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Abstract. A hypersubstitution maps an algebra to an algebra of the
same type, by replacing the operations by term operations. A hypersub-
stitution is called proper with respect to a variety if it is a mapping on
this variety and it is called inner if it is an identity mapping on this va-
riety. Proper as well as inner hypersubstitutions characterize a variety.
Each inner hypersubstitution is a proper one but not conversely. In the
present paper, we characterize the relationship between proper and inner
hypersubstitutions for varieties of rings satisfying " *! ~ =, in particular
for n = 6.
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1. Introduction

The problem of transforming one algebra into another in one step occurs
in both theoretical and applied computer science. One way to realize such a
transformation algebraically is by derived algebras, whereby the fundamental
operations of an algebra are replaced by term operations of that algebra. This
procedure can be expressed using the concept of a hypersubstitution, introduced
by Denecke, Lau, Péschel, and Schweigert ([5]). If A= (4; (f)ics) is an algebra
of type 7 = (n;)ier and o is a hypersubstitution (of type 7) then the algebra
o(A):= (A; (o(fi))ier) is called a derived algebra. The derived algebra has the
same carrier set as the original one but instead of the operations fiA fori € I,
the algebra o(A) has the term operations o(f;)? for i € I. Let us consider a
variety V of algebras of type 7. In general, V has need not be closed under o, i.e.
o(V):={o(A) | A€ V}isin most cases not a subset of V. If o(V) is contained
in V then o is called a proper hypersubstitution with respect to V' ([I0]). Each
hypersubstitution is a proper one with respect to a solid variety ([§]). But if V' is
not solid then there are hypersubstitutions which are not proper. If o(.A) agrees
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with A for all A € V then o is called an inner hypersubstitution of V' ([I0]). Of
course, each inner hypersubstitution of V' is a proper one with respect to V. But
the converse is not true. In several papers, proper hypersubstitutions of varieties
are studied (see also [7]). In particular in [4], proper hypersubstitutions of
varieties of bands are determined. In the present paper, we want to study proper
hypersubstitutions with respect to varieties of rings. Note that there is no non-
trivial solid variety of rings since the addition satisfies the commutative law (see
also [3]). Let us now recall the basic concepts of the theory of hypersubstitutions.
For more background see [7]. We fix an infinite alphabet X := {1, 23,...} and a
type 7 = (n;)ier. For i € I, we denote by f; the corresponding n;-ary operation
symbol. Then W, (X) denotes the set of all terms of type 7 over the alphabet X.
For 1 <n € N, a term of type 7 over the n-element alphabet X,, := {x1,...,2,}
is called n-ary. In particular, a term of arity one is called a unary term, and a
term of arity two is called binary. For each algebra A, an n-ary term ¢ induces
an n-ary term operation t4 on the algebra A. For a natural number i > 1,
we denote by ¢, (t) the number of occurrence of z; in the term ¢. A mapping
o:{fi|i€ I} - W.(X) which assigns each operation symbol f; an n;-ary
term is called a hypersubstitution of type 7. It is not difficult to see that the
algebra A= (A; (f)icr) and the derived algebra o(A):= (4; (o (fi)?")icr) have
the same type. A hypersubstitution ¢ can be extended in a natural way to a
mapping 7 : W.(X) — W,(X) by the following inductive definition

(i) olzj]==x;for1<jeN

(i) alfi(ts,-...tn,)] == o(fi)(@[t1],...,0[tn,]) for composite terms
filte, ... tn,) € W (X).

(Here, o(f;)(a[t1],...,0[tn,]) means that we replace z1,...,z,, in o(f;) by
olt1],...,0[tn;].) One can define a product o, on the set Hyp(r) of all hy-
persubstitutions of type 7 by letting ;1 o 02 be the hypersubstitution which
maps each operation symbol f; to the term 71 [o2(f;)]. This operation oy, is asso-
ciative. There is an identity element in the semigroup (Hyp(7); op), namely the
hypersubstitution which maps the operation symbol f; to its fundamental term
fi(z1,...,xy,,) for ¢ € I. So Hyp(r) forms a monoid under op. Additionally,
for a fixed variety V of type 7 we denoted by IdV the set of all identities in V.
Then the elements of the set

P(V):={o € Hyp(t) |u=v € IdV = cu] = c[v] € IdV'}

are exactly the proper hypersubstitutions with respect to V. Note that P(V)
forms a submonoid of the monoid of all hypersubstitutions. The elements of the
set

Py(V):={o € Hyp(t) | o(f;) = fi(x1,...,2p,) € IdV,i € I}

are exactly the inner hypersubstitutions with respect to V. If P(V) = Py(V)
then V is called unsolid (see [1]). The relation ~y is defined in [I0] (o1 ~y o9
if o1(f;) = oa(f;) € IdV for all i € I). The number of equivalence classes of
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the relation ~y on P(V) is called the degree of V. The degree of particular
varieties is studied in [6]. If the degree of a variety V is one then V is unsolid.

In the next section, we will characterize the relationship between proper and
inner hypersubstitutions with respect to any variety of rings satisfying x ~ ="
(2 < n € N). Moreover, we will verify that it is enough to consider the varieties
of rings generated by any subdirectly irreducible ring. Section 3 is devoted
the varieties of rings satisfying  ~ 27. These twelve varieties of rings are of
particular interest since each ring with special involution satisfies x ~ 27 ([11]).
We give the identity basis for each of the twelve subvarieties of the variety of all
rings satisfying # ~ 27. For a particular atom in this lattice we determine all
proper hypersubstitutions, giving an algorithm to decide if a hypersubstitution
is proper with respect to this variety. The described methods can also be used
to determine P (V') for other varieties V' of rings.

2. Characterization of the relationship

The mapping ¢ has as its domain the set W, (X) of terms. It replaces each
vertices, labelled with an operation symbol f; in the tree of a term by an n;-
ary term t. It can happen that ¢ contains operation symbols different from f;.
From the point of view of theoretical and applied computer science it is often
interesting to replace any operation symbol f; in a term by a term containing
only f; as operation symbol. This can be realized by hypersubstitutions ¢ with
the following additional property: for each i € I, o(f;) contains only f; as
operation symbol (or o(f;) € X,,). The set of all such hypersubstitutions will
be denoted by Hyp°¢(T).

Lemma 2.1. Hyp®¢(r) forms a monoid.

Proof. Clearly, the identity element oyq : fi — fi(z1,...,2n,;), ¢ € I, belongs to
Hyp°°(1). Let 01,02 € Hyp°®(7) and i € I. Then o2(f;) € X, or f; is the only
operation symbol in oo(f;). If o2(fi) € Xy, then o1 op 02(fi) = G1[o2(fi)] =
o2(fi) € Xn,. If 02(fi) = fi(t1,...,t,,) we assume that o1[t;] € X,,, or f; is the
only operation symbol in 7;[t;] for 1 < j < n; then oy op 02(f;) = G1[o2(fi)] =
o1(fi)(@1[t1], ..., 01[tn,]), i.e. o1 0p 02(fi) € Xp, or f; is the only operation
symbol in o1 oy, o2(f;). This shows that o1 op 09 € Hyp°°(7). O

In the following we fix the type 7 = (2,2,1,0) and consider varieties of rings.
We will use + and - as the binary operations, — as the unary operation as well as
0 as the 0-ary operation. Let us denote by V¥ (p*) the variety of rings generated
by the p* -element field GF(p*) for any prime number p and any natural number
k>1.

The next theorem characterizes the relationship between inner and proper
hypersubstitution with respect to V(p*).

Theorem 2.2. Let p be a prime number, k > 1 be a natural number. Then

Hyp®(r) n PVE(pF)) = Ry(VE(p)).
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Proof. Tt is easy to see that Py(VE(pF)) € Hyp°e(r) N P(VE(PY)). We will
discuss the other inclusion. Let o € Hyp°*(r) N P(VE(p¥)). Assume that
¢z, (0(+)) # 1 mod p. Then there is an a € {0,2,3,...,p — 1} such that
¢z, (0(+)) = a mod p. We apply o to the ring identity = + 0 &~ x and ob-
tain ¢, (0(+))z ~ = € Id(VE(p*)). Since ¢, (o(+)) = a mod p and pz ~ 0 €
Id(VE(p*)), the identity c,, (0(+))x =~ z provides ax ~ z and finally » ~ 0 €
Id(VE(p¥)), a contradiction. In the same way we show that c,,(c(+)) = 1
mod p. This gives 0(4) ~ ¢z, (0(4+))71 + Cz, (0(+)) 72 = 21 + 22 € Td(VE(PF)).
Now, we want to show c,, (0(-)) = ¢, (0(-)) = 1 mod p¥ — 1. We apply o to
the commutative law zy ~ yz € Id(VE(p*)). Then we get z1(7()ycea(@()) ~
yea1 (D gees (00D € Td(VE(pF)). We have ¢, (0(-)), cay(0(-)) > 0. Otherwise,
there is an i € {1,2} with 2%: (@) ~ y: () € Td(VE(pF)), a contradiction.
Then there are a,b € N*:= N\{0} with a,b < p* such that ¢, (¢(-)) = a mod
p¥ — 1 and c,,(0(-)) = b mod p* — 1. Assume that c,, (0(+)) # cu,(a(-)) mod
p* — 1. We replace y by 27" =1 in the previous identity a1 (7())yces(0())
yoe1 (@) geea(0()) - Then we get x¢1(70) ~ 202000 ¢ Td(VE(p*)). Since
2P~z € Td(VE(pY)), we have 2% & 261 (0() x 222 (00) ~ 2 € Td(VE(pF)).
This contradicts a # b mod p* — 1. Hence a = c,, (0(+)) = cu,(0o(:)) mod
pF — 1. Assume that a #Z 1 mod p* — 1. We apply o to the associative
law z(yz) ~ (vy)z € Id(VE(p*)). Then we get z%(y?2%)* ~ (x%*)%2% €
Id(VE(p*)). We replace y and z by zP" =1 in the previous identity. Then we get
29~ % € Id(VE(p*)). We want to show that §[z*] ~ 27 for k € N* by induc-
tion. We have 6[2?] ~ 6[xx] ~ x%2® ~ 22* € Id(VE(p*)). Suppose that 5[z"] ~
x™ € Id(VE(p*)) for some n € N*. Then 6[z"*!] ~ 6[z"z] =~ o(-)(6][z"], ) ~
o(-)(z™ x) = (z") %2 = a0’ g0 gnagt & gnthe ¢ Id(VE(p*)). This
show that &[zF] ~ 2% € Id(VE(p¥)) for all k € NT. We apply o to the
identity 27" ~ 2 € Id(VE(p¥)). Then we get 2" ~ z € Id(VE(p*)). Since
o o~ e Id(VE(p*)), the identity 297" & x provides 2% ~ x € Id(VE(pk)),
a contradiction. This shows that c,, (0(-)) = cgy(a(-)) = 1 mod p* — 1 and
o) ~ x({“(g(')) ~x§"32(0(')) ~ x1 - w9 € Id(VE(PF)). Finally, we consider
o(—). We have two possibilities. First, suppose that the number of occur-
rences of 7 — 7 in o(—) is odd. Then o(—) ~ —x € Id(VE(p¥)). Next, sup-
pose that the number of occurrence of ” —” in o(—) is even. Here we have
o(=) ~ z € Id(VE(p¥)). We want to show that o(—) ~ —z € Id(VE(p¥)).
In the case p = 2, we have z ~ —x € Id(VE(p¥)). Then we get immedi-
ately o(—) ~ —z € Id(VF(p*)). We consider the case p # 2. Assume that
o(=) ~ x € IdVE(p*)). We apply o to the ring identity = + (—x) ~ 0.
Then we get 2z ~ z +x ~ 0 € Id(VE(p*)). Since pzr ~ 0 € Id(VE(p*)) and
p # 2, the identity 2z ~ 0 provides  ~ 0 € Id(VE(p")), a contradiction. So
o(—) ~ —x € Id(VE(p¥)). Altogether, this shows that o € Py(VE(p*)). O

Some V-semilattices of varieties of rings generated by varieties of type VE(p*)
are of particular interest (see also [2]). We are going to characterize the rela-
tionship between inner and proper hypersubstitutions for all varieties in such
V-semilattices. For this we show that the proper hypersubstitutions with re-
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spect to the join of two varieties are the proper hypersubstitutions with respect
to both varieties.

Lemma 2.3. Let V and W be varieties of type 7. Then
(i) PVVW)=PV)nP(W);
(’LZ) P()(V V W) = P()(V) N Po(W)

Proof. (i) It is easy to see that P(V VW) C P(V) and P(V VW) C P(W),
ie. P(VVW)C P(V)n P(W). Now we show the converse inclusion. Let o €
P(V)NP(W). Further let u = v € Id(VVW) = IdVNIdW. From u ~ v € IdV
and o € P(V) it follows o[u] =~ c[v] € IdV and similarly ou] = o[v] € IdW.
Thus ou] = ov] € IdV N IdW = Id(V v W). This shows that o € P(V VvV W).

(ii) It is easy to check that Po(V vV W) C Py(V) N Py(W). Conversely,
let 0 € Py(V) N Py(W) and let f an n-ary operation symbol. Then o(f) ~
f(x1,..,xn) € IAV N IAW = Id(V v W). This shows that o € Po(VVW). O

Lemma 2.3 can be extended for finite sets varieties. Using Theorem 2.2, we
obtain a characterization of the relationship between inner and proper hyper-
substitutions within a V-semilattice of varieties of ring generated by varieties of
type VE(p*).

Theorem 2.4. Let 1 < n be a natural number, p1,...,p, be prime numbers
and ki,...,ky, > 1 be natural numbers. Then
PO\ VE(@[) 0 Hyp™(r) = Po(\/ VE (i)
i=1 i=1

=

Proof. For 1 <4 < n, we have P(VE(p%")) N Hyp°(1) = Py(VE(pF)). Hence

N

n

Po(\/ VE(pl

s
I
DL
=
<
=
s}
-

s
Il
-
«
Il
-

- (j (POVR(p[") N Hyp® (7))
B ﬁf’(vR(pfi)) N Hyp™(7)
— POV VRGE) 1 ()
by Lemma 2.3. h -

So, the relationship between Py(V) and P(V) is characterized for each sub-
variety V of the variety of rings satisfying 2 ~ xz"*! for any natural number
n > 1 since it is generated by the varieties V7 (p*) where p runs over all prime
numbers such that p — 1 divides n and k runs over all natural numbers > 1 with
p¥ < n. The next section is devoted to the case n = 6.
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3. Rings satisfying v ~ 27

The subvariety lattice of the variety of rings satisfying z ~ =7 has twelve
elements denoted by Vi := TR, Vo := VE(7), V3 := VE3), Vj := VoV V3,
Vs = VR(2), Vi i= VoV Vs, Vi i= Vs V Vs, Ve i= Vi V Vi, Ve = VE(4),
Vio :== Vg vV Vo, Vi1 := V7 V Vg, and Vi5 be the variety of all rings satisfying

27 ~ x. It is the direct product of the following three lattices (see [2]):

1. {TR,VE(2),VE(4)}

2. {TR,VE(3)}

3. {TR,VE(T)}.

The following figure illustrates this lattice.
Viz

V.
Vo 4

Va
Vs

Vi
Figure 1: The lattice of all varieties of rings satisfying z” ~ x

It is well known that each of these twelve subvarieties of rings satisfying
x = ', is finitely based. We give a minimal identity basis for each one. It will
happen that we need only the seven ring identities,  ~ 27 and one additional
identity in each case. It will cause no confusion in this section if we write
V(u = v) for the variety of all rings satisfying * ~ 27 and the additional
identity u ~ v. Since the identity = ~ z” is redundant in three cases we write
V*(u =~ v) for the variety of all rings satisfying the seven ring identities and the
additional identity u = v. Clearly, V; is the trivial variety TR and Vi, is the

variety V*(z ~ 27) of all rings satisfying = ~ x7.



Hypersubstitutions for varieties of rings 61

Theorem 3.1. We have Vo = V(Tz = 0), Vs = V(3z = 0), Vi = V(2lz =
0), Vs = V*(2? ~ ), Vo = V(Ty(a? —x) = 0), V7 = A

Vs = V(Q2ly(2?2 —z) = 0), Vo = V*(a* ~ x), Vip = V(Ty(z* — 2) ~ 0),
Vi1t = V(3y(ax* —x) = 0) and Vip = V*(x ~ 27).

Proof. Obviously, the varieties listed in the assertion are subvarieties of V* (27 ~
x) and the trivial variety T'R is different to V(u ~ v) for all identities v ~ v
listed in the assertion. Moreover, by straightforward calculations one can show
that for any different identities © ~ v and s = ¢, listed in the assertion, there
is a k € {2,3,4,7} such that GF(k) € V(u =~ v) and GF(k) ¢ V(s = t)
or vice versa, where GF(k) denotes the k-element field. Furthermore, it is
easy to check that V*(z? ~ z) = V(2% ~ z), V*(2* =~ z) = V(2* = ) and
V*(2" ~ x) = V(27 ~ z). Hence the eleven varieties defined by the identities
listed in the assertion are pairwise distinct. Consequently, they are the non-
trivial subvarieties of V*(2” ~ x). In particular, the following 20 inclusions are
easy to verify:

TR C V(7a ~0)

V(a2 = x) CV(Ty(a? —z) =~
V*(zt ~z) CV(Ty(z* — z) = 0)
V(3x =~ 0) C V(21lz = 0)

V(3y(z? —2) = 0) C V(21ly(z? — z) =~ 0)
V(3y(x* —x) = 0) CV*(2" ~ )
TRCV*(2? =~ x) CV*(z* ~ )

V(3z ~0) C V(3y(x? —x) ~0) C V(3y(z* —x) =~ 0)
V(7z = 0) C V(Ty(z? — z) = 0) C V(Ty(z* — 2) = 0)
V(2lz =~ 0) CV(2ly(2? —2) = 0) C V* (27 ~ z)
TRCV(3z=~0)

V*(a? ~x) C V(3y(z? — z) =~ 0)

V*(zt ~z) CV(3y(z* —2) =~ 0)

V(7z = 0) C V(21z = 0)
V(Ty(z? — x) =~ 0) C V(21y(a? — z) ~ 0)
V(Ty(x* —x) = 0) C V* (27 ~ ).

These inclusions establish the given correspondence between the varieties Va, . . .,
V12 and the varieties defined by the identities listed in the assertion. O

Clearly, P(TR) = Hyp(7). But the determination of all proper hypersubsti-
tutions with respect to any non-trivial variety of rings satisfying 2’ ~ z requires
a lengthy calculation. We will present such a calculation as we determine the
set P(V*(2? =~ x)) of all proper hypersubstitutions with respect to the variety
V*(2? ~ x) of rings generated by the two-element field. It will happen that
V*(z? ~ x) is unsolid.
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Proposition 3.2. V*(2? ~ z) is unsolid.

Proof. Since Py(V*(2? ~ x)) C P(V*(2? ~ z)) (see [10]), we have to show the
converse inclusion. Let o € P(V*(2? ~ x)). We have to show that o(+) ~
r+y, o) ~x-y, and 0(—) ~ —x are identities in V*(2? ~ z). Since o is a
proper hypersubstitution with respect to V*(2? ~ z), the application of o to
the identities r + r ~ 0, 2+ 0~ z, 0tz ~z,z-z2~2,2-0=0,0-2 =0
and x + (—x2) ~ 0, satisfied in V*(22 ~ x), all result in identities in V*(2? ~ x)
(note that #? ~ z implies 412 ~ 2z, 4x ~ 2x, and thus 2z = z + 2 = 0). In this
way we obtain the following identities in V*(2? ~ z):

olx + x] = 7[0] gives
o(+)(z,z) =0 (1);

o[z + 0] = o[z] gives
o(H)(z,0) =z (2);

o[0+ z] = o[x] gives
o(+)(0,z) =z (3);

olx - x] ~ olx] gives

o( )z, x) =z (4);

o[z - 0] = 7[0] gives
o()(z,0) =0 (5);

o0 - z] = 7[0] gives
o()(0,2) =0 (6);

o[z + (—x)] = 7]0] gives
o(+)(x,0(=)) =0 (7).

Let us now consider the terms o(+), o(-) and o(—). First, we deal with the
term o(4). Clearly, there are a,b, ¢ € {0,1} such that o(+) ~ ax+by+c(z-y) €
V*(2? ~ x). Assume that a+b-+c = 1 mod 2. Then we replace the variable y by
zin (o(+) =olz+y] =) o(+)(x,y) = ax+by+c(x-y) and obtain o(+)(z, ) ~ x
since 2r ~ x ~ x? € V*(2? ~ x). This contradicts (1). Hence a +b+c =0
mod 2. Assume that ¢ = 1. Then ¢ = 0 and b = 1 or vice versa. If a =0
and b =1 then we replace y by 0 in o(+)(z,y) = 0z + y + 0(x - y) obtaining
o(+)(z,0) = 0. This contradicts (2). If a =1 and b = 0 then we replace x by 0
in o(+)(z,y) =« + 0y + 0(z - y) obtaining o(+)(0,y) ~ 0. This contradicts (3).
Hence ¢ = 0 and thus @ = b = 1. This shows that o(+) ~ x +y € V*(2? ~ z).
Now we consider the term o(-). Clearly, there are a,b,c € {0,1} such that
o(-) ~ ar + by +c(r-y) € V*(2? = x). Assume that a + b+ c = 0 mod
2. Then we replace the variable y by « in o(-)(x,y) ~ ax + by + ¢(x - y) and
obtain o(-)(x,z) ~ 0 since 2z ~ x ~ 2% € V*(2? ~ x). This contradicts (4).
Hence a + b+ ¢ = 1 mod 2. Assume that a = 1. Then we replace y by 0 in
o()(z,y) = x4+ by + c¢(z - y) and obtain o(-)(z,0) ~ z, a contradiction to (5).
Hence a = 0. Similarly, we obtain b = 0. Hence ¢ = 1, i.e. o(:)(z,y) mx -y €



Hypersubstitutions for varieties of rings 63

V*(2? ~ ). Finally, there is an a € {0,1} such that o(—) ~ azx € V*(2? ~ z).
Assume that @ = 0. Then we have o(—)(x) ~ g[—z] &~ o(—) ~ 0. This implies
o(+)(z,0(-)) = o(+)(x,0), throughout o(+)(z,0) ~ 0 by (2), contradicting
(7). Hence a = 1, i.e. o(—) ~ z. Altogether, this shows that o € Py(V*(2? ~
x)). Consequently, P(V*(2? ~ z)) = Py(V*(2? =~ x)). O

On the other hand, one obtains the following result by some non-trivial
calculations.

Remark 3.3. Each non-trivial subvariety of V* (2" ~ ) different from V*(2? ~
x) is not unsolid.

In the variety V*(z2 ~ ), a binary term has a normal form az + by + c(z - y)
for some a,b,c € {0,1}. That means that for each term ¢t € W, (X3) there are
a,b,c € {0,1} such that t ~ ax + by +c(z-y) € IdV*(2? ~ z). In the following,
we give an algorithm to determine a,b,c € {0,1} with ¢ ~ ax + by + c(x - y) €
IdV*(z? ~ z) for a given term t € W, (X3). For this we define a mapping

5: Wr(X2) — {0,133

by
(i) s(0) == (0,0,0)
(ii) s(z):=(1,0,0)
(i) 5(y) = (0,1,0)
(iv) If u,v € W (X3) with s(u) = (a1, a2,a3) and s(v) = (b1, be,b3) then
(iv1) s(u+v) = (c1,c2,c3) with ¢; = a; + b; mod 2 for i =1,2,3
(ive) s(u-v) = (1, c2,c3) with ¢; = a;b; mod 2 for i = 1,2 and

C3 = al(bg + bg) =+ ag(bl =+ bg) =+ ag(bl —+ b2 + bg) mod 2
(ivg) s(—u) = s(u).

This inductive definition of the function s provides an algorithm to calculate
the triple s(t) for each binary term ¢ € W, (X3). In particular, we have s(ax 4+
by + c(z - y)) = (a,b,¢) for a,b,c € {0,1}. Using the following lemma, we can
decide to which of the eight normal forms ax + by + ¢(x - y) (a,b,c € {0,1}) a
given term is equivalent.

Lemma 3.4. Lett € W, (X2) with s(t) = (a,b,¢). Thent~ax+by+c(z-y) €
IdV*(2? ~ x).

Proof. We give a proof by induction on the definition of s. If t € {0, =, y}
then the claim holds. Let u,v € W;(X32) with s(u) = (a1,a2,a3) and s(v) =
(b1,b2,b3) and suppose that u ~ a;x + asy + as(z - y) € IdV*(2? ~ x) and
v & bz +bay+bs(x-y) € IdV*(2? ~ z). Note that x ~ —x € IdV*(2% ~ z). So
we have s(—u) = s(u) = (a;x+asy+az(z-y)) and —u = u ~ a1x+asy+as(z-y) €
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V*(2? &~ z). Further we have u+v ~ a1z +asy+as(x-y) +biz+boy+bs(z-y) ~
(a1 4+ b1)x + (a2 + b2)y + (as + b3)(x - y) = 1z + ey + cs(x - y) € IdV*(2* ~ x)
where ¢1, ¢2, ¢35 € {0,1} and ¢; = a;+b; mod 2 for i = 1,2, 3. On the other hand
we have s(u+v) = (¢1,c2,¢3) since ¢; = a; +b; mod 2 for i = 1,2, 3. Finally, we
have u - v & (a1 4+ agy + az(x - y)) - (bix + boy + b3(z - y)) = a1b1z + agbay +
[al(bg + b&) + a2(b1 + bd) + ag(bl + b2 + bd)((E . y)] ~ dlll,' + dgy + dd(x . y) S
IdV*(x? ~ x) with dy, da, d3 € {0,1} and d; = a;b; mod 2 for i = 1,2 and
ds = ay(by + b3) + aa(by + b3) + as(by + ba + b3) mod 2. On the other hand, it
is obvious that s(u - v) = (dj,ds,ds) holds. O

This lemma can be used to decide if a hypersubstitution o is a proper one.
Since V*(22 ~ ) is unsolid by Proposition 3.2, ¢ is proper with respect to
V*(2? ~ z) if and only if o(+) ~ x+y, 0(-) = -y, and o(—) ~ x are identities
in V*(22 ~ ). (Clearly, 0(0) = 0 € V*(2? ~ z).) By Lemma 3.4, we have to
check that s(o(4)) = (1,1,0), s(o(:)) = (0,0,1), and s(c(—)) = (1,0,0).

Example 3.5. e The hypersubstitution o1 € Hyp(7) with o1(+) =z - (y -
(x-(x+y))+x),01(-) =2y, o1(—) = z, and 1(0) = 0+ 0 is not proper
with respect to V*(22 ~ ) since s(o1(+)) = (1,0, 1).

e The hypersubstitution oo € Hyp(r) with o2(+) = vy - (- (z + y) + z),
o2() = x -y, o2(—) = x and 02(0) = 0+ 0 is proper with respect to
V*(2? = x) since s(o2(+)) = (1,1,0), s(2(-)) = (0,0,1), and s(o2(—)) =

(1,0,0).
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