W be varieties of type τ . Then

(i) P (V ∨W ) = P (V ) ∩ P (W );

(ii) P0(V ∨W ) = P0(V ) ∩ P0(W ).

Proof. (i) It is easy to see that P (V ∨ W ) ⊆ P (V ) and P (V ∨ W ) ⊆ P (W ),
i.e. P (V ∨W ) ⊆ P (V ) ∩ P (W ). Now we show the converse inclusion. Let σ ∈
P (V )∩P (W ). Further let u ≈ v ∈ Id(V ∨W ) = IdV ∩IdW . From u ≈ v ∈ IdV
and σ ∈ P (V ) it follows σ̂[u] ≈ σ̂[v] ∈ IdV and similarly σ̂[u] ≈ σ̂[v] ∈ IdW .
Thus σ̂[u] ≈ σ̂[v] ∈ IdV ∩ IdW = Id(V ∨W ). This shows that σ ∈ P (V ∨W ).

(ii) It is easy to check that P0(V ∨ W ) ⊆ P0(V ) ∩ P0(W ). Conversely,
let σ ∈ P0(V ) ∩ P0(W ) and let f an n-ary operation symbol. Then σ(f) ≈
f(x1, ..., xn) ∈ IdV ∩ IdW = Id(V ∨W ). This shows that σ ∈ P0(V ∨W ).

Lemma 2.3 can be extended for finite sets varieties. Using Theorem 2.2, we
obtain a characterization of the relationship between inner and proper hyper-
substitutions within a ∨-semilattice of varieties of ring generated by varieties of
type VR(pk).

Theorem 2.4. Let 1 ≤ n be a natural number, p1, . . . , pn be prime numbers
and k1, . . . , kn ≥ 1 be natural numbers. Then

P (
n∨

i=1

VR(pki
i )) ∩Hypoc(τ) = P0(

n∨

i=1

VR(pki
i )).

Proof. For 1 5 i 5 n, we have P (VR(pki
i )) ∩Hypoc(τ) = P0(VR(pki

i )). Hence

P0(
n∨

i=1

VR(pki
i )) =

n⋂

i=1

P0(VR(pki
i ))

=
n⋂

i=1

(P (VR(pki
i ) ∩Hypoc(τ))

=
n⋂

i=1

P (VR(pki
i )) ∩Hypoc(τ)

= P (
n∨

i=1

VR(pki
i )) ∩Hypoc(τ)

by Lemma 2.3.

So, the relationship between P0(V ) and P (V ) is characterized for each sub-
variety V of the variety of rings satisfying x ≈ xn+1 for any natural number
n ≥ 1 since it is generated by the varieties VR(pk) where p runs over all prime
numbers such that p−1 divides n and k runs over all natural numbers ≥ 1 with
pk ≤ n. The next section is devoted to the case n = 6.
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3. Rings satisfying x ≈ x7

The subvariety lattice of the variety of rings satisfying x ≈ x7 has twelve
elements denoted by V1 := TR, V2 := VR(7), V3 := VR(3), V4 := V2 ∨ V3,
V5 := VR(2), V6 := V2 ∨ V5, V7 := V5 ∨ V3, V8 := V4 ∨ V7, V9 := VR(4),
V10 := V6 ∨ V9, V11 := V7 ∨ V9, and V12 be the variety of all rings satisfying
x7 ≈ x. It is the direct product of the following three lattices (see [2]):

1. {TR,VR(2),VR(4)}
2. {TR,VR(3)}
3. {TR,VR(7)}.
The following figure illustrates this lattice.
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Figure 1: The lattice of all varieties of rings satisfying x7 ≈ x

It is well known that each of these twelve subvarieties of rings satisfying
x ≈ x7, is finitely based. We give a minimal identity basis for each one. It will
happen that we need only the seven ring identities, x ≈ x7 and one additional
identity in each case. It will cause no confusion in this section if we write
V (u ≈ v) for the variety of all rings satisfying x ≈ x7 and the additional
identity u ≈ v. Since the identity x ≈ x7 is redundant in three cases we write
V ∗(u ≈ v) for the variety of all rings satisfying the seven ring identities and the
additional identity u ≈ v. Clearly, V1 is the trivial variety TR and V12 is the
variety V ∗(x ≈ x7) of all rings satisfying x ≈ x7.
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Theorem 3.1. We have V2 = V (7x ≈ 0), V3 = V (3x ≈ 0), V4 = V (21x ≈
0), V5 = V ∗(x2 ≈ x), V6 = V (7y(x2 − x) ≈ 0), V7 = V (3y(x2 − x) ≈ 0),
V8 = V (21y(x2 − x) ≈ 0), V9 = V ∗(x4 ≈ x), V10 = V (7y(x4 − x) ≈ 0),
V11 = V (3y(x4 − x) ≈ 0) and V12 = V ∗(x ≈ x7).

Proof. Obviously, the varieties listed in the assertion are subvarieties of V ∗(x7 ≈
x) and the trivial variety TR is different to V (u ≈ v) for all identities u ≈ v
listed in the assertion. Moreover, by straightforward calculations one can show
that for any different identities u ≈ v and s ≈ t, listed in the assertion, there
is a k ∈ {2, 3, 4, 7} such that GF (k) ∈ V (u ≈ v) and GF (k) /∈ V (s ≈ t)
or vice versa, where GF (k) denotes the k-element field. Furthermore, it is
easy to check that V ∗(x2 ≈ x) = V (x2 ≈ x), V ∗(x4 ≈ x) = V (x4 ≈ x) and
V ∗(x7 ≈ x) = V (x7 ≈ x). Hence the eleven varieties defined by the identities
listed in the assertion are pairwise distinct. Consequently, they are the non-
trivial subvarieties of V ∗(x7 ≈ x). In particular, the following 20 inclusions are
easy to verify:

TR ⊆ V (7x ≈ 0)

V ∗(x2 ≈ x) ⊆ V (7y(x2 − x) ≈ 0)

V ∗(x4 ≈ x) ⊆ V (7y(x4 − x) ≈ 0)

V (3x ≈ 0) ⊆ V (21x ≈ 0)

V (3y(x2 − x) ≈ 0) ⊆ V (21y(x2 − x) ≈ 0)

V (3y(x4 − x) ≈ 0) ⊆ V ∗(x7 ≈ x)

TR ⊆ V ∗(x2 ≈ x) ⊆ V ∗(x4 ≈ x)

V (3x ≈ 0) ⊆ V (3y(x2 − x) ≈ 0) ⊆ V (3y(x4 − x) ≈ 0)

V (7x ≈ 0) ⊆ V (7y(x2 − x) ≈ 0) ⊆ V (7y(x4 − x) ≈ 0)

V (21x ≈ 0) ⊆ V (21y(x2 − x) ≈ 0) ⊆ V ∗(x7 ≈ x)

TR ⊆ V (3x ≈ 0)

V ∗(x2 ≈ x) ⊆ V (3y(x2 − x) ≈ 0)

V ∗(x4 ≈ x) ⊆ V (3y(x4 − x) ≈ 0)

V (7x ≈ 0) ⊆ V (21x ≈ 0)

V (7y(x2 − x) ≈ 0) ⊆ V (21y(x2 − x) ≈ 0)

V (7y(x4 − x) ≈ 0) ⊆ V ∗(x7 ≈ x).

These inclusions establish the given correspondence between the varieties V2, . . . ,
V12 and the varieties defined by the identities listed in the assertion.

Clearly, P (TR) = Hyp(τ). But the determination of all proper hypersubsti-
tutions with respect to any non-trivial variety of rings satisfying x7 ≈ x requires
a lengthy calculation. We will present such a calculation as we determine the
set P (V ∗(x2 ≈ x)) of all proper hypersubstitutions with respect to the variety
V ∗(x2 ≈ x) of rings generated by the two-element field. It will happen that
V ∗(x2 ≈ x) is unsolid.
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Proposition 3.2. V ∗(x2 ≈ x) is unsolid.

Proof. Since P0(V ∗(x2 ≈ x)) ⊆ P (V ∗(x2 ≈ x)) (see [10]), we have to show the
converse inclusion. Let σ ∈ P (V ∗(x2 ≈ x)). We have to show that σ(+) ≈
x + y, σ(·) ≈ x · y, and σ(−) ≈ −x are identities in V ∗(x2 ≈ x). Since σ is a
proper hypersubstitution with respect to V ∗(x2 ≈ x), the application of σ to
the identities x + x ≈ 0, x + 0 ≈ x, 0 + x ≈ x, x · x ≈ x, x · 0 ≈ 0, 0 · x ≈ 0
and x + (−x) ≈ 0, satisfied in V ∗(x2 ≈ x), all result in identities in V ∗(x2 ≈ x)
(note that x2 ≈ x implies 4x2 ≈ 2x, 4x ≈ 2x, and thus 2x = x + x = 0). In this
way we obtain the following identities in V ∗(x2 ≈ x):

σ̂[x + x] ≈ σ̂[0] gives
σ(+)(x, x) ≈ 0 (1);

σ̂[x + 0] ≈ σ̂[x] gives
σ(+)(x, 0) ≈ x (2);

σ̂[0 + x] ≈ σ̂[x] gives
σ(+)(0, x) ≈ x (3);

σ̂[x · x] ≈ σ̂[x] gives
σ(·)(x, x) ≈ x (4);

σ̂[x · 0] ≈ σ̂[0] gives
σ(·)(x, 0) ≈ 0 (5);

σ̂[0 · x] ≈ σ̂[0] gives
σ(·)(0, x) ≈ 0 (6);

σ̂[x + (−x)] ≈ σ̂[0] gives

σ(+)(x, σ(−)) ≈ 0 (7).

Let us now consider the terms σ(+), σ(·) and σ(−). First, we deal with the
term σ(+). Clearly, there are a, b, c ∈ {0, 1} such that σ(+) ≈ ax+by+c(x·y) ∈
V ∗(x2 ≈ x). Assume that a+b+c ≡ 1 mod 2. Then we replace the variable y by
x in (σ(+) = σ̂[x+y] =) σ(+)(x, y) ≈ ax+by+c(x·y) and obtain σ(+)(x, x) ≈ x
since 2x ≈ x ≈ x2 ∈ V ∗(x2 ≈ x). This contradicts (1). Hence a + b + c ≡ 0
mod 2. Assume that c = 1. Then a = 0 and b = 1 or vice versa. If a = 0
and b = 1 then we replace y by 0 in σ(+)(x, y) ≈ 0x + y + 0(x · y) obtaining
σ(+)(x, 0) ≈ 0. This contradicts (2). If a = 1 and b = 0 then we replace x by 0
in σ(+)(x, y) ≈ x + 0y + 0(x · y) obtaining σ(+)(0, y) ≈ 0. This contradicts (3).
Hence c = 0 and thus a = b = 1. This shows that σ(+) ≈ x + y ∈ V ∗(x2 ≈ x).
Now we consider the term σ(·). Clearly, there are a, b, c ∈ {0, 1} such that
σ(·) ≈ ax + by + c(x · y) ∈ V ∗(x2 ≈ x). Assume that a + b + c ≡ 0 mod
2. Then we replace the variable y by x in σ(·)(x, y) ≈ ax + by + c(x · y) and
obtain σ(·)(x, x) ≈ 0 since 2x ≈ x ≈ x2 ∈ V ∗(x2 ≈ x). This contradicts (4).
Hence a + b + c ≡ 1 mod 2. Assume that a = 1. Then we replace y by 0 in
σ(·)(x, y) ≈ x + by + c(x · y) and obtain σ(·)(x, 0) ≈ x, a contradiction to (5).
Hence a = 0. Similarly, we obtain b = 0. Hence c = 1, i.e. σ(·)(x, y) ≈ x · y ∈
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V ∗(x2 ≈ x). Finally, there is an a ∈ {0, 1} such that σ(−) ≈ ax ∈ V ∗(x2 ≈ x).
Assume that a = 0. Then we have σ(−)(x) ≈ σ̂[−x] ≈ σ(−) ≈ 0. This implies
σ(+)(x, σ(−)) ≈ σ(+)(x, 0), throughout σ(+)(x, 0) ≈ 0 by (2), contradicting
(7). Hence a = 1, i.e. σ(−) ≈ x. Altogether, this shows that σ ∈ P0(V ∗(x2 ≈
x)). Consequently, P (V ∗(x2 ≈ x)) = P0(V ∗(x2 ≈ x)).

On the other hand, one obtains the following result by some non-trivial
calculations.

Remark 3.3. Each non-trivial subvariety of V ∗(x7 ≈ x) different from V ∗(x2 ≈
x) is not unsolid.

In the variety V ∗(x2 ≈ x), a binary term has a normal form ax+by+c(x ·y)
for some a, b, c ∈ {0, 1}. That means that for each term t ∈ Wτ (X2) there are
a, b, c ∈ {0, 1} such that t ≈ ax+ by + c(x · y) ∈ IdV ∗(x2 ≈ x). In the following,
we give an algorithm to determine a, b, c ∈ {0, 1} with t ≈ ax + by + c(x · y) ∈
IdV ∗(x2 ≈ x) for a given term t ∈ Wτ (X2). For this we define a mapping

s : Wτ (X2) → {0, 1}3

by

(i) s(0) := (0, 0, 0)

(ii) s(x) := (1, 0, 0)

(iii) s(y) := (0, 1, 0)

(iv) If u, v ∈ Wτ (X2) with s(u) = (a1, a2, a3) and s(v) = (b1, b2, b3) then

(iv1) s(u + v) = (c1, c2, c3) with ci ≡ ai + bi mod 2 for i = 1, 2, 3

(iv2) s(u · v) = (c1, c2, c3) with ci ≡ aibi mod 2 for i = 1, 2 and
c3 ≡ a1(b2 + b3) + a2(b1 + b3) + a3(b1 + b2 + b3) mod 2

(iv3) s(−u) = s(u).

This inductive definition of the function s provides an algorithm to calculate
the triple s(t) for each binary term t ∈ Wτ (X2). In particular, we have s(ax +
by + c(x · y)) = (a, b, c) for a, b, c ∈ {0, 1}. Using the following lemma, we can
decide to which of the eight normal forms ax + by + c(x · y) (a, b, c ∈ {0, 1}) a
given term is equivalent.

Lemma 3.4. Let t ∈ Wτ (X2) with s(t) = (a, b, c). Then t ≈ ax+ by + c(x ·y) ∈
IdV ∗(x2 ≈ x).

Proof. We give a proof by induction on the definition of s. If t ∈ {0, x, y}
then the claim holds. Let u, v ∈ Wτ (X2) with s(u) = (a1, a2, a3) and s(v) =
(b1, b2, b3) and suppose that u ≈ a1x + a2y + a3(x · y) ∈ IdV ∗(x2 ≈ x) and
v ≈ b1x+b2y+b3(x ·y) ∈ IdV ∗(x2 ≈ x). Note that x ≈ −x ∈ IdV ∗(x2 ≈ x). So
we have s(−u) = s(u) = (a1x+a2y+a3(x·y)) and−u ≈ u ≈ a1x+a2y+a3(x·y) ∈
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V ∗(x2 ≈ x). Further we have u+v ≈ a1x+a2y+a3(x ·y)+b1x+b2y+b3(x ·y) ≈
(a1 + b1)x + (a2 + b2)y + (a3 + b3)(x · y) ≈ c1x + c2y + c3(x · y) ∈ IdV ∗(x2 ≈ x)
where c1, c2, c3 ∈ {0, 1} and ci ≡ ai +bi mod 2 for i = 1, 2, 3. On the other hand
we have s(u + v) = (c1,c2,c3) since ci ≡ ai + bi mod 2 for i = 1, 2, 3. Finally, we
have u · v ≈ (a1x + a2y + a3(x · y)) · (b1x + b2y + b3(x · y)) ≈ a1b1x + a2b2y +
[a1(b2 + b3) + a2(b1 + b3) + a3(b1 + b2 + b3)(x · y)] ≈ d1x + d2y + d3(x · y) ∈
IdV ∗(x2 ≈ x) with d1, d2, d3 ∈ {0, 1} and di ≡ aibi mod 2 for i = 1, 2 and
d3 ≡ a1(b2 + b3) + a2(b1 + b3) + a3(b1 + b2 + b3) mod 2. On the other hand, it
is obvious that s(u · v) = (d1,d2,d3) holds.

This lemma can be used to decide if a hypersubstitution σ is a proper one.
Since V ∗(x2 ≈ x) is unsolid by Proposition 3.2, σ is proper with respect to
V ∗(x2 ≈ x) if and only if σ(+) ≈ x+y, σ(·) ≈ x ·y, and σ(−) ≈ x are identities
in V ∗(x2 ≈ x). (Clearly, σ(0) ≈ 0 ∈ V ∗(x2 ≈ x).) By Lemma 3.4, we have to
check that s(σ(+)) = (1, 1, 0), s(σ(·)) = (0, 0, 1), and s(σ(−)) = (1, 0, 0).

Example 3.5. • The hypersubstitution σ1 ∈ Hyp(τ) with σ1(+) = x · (y ·
(x · (x + y)) + x), σ1(·) = x · y, σ1(−) = x, and σ1(0) = 0 + 0 is not proper
with respect to V ∗(x2 ≈ x) since s(σ1(+)) = (1, 0, 1).

• The hypersubstitution σ2 ∈ Hyp(τ) with σ2(+) = y · (x · (x + y) + x),
σ2(·) = x · y, σ2(−) = x and σ2(0) = 0 + 0 is proper with respect to
V ∗(x2 ≈ x) since s(σ2(+)) = (1, 1, 0), s(σ2(·)) = (0, 0, 1), and s(σ2(−)) =
(1, 0, 0).

References

[1] Arworn, Sr., Denecke, K., Koppitz, J., Strongly fluid and weakly unsolid varieties.
Sci. Math. Jpn. 54 (2001), 1–12.
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