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A NOTE ON MINORS DETERMINED BY CLONES OF
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Abstract. The C-minor partial orders determined by the clones gen-
erated by a semilattice operation (and possibly the constant operations
corresponding to its identity or zero elements) are shown to satisfy the
descending chain condition.
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1. Introduction

This paper is a study of substitution instances of functions of several ar-
guments when the inner functions are taken from a prescribed set of functions.
Such an idea has been studied by several authors. Henno [6] generalized Green’s
relations to Menger algebras (essentially, abstract clones) and described Green’s
relations on the set of all operations on A for each set A. Harrison [5] consid-
ered two Boolean functions to be equivalent if they are substitution instances
of each other with respect to the general linear group GL(n,F2) or the affine
linear group AGL(n,F2), where F2 denotes the two-element field. In [15, 16], a
Boolean function f is defined to be a minor of another Boolean function g, if
and only if f can be obtained from g by substituting for each variable of g a
variable, a negated variable, or one of the constants 0 or 1. Further variants of
the notion of minor can be found in [1, 3, 4, 13, 17].

These ideas are unified and generalized by the notions of C-minor and C-
equivalence, which first appeared in print in [8]. More precisely, let A be a
nonempty set, and let f : An → A and g : Am → A be operations on A. Let C
be a set of operations on A. We say that f is a C-minor of g, if f = g(h1, . . . , hm)
for some h1, . . . , hm ∈ C, and we say that f and g are C-equivalent if f and g are
C-minors of each other. If C is a clone, then the C-minor relation is a preorder
and it induces a partial order on the C-equivalence classes. For background and
basic results on C-minors and C-equivalences, see [8, 10, 11, 12].

In this paper, we study the C-minors and C-equivalences induced by the
clones generated by semilattice opeations (and possibly some constants). Our
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main result (Theorem 3.1) asserts that if (A;∧) is a semilattice, then for the
clone C := 〈∧〉 generated by ∧, the induced C-minor partial order satisfies the
descending chain condition. Furthermore, if (A;∧) has an identity element 1
and a zero element 0, then this property is enjoyed by all clones C such that
〈∧〉 ⊆ C ⊆ 〈∧, 0, 1〉. These results find an application in [9], in which the
clones of Boolean functions are classified according to certain order-theoretical
properties of their induced C-minor partial orders.

2. Clones, C-minors and C-decompositions

2.1. Operations and clones

Throughout this paper, for an integer n ≥ 1, we denote [n] := {1, . . . , n}.
Let A be a fixed nonempty base set. An operation on A is a map f : An → A
for some integer n ≥ 1, called the arity of f . We denote the set of all n-
ary operations on A by O(n)

A , and we denote by OA :=
⋃

n≥1O(n)
A the set of

all operations on A. The i-th n-ary projection (1 ≤ i ≤ n) is the operation
(a1, . . . , an) 7→ ai, and it is denoted by x

(n)
i , or simply by xi when the arity is

clear from the context.
If f ∈ O(n)

A and g1, . . . , gn ∈ O(m)
A , then the composition of f with g1, . . . , gn,

denoted f(g1, . . . , gn) is the m-ary operation defined by

f(g1, . . . , gn)(a) = f
(
g1(a), . . . , gn(a)

)

for all a ∈ Am.
Let C ⊆ OA. The n-ary part of C is the set C(n) := C∩O(n)

A of n-ary members
of C. A clone on A is a subset C ⊆ OA that contains all projections and is
closed under composition, i.e., f(g1, . . . , gn) ∈ C whenever f, g1, . . . , gn ∈ C and
the composition is defined.

The clones on A constitute a complete lattice under inclusion. Therefore,
for each set F ⊆ OA of operations there exists a smallest clone that contains F ,
which will be denoted by 〈F 〉 and called the clone generated by F . See [2, 7, 14]
for general background on clones.

2.2. C-minors

Let C ⊆ OA, and let f, g ∈ OA. We say that f is a C-minor of g, if
f = g(h1, . . . , hm) for some h1, . . . , hm ∈ C, and we denote this fact by f ≤C g.
We say that f and g are C-equivalent, denoted f ≡C g, if f and g are C-minors
of each other.

The C-minor relation ≤C is a preorder (i.e., a reflexive and transitive relation)
on OA if and only if C is a clone. If C is a clone, then the C-equivalence relation
≡C is an equivalence relation on OA, and, as for preorders, ≤C induces a partial
order 4C on the quotient OA/≡C . It follows from the definition of C-minor,
that if C and K are clones such that C ⊆ K, then ≤C ⊆ ≤K and ≡C ⊆ ≡K. For
further background and properties of C-minor relations, see [8, 10, 11, 12].
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2.3. C-decompositions

Let C be a clone on A, and let f ∈ O(n)
A . If f = g(φ1, . . . , φm) for some

g ∈ O(m)
A and φ1, . . . , φm ∈ C, then we say that the (m+1)-tuple (g, φ1, . . . , φm)

is a C-decomposition of f . We often avoid referring explicitly to the tuple and
we simply say that f = g(φ1, . . . , φm) is a C-decomposition. Clearly, there
always exists a C-decomposition of every operation f for every clone C, because
f = f(x(n)

1 , . . . , x
(n)
n ) and projections are members of every clone. A C-decom-

position of a nonconstant function f is minimal if the arity m of g is the smallest
possible among all C-decompositions of f . This smallest possible m is called the
C-degree of f , denoted degC f . We agree that the C-degree of every constant
function is 0.

Lemma 2.1. If f ≤C g, then degC f ≤ degC g.

Proof. Let degC g = m, and let g = h(γ1, . . . , γm) be a minimal C-decomposition
of g. Since f ≤C g, there exist φ1, . . . , φn ∈ C such that f = g(φ1, . . . , φn). Then

f = h(γ1, . . . , γm)(φ1, . . . , φn) = h(γ1(φ1, . . . , φn), . . . , γm(φ1, . . . , φn)),

and since γi(φ1, . . . , φn) ∈ C for 1 ≤ i ≤ m, we have that (h, γ1(φ1, . . . , φn), . . . ,
γm(φ1, . . . , φn)) is a C-decomposition of f , not necessarily minimal, so degC f ≤
m.

An immediate consequence of Lemma 2.1 is that C-equivalent functions have
the same C-degree.

Let (φ1, . . . , φm) be an m-tuple (m ≥ 2) of n-ary operations on A. If there
is an i ∈ {1, 2, . . . , m} and g : Am−1 → A such that

φi = g(φ1, . . . , φi−1, φi+1, . . . , φm),

then we say that the m-tuple (φ1, . . . , φm) is functionally dependent. Otherwise
we say that (φ1, . . . , φm) is functionally independent. We often omit the m-
tuple notation and simply say that φ1, . . . , φm are functionally dependent or
independent.
Remark 2.2. Every m-tuple containing a constant function is functionally de-
pendent. Also if fi = fj for some i 6= j, then f1, . . . , fn are functionally depen-
dent.

Lemma 2.3. If (g, φ1, . . . , φm) is a minimal C-decomposition of f , then
φ1, . . . , φm are functionally independent.

Proof. Suppose, on the contrary, that φ1, . . . , φm are functionally dependent.
Then there is an i and an h : Am−1 → A such that

φi = h(φ1, . . . , φi−1, φi+1, . . . , φm).

Then

f = g(φ1, . . . , φi−1, h(φ1, . . . , φi−1, φi+1, . . . , φm), φi+1, . . . , φm)

= g(x(m−1)
1 , . . . , x

(m−1)
i−1 , h, x

(m−1)
i , . . . , x

(m−1)
m−1 )(φ1, . . . , φi−1, φi+1, . . . , φm),
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which shows that (g(x1, . . . , xi−1, h, xi, . . . , xm−1), φ1, . . . , φi−1, φi+1, . . . , φm) is
a C-decomposition of f , contradicting the minimality of (g, φ1, . . . , φm).

3. C-minors determined by clones of semilattices

In this section we will prove our main result, namely Theorem 3.1. It will
find an application in [9] where the clones of Boolean functions are classified ac-
cording to certain order-theoretical properties that their induced C-minor partial
orders enjoy.

A binary operation ∧ on A is called a semilattice operation, if for all x, y, z ∈
A, the following identities hold:

x ∧ (y ∧ z) = (x ∧ y) ∧ z, x ∧ y = y ∧ x, x ∧ x = x,

i.e., ∧ is associative, commutative and idempotent.
A partial order (P ;≤) is said to satisfy the descending chain condition, or

it is called well-founded, if it contains no infinite descending chains, i.e., given
any sequence of elements of P

· · · ≤ a3 ≤ a2 ≤ a1,

there exists a positive integer n such that

an = an+1 = an+2 = · · · .

Theorem 3.1. Let S be the clone generated by a semilattice operation ∧ on A.
Then the S-minor partial order 4S satisfies the descending chain condition.

Proof. Let (φ1, . . . , φm) ∈ (S(n))m. Then, for 1 ≤ j ≤ m, φj is of the form

(1) φj =
∧

i∈Φj

x
(n)
i

for some ∅ 6= Φj ⊆ [n]. For 1 ≤ i ≤ n, denote

(2) Xi := {j ∈ [m] : i ∈ Φj},

and let X(φ1, . . . , φm) := {X1, . . . , Xn} ⊆ P([m]). It follows from the definitions
of Φj and Xi that

(3) j ∈ Xi ⇐⇒ i ∈ Φj .

Correspondingly, for any ∅ 6= E ⊆ P([m]), denote ΨE := (ψ1, . . . , ψm), where
ψj ∈ S(|E|) is given by

ψj =
∧

j∈S∈E

xσE(S),

where σE : E → [|E|] is any fixed bijection.
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Let (g, φ1, . . . , φm) be an S-decomposition of f : An → A. Then each φj is of
the form (1) for some ∅ 6= Φj ⊆ [n]. Let E := X(φ1, . . . , φm), (ψ1, . . . , ψm) :=
ΨE , and let f ′ = g(ψ1, . . . , ψm). We will show that f ≡S f ′.

As in (2), for 1 ≤ i ≤ n, let Xi = {j ∈ [m] : i ∈ Φj}. Let π : [n] → [|E|] be
defined as π(i) := σE(Xi). Then

f(xπ(1), . . . , xπ(n)) = g(φ1, . . . , φm)(xπ(1), . . . , xπ(n))
= g(φ1(xπ(1), . . . , xπ(n)), . . . , φm(xπ(1), . . . , xπ(n))) = g(ψ1, . . . , ψm) = f ′,

where the second last equality holds because for 1 ≤ j ≤ m,

φj(xπ(1), . . . , xπ(n)) =
∧

i∈Φj

xπ(i) =
∧

i∈Φj

xσ(Xi) =
∧

j∈S∈E

xσ(S) = ψj .

Since all projections are members of S, we have that f ′ ≤C f . On the other
hand, for 1 ≤ j ≤ |E|, let Ξj := {i ∈ [n] : Xi = σ−1

E (j)}, and let

ξj :=
∧

i∈Ξj

xi.

It is easy to see that Ξj 6= ∅; hence ξj ∈ S. Then

f ′(ξ1, . . . , ξ|E|) = g(ψ1, . . . , ψm)(ξ1, . . . , ξ|E|)
= g(ψ1(ξ1, . . . , ξ|E|), . . . , ψm(ξ1, . . . , ξ|E|)) = g(φ1, . . . , φm) = f,

where the second last equality holds because for j = 1, . . . , m,

ψj(ξ1, . . . , ξ|E|) =
( ∧

j∈S∈E

xσE(S)

)
(ξ1, . . . , ξ|E|) =

∧

j∈S∈E

ξσE(S)

=
∧

j∈S∈E

( ∧

i∈ΞσE(S)

xi

)
=

∧

j∈S∈E

( ∧

i∈[n]

Xi=S

xi

)
=

∧

i∈Φj

xi = φj .

Here, the third last equality holds, because ΞσE(S) = {i ∈ [n] : Xi = S}, and
the second last equality holds by (3) and the associativity, commutativity and
idempotency of ∧. Since ξj ∈ S, we have that f ≤C f ′. We conclude that
f ≡C f ′, as desired.

Claim. If f1 = g(φ1, . . . , φm) and f2 = g(ϕ1, . . . , ϕm) are S-decompositions
and X(φ1, . . . , φm) = X(ϕ1, . . . , ϕm), then f1 ≡S f2.

Proof of the claim. Let (ψ1, . . . , ψm) := ΨX(φ1,...,φm) (= ΨX(ϕ1,...,ϕm)), and
let f ′ = g(ψ1, . . . , ψm). It follows from what was shown above that f1 ≡S f ′ ≡S
f2. The claim follows by the transitivity of ≡S . ¦

To finish the proof that 4S satisfies the descending chain condition, as-
sume that f1<Sf2, f2 = g(φ1, . . . , φm) is a minimal S-decomposition, and
f1 = f2(h1, . . . , hn) for some h1, . . . , hn ∈ S. For i = 1, . . . ,m, denote φ′i =
φi(h1, . . . , hn), so that f1 = g(φ′1, . . . , φ

′
m). By Lemma 2.1, either degS f1 <
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degS f2, or degS f1 = degS f2 and X(φ1, . . . , φm) 6= X(φ′1, . . . , φ
′
m). Since S-

degrees are nonnegative integers and P([m]) is a finite set, there are only a finite
number of ≡S -classes preceding the ≡S-class of f2 in the S-minor partial order
4S . This completes the proof of the theorem.

Corollary 3.2. Assume that a semilattice (A;∧) has identity and zero elements
1 and 0, respectively. Let C be a clone on A such that 〈∧〉 ⊆ C ⊆ 〈∧, 0, 1〉. Then
the C-minor partial order 4C satisfies the descending chain condition.

Proof. The proof of Theorem 3.1 in fact shows that 4C satisfies the descending
chain condition. For, in this case C \ S contains only constant operations.
Remark 2.2 and Lemma 2.3 guarantee that f = g(h1, . . . , hm) is a minimal S-
decomposition if and only if it is a minimal C-decomposition, and since S ⊆ C,
S-equivalence implies C-equivalence.
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[10] Lehtonen, E., Szendrei, Á., Equivalence of operations with respect to discrimina-
tor clones. Discrete Math. 309 (2009), 673–685.
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