
Novi Sad J. Math.
Vol. 40, No. 3, 2010, 89–108
Proc. 3rd Novi Sad Algebraic Conf.
(eds. I. Dolinka, P. Marković)

WEIGHTED TREE AUTOMATA OVER STRONG
BIMONOIDS1

Dragica Radovanović2

Abstract. We consider weighted tree automata over strong bimonoids
which are, roughly speaking, semirings without distributivity. We prove
sufficient and necessary conditions under which the initial algebra seman-
tics and the run semantics of these automata coincide. We prove closure
properties of the class of recognizable tree series, a determinization result,
and a characterization of recognizable step functions.
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1. Introduction

In the past, weighted tree automata have been considered over different
classes of algebras, viz. completely distributive lattices [10, 8], fields [2], com-
mutative semirings [1], and continuous semirings [12, 7]. For a survey of results
on recognizable tree series we refer the reader to [12, 7, 9].

In this paper we study weighted tree automata over strong bimonoids thereby
following the line of research founded in [5] where weighted (string) automata
over strong bimonoids have been considered. A strong bimonoid (S, +, ·, 0, 1)
consists of an additive monoid (S,+, 0) and a multiplicative monoid (S, ·, 1);
moreover, the 0 is absorbing with respect to ·, i.e., a · 0 = 0 · a = 0 for every
a ∈ S. In other words, a strong bimonoid is a semiring without distributivity
laws. Each of the above mentioned algebras are particular strong bimonoids.

In the same way as for semiring-weighted tree automata [9], we define for a
weighted tree automaton A over some strong bimonoid S two types of semantics:
the initial algebra semantics and the run semantics, and we prove sufficient
and necessary conditions under which these two semantics are equivalent. More
precisely, let Σ be a ranked alphabet and S a strong bimonoid; then the following
two statements are equivalent (cf. Theorem 4.1):

1. S is right distributive and, if Σ is non-monadic, then S is left distributive.

2. rrun
A = rA for every wta A over Σ and S.

1This work has been financially supported by DAAD while staying at the Faculty of Com-
puter Science of the Technische Universität Dresden.
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Serbia, e-mail: macura@agrif.bg.ac.rs
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We denote by Rec(Σ, S) (and budRec(Σ, S)) the class of tree series over Σ
and S which are recognized by weighted tree automata (respectively, by bottom-
up deterministic weighted tree automata) over the strong bimonoid S using the
initial algebra semantics. We prove that Rec(Σ, S) and budRec(Σ, S) are closed
under sum (cf. Lemma 5.1) and, if S is commutative, then budRec(Σ, S) is
closed under Hadamard product (cf. Lemma 5.3). Moreover, budRec(Σ, S) is
closed under right multiplication with a coefficient a of S; Rec(Σ, S) is closed
under right multiplication (respectively, left multiplication) with a, if S is right
distributive (respectively, left distributive), cf. Theorem 5.4.

We prove that a recognizable tree series can be recognized by bottom-up
deterministic weighted tree automata if the strong bimonoid is locally finite (cf.
Theorem 6.4).

Finally, we prove that a tree series r is a recognizable step function if and
only if r can be recognized by some crisp and bottom-up deterministic weighted
tree automaton if and only if r has only finitely many images in S and each of
the preimages is a recognizable tree language (cf. Theorem 7.3).

In most of the cases, the proof techniques that we employ are adapted from
the proofs of corresponding results for weighted (string) automata over strong
bimonoids [5] and for weighted tree automata over semirings [9].

2. Preliminaries

2.1. Sets, matrices, and functions

Let N denote the set {0, 1, 2, . . .} of natural numbers. For a set A, we denote
its set of subsets by P(A). The empty string is denoted by ε, and the length of
a string w by |w|. We denote the cardinality of a finite set A by |A|.
Let S, I, and J be sets. An I × J−matrix over S is a mapping M : I × J → S;
the set of all I × J−matrices over S is denoted by SI×J . We write an entry
M(i, j) ∈ S as Mi,j . An I-vector v over S is defined analogously; the set of all
I-vectors over S is denoted by SI and an element v(i) ∈ S is denoted by vi. Let
M ∈ SI×J , v1 ∈ SI , and v2 ∈ SJ . Then we define the matrix-vector product
v1 · M ∈ SJ and M· v2 ∈ SI as follows for every i ∈ I and j ∈ J :

(v1 · M)j =
∑

i∈I(v1)i ·Mi,j ,(1)
(M · v2)i =

∑
j∈J Mi,j · (v2)j(2)

For u, v ∈ SI , we define the scalar product u · v ∈ S as u · v =
∑

i∈I ui · vi.
For two functions f : A → B and g : B → C, we denote their composition

by g ◦ f where (g ◦ f)(a) = g(f(a)) for every a ∈ A.
Let A and B be two sets such that A ⊆ B. The characteristic mapping of

A is the mapping χA : B → {0, 1} such that χA(a) = 1 if a ∈ A, and χ(a) = 0
otherwise.

2.2. Trees

A ranked alphabet is a tuple (Σ, rk) where Σ is a finite set and rk : Σ → N
is a mapping called rank mapping. For every k ≥ 0, we define Σ(k) = {σ ∈ Σ |



Weighted tree automata over strong bimonoids 91

rk(σ) = k}. Sometimes we write σ(k) to emphasize that σ ∈ Σ(k). Σ is called
trivial if Σ(0) = ∅ or Σ = Σ(0), and Σ is non-trivial if Σ is not trivial. Thus Σ is
non-trivial if Σ contains at least one nullary symbol and at least one non-nullary
symbol. Σ is called monadic if |Σ(0)| = 1, |Σ(1)| ≥ 1, and Σ = Σ(0) ∪ Σ(1). Σ is
non-monadic if Σ is not monadic.

Let H be a set disjoint with Σ. The set of Σ-terms over H, denoted by
TΣ(H), is the smallest set T such that (i) Σ(0) ∪ H ⊆ T and (ii) if k ≥ 1,
σ ∈ Σ(k), and ξ1, . . . , ξk ∈ T , then σ(ξ1, . . . , ξk) ∈ T . We denote TΣ(∅) by TΣ.
In fact, TΣ

∼=
(
Σ(1)

)∗ for monadic Σ. Clearly, Σ is trivial iff TΣ is finite. Since
terms can be depicted in an illustrative way as trees, i.e., particular graphs, it
has become a custom to call Σ-terms also Σ-trees. Every subset L ⊆ TΣ is called
Σ-tree language.

We define pos(ξ) ⊆ N∗, the set of positions of tree ξ ∈ TΣ as follows: (i)
for every α ∈ Σ(0), pos(α) = {ε}, (ii) for every ξ = σ(ξ1, . . . , ξk), where k ≥ 1,
pos(ξ) = {ε} ∪ {iv | 1 ≤ i ≤ k, v ∈ pos(ξi)}.

Let ξ ∈ TΣ and w ∈ pos(ξ). The subtree of ξ at w, denoted by ξ|w, is defined
as follows: (i) for every α ∈ Σ(0), α|ε = α, (ii) for every ξ = σ(ξ1, . . . , ξk) with
σ ∈ Σ(k), ξ|ε = ξ, and for every 1 ≤ i ≤ k, ξ|iv = ξi|v.

In the rest of this paper, Σ will denote an arbitrary non-trivial ranked al-
phabet if not specified otherwise.

2.3. Algebraic structures

A bimonoid (S, +, ·, 0, 1) is an algebra which consists of a monoid (S, +, 0),
called additive monoid of S, and a monoid (S, ·, 1), called multiplicative monoid
of S. As usual, we identify the algebra (S,+, ·, 0, 1) with its carrier set S.
If the operation + is commutative and 0 is absorbing with respect to ·, i.e.,
a · 0 = 0 · a = 0 for every a ∈ S, then S is called a strong bimonoid (for short:
s-bimonoid). An s-bimonoid S is commutative if the operation · is commutative.
We say that an s-bimonoid S is right distributive if it satisfies (a+b)·c = a·c+b·c
for every a, b, c ∈ S. We call S left distributive if it satisfies a·(b+c) = a·b+a·c for
every a, b, c ∈ S. An s-bimonoid which is left and right distributive is a semiring.
The Boolean semiring is the semiring (B,∨,∧, 0, 1) where B = {0, 1} and ∨ and
∧ are the usual disjunction and conjunction, respectively. As another example,
we recall from [13] the s-bimonoid (Σ∗ ∪ {∞},∧, ·,∞, ε), where w1 ∧ w2 is the
longest common postfix of w1, w2 ∈ Σ∗ ∪ {∞} and w1 · w2 is the concatenation
of w1 and w2 (where w1 · w2 = ∞ if w1 = ∞ or w2 = ∞). We note that this
s-bimonoid is right distributive, but not left distributive.

An s-bimonoid S is locally finite if, for every finite S′ ⊆ S, the sub-s-bimonoid
of S generated by S′, is finite.

In the rest of this paper, S will denote an arbitrary s-bimonoid (S, +, ·, 0, 1)
if not specified otherwise.

A Σ-algebra (V, θ) consists of a non-empty set V and an arity preserving
interpretation θ of symbols from Σ as operations over V , i.e., θ(σ) : V k → V for
every k ≥ 0 and σ ∈ Σk. The Σ-term algebra (TΣ,top) is the Σ-algebra such that
for every k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ, we have top(σ)(ξ1, . . . , ξk) =
σ(ξ1, . . . , ξk). This Σ-algebra is initial in the class of all Σ-algebras, i.e., for
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every Σ-algebra (V, θ) there is a unique Σ-algebra homomorphism from TΣ to
V , which we denote by hV .

2.4. Tree series

A tree series over Σ and S (or for short: tree series) is a mapping r : TΣ → S.
For every ξ ∈ TΣ, the element r(ξ) ∈ S is called coefficient of ξ and it is denoted
by (r, ξ). The set of all tree series over Σ and S is denoted by S〈〈TΣ〉〉.

Let r ∈ S〈〈TΣ〉〉. The support of r is defined as the set supp(r) = {ξ ∈ TΣ |
(r, ξ) 6= 0}. For every s ∈ S we define r=s = {ξ ∈ TΣ | (r, ξ) = s}. The image of
r is the set im(r) = {(r, ξ) ∈ S | ξ ∈ TΣ}.

Let L be a tree language, i.e., L ⊆ TΣ. We define the tree series 1(S,L) :
TΣ → S by (1(S,L), ξ) = χL(ξ) for every ξ ∈ TΣ. We call the tree series 1(S,L)

the characteristic tree series of L with respect to S. Obviously, supp(1(S,L)) = L.
Let r1, r2 ∈ S〈〈TΣ〉〉. The sum of r1 and r2 and the Hadamard product of r1

and r2 are the tree series r1 + r2 ∈ S〈〈TΣ〉〉 and r1 ¯ r2 ∈ S〈〈TΣ〉〉, respectively,
defined by (r1 + r2, ξ) = (r1, ξ) + (r2, ξ) and (r1 ¯ r2, ξ) = (r1, ξ) · (r2, ξ) for
every ξ ∈ TΣ.

Let a ∈ S and r ∈ S〈〈TΣ〉〉. The scalar left multiplication of a and r is the
tree series a · r ∈ S〈〈TΣ〉〉 defined by (a · r, ξ) = a · (r, ξ) for every ξ ∈ TΣ. The
scalar right multiplication of a and r is the tree series r · a ∈ S〈〈TΣ〉〉 defined by
(r · a, ξ) = (r, ξ) · a for every ξ ∈ TΣ.

3. Weighted tree automata

Now we define weighted tree automata over S. Actually, the definition is
the same as the one for semiring-weighted tree automata.

Definition 3.1. A weighted tree automaton (over Σ and S) (for short: wta)
is a tuple A = (Q, Σ, S, µ, ν) where

• Q is a finite nonempty set, the set of states,

• Σ is a ranked alphabet, the ranked input alphabet,

• µ = (µk | k ∈ N) is a family of mappings µk : Σ(k) → SQk×Q, the
transition mappings,

• ν ∈ SQ is a Q-vector over S, the root weight vector.

For every transition (w, q) ∈ Qk ×Q, the element µk(σ)w,q ∈ S is called the
weight of (w, q). We denote by wts(A) the set of all weights which occur in A,
i.e., wts(A) = {µk(σ)w,q | k ≥ 0, σ ∈ Σ(k), w ∈ Qk, q ∈ Q} ∪ {νq | q ∈ Q}. Note
that wts(A)⊆ S.

Initial algebra semantics. For every wta A, we consider the Σ-algebra
(SQ, µA) where, for every k ≥ 0 and σ ∈ Σ(k), the k-ary operation µA(σ) :
SQ × . . .× SQ → SQ is defined by

(3) µA(σ)(v1, . . . , vk)q =
∑

q1,...,qk∈Q

(v1)q1 · . . . · (vk)qk
· µk(σ)q1...qk,q
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for every q ∈ Q and v1, . . . , vk ∈ SQ. The tree series rA ∈ S〈〈TΣ〉〉 recognized by
A is defined by:

(4) (rA, ξ) = hµ(ξ)· ν =
∑

q∈Q

hµ(ξ)q· νq

for every ξ ∈ TΣ, where hµ denotes the unique Σ-algebra homomorphism from
TΣ to SQ. A tree series r ∈ S〈〈TΣ〉〉 is recognizable if there is a wta A such that
r = rA. The class of all recognizable tree series over Σ and S is denoted by
Rec(Σ, S).

Run semantics. A run of A on ξ ∈ TΣ is a mapping κ : pos(ξ) → Q. The set
of all runs of A on ξ is denoted by RA(ξ). For every κ ∈ RA(ξ) and w ∈ pos(ξ),
the run induced by κ at position w, denoted by κ|w ∈ RA(ξ|w), is the mapping
κ|w : pos(ξ|w) → Q defined by κ|w(w′) = κ(ww′) for every w′ ∈ pos(ξ|w). For
every ξ = σ(ξ1, . . . , ξk) ∈ TΣ, the weight wt(κ) of κ is

(5) wt(κ) = wt(κ|1) · . . . · wt(κ|k) · µk(σ)κ(1)...κ(k),κ(ε).

The run semantics of A is the tree series rrun
A ∈ S〈〈TΣ〉〉 defined by

(6) (rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ) · νκ(ε)

for every ξ ∈ TΣ.
In fact, wta over monadic ranked alphabets correspond in one to one corre-

spondence to weighted finite automata over strong bimonoids as they are defined
in [5]. Also the initial algebra semantics and run semantics pairwise correspond
to each other.

Next we introduce bottom-up deterministic and crisp weighted tree au-
tomata.

Definition 3.2. Let A = (Q, Σ, S, µ, ν) be a wta over Σ and S.

• We callA bottom-up deterministic (for short: bu-deterministic) if for every
k ≥ 0, σ ∈ Σ(k), and w ∈ Qk there is at most one q ∈ Q such that
µk(σ)w,q 6= 0.

• We call A total if for every k ≥ 0, σ ∈ Σ(k), and w ∈ Qk there is at least
one state q such that µk(σ)w,q 6= 0.

• We call A crisp if µk(σ)w,q ∈ {0, 1} for every k ≥ 0, σ ∈ Σ(k), and
(w, q) ∈ Qk ×Q.

Observation 3.3. Let A be a bu-deterministic wta over S. Then the following
statements hold:

1. For every input tree ξ ∈ TΣ, there is at most one q ∈ Q such that hµ(ξ)q 6=
0, and at most one run κ ∈ RA(ξ) such that wt(κ) 6= 0. Moreover, there
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is such a state iff there is such a run. If there exists a state q ∈ Q with
hµ(ξ)q 6= 0 and if there exists a run κ ∈ RA(ξ) with wt(κ) 6= 0, then
wt(κ) = hµ(ξ)q and κ(ε) = q. In this case the operation + of S is not
used to compute rA and rrun

A .

2. If, additionally, the wta A is total and S is zero-divisor free, then for
each input tree ξ ∈ TΣ, there exists exactly one q ∈ Q and exactly one
κ ∈ RA(ξ), such that hµ(ξ)q = wt(κ) 6= 0 and κ(ε) = q.

3. If, additionaly, the wta A is crisp, then im(rA) ⊆ {vq | q ∈ Q}. Thus, in
particular, im(rA) is finite.

4. If, additionally, the wta A is total and crisp, then for every input tree
ξ ∈ TΣ, there exists exactly one q ∈ Q and exactly one κ ∈ RA(ξ) such
that hµ(ξ)q = wt(κ) = 1 and κ(ε) = q.

The tree series r ∈ S〈〈TΣ〉〉 is bu-deterministically recognizable if there is a
bu-deterministic wta A such that r = rA. The class of bu-deterministically
recognizable tree series is denoted by budRec(Σ, S). Clearly, budRec(Σ, S) ⊆
Rec(Σ, S).

Lemma 3.4. For every r ∈ budRec(Σ, S), there is a total bu-deterministic wta
A such that r = rA.

Proof. Let B = (QB, Σ, S, µB, νB) be a bu-deterministic wta such that r = rB.
Take q0 /∈ QB and let Q = QB ∪ {q0}. We construct the wta A = (Q, Σ, S, µ, ν)
as follows. We define νq0 = 0 and νq = νBq for every q ∈ QB. For every k ≥ 0,
σ ∈ Σ(k), and w ∈ Qk:

• if w ∈ Qk
B and there exists q ∈ QB such that µBk (σ)w,q 6= 0, then

µk(σ)w,q = µBk (σ)w,q,

• if w ∈ Qk
B and µBk (σ)w,q = 0 for every q ∈ Q, then µk(σ)w,q0 = 1,

• if w ∈ Qk\Qk
B, then µk(σ)w,q0 = 1,

• for every other combination (v, p) ∈ Qk ×Q, we define µk(σ)v,p = 0.

Then, for every ξ ∈ TΣ and q ∈ QB, we have that hµB(ξ)q = hµ(ξ)q. Since
νq0 = 0, we have rA = r.

Finally, we note that we obtain the classical concept of a finite state tree
automaton as special case of our concept as follows. A bottom-up finite state
tree automaton (for short: bu-fta) is a wta A = (Q, Σ,B, µ, ν). In this case
we write A = (Q, Σ, µ, F ) with F = ν−1(1). The tree language accepted by the
bu-fta A is the set L(A) ⊆ TΣ, defined by L(A) = supp(rA). The tree language
L ⊆ TΣ is recognizable if there is a bu-fta A over Σ such that L = L(A). The
class of all recognizable tree languages over Σ is denoted by Rec(Σ). A bu-
fta A = (Q, Σ, µ, F ) is called deterministic (total) if the wta (Q, Σ,B, µ, ν) is
bu-deterministic (total, respectively).
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4. Initial algebra semantics versus run semantics

In the next theorem we will prove necessary and sufficient conditions under
which the initial algebra semantics and the run semantics of a wta coincide.
Actually, this theorem generalizes Lemma 6 of [5] from strings to trees, and it
turns out that in the tree case the left distributivity of S has to be required
additionally. Also, the theorem generalizes the fact that the initial algebra
semantics and the run semantics of a wta over any semiring coincide (cf. p. 317
of [9]) by turning this fact into an equivalence.

Theorem 4.1. Let Σ be a ranked alphabet and S an s-bimonoid. Then the
following statements are equivalent:

1. S is right distibutive and, if Σ is not monadic, then S is left distributive.

2. rrun
A = rA for every wta A over Σ and S.

Proof. 1. ⇒ 2.: Let A = (Q, Σ, S, µ, ν) be a wta. First, we will prove that the
following statement holds:

(7) hµ(ξ)q =
∑

κ∈RA(ξ)κ(ε)=q

wt(κ) for every ξ ∈ TΣ and q ∈ Q.

Let ξ = σ(ξ1, . . . , ξk) for some k ≥ 0, σ ∈ Σ(k), and ξ1, . . . , ξk ∈ TΣ. Then

hµ(ξ)q = hµ(σ(ξ1, . . . , ξk))q = µA(σ)(h(ξ1), . . . , h(ξk))q

=
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

=
∑

q1,...,qk∈Q

( ∑

κ1∈RA(ξ1)
κ1(ε)=q1

wt(κ1)
) · . . . · (

∑

κk∈RA(ξk)
κk(ε)=qk

wt(κk)
) · µk(σ)q1...qk,q

(Statement (7))

=
∑

q1,...,qk∈Q

∑

κ1∈RA(ξ1)
κ1(ε)=q1

wt(κ1) ·
(
. . . · (

∑

κk∈RA(ξk)
κk(ε)=qk

wt(κk) · µk(σ)q1...qk,q

)
. . .

)

(S right distributive)

=
∑

q1,...,qk∈Q

∑

κ1∈RA(ξ1)
κ1(ε)=q1

. . .
∑

κk∈RA(ξk)
κk(ε)=qk

wt(κ1) · . . . · wt(κk) · µk(σ)q1...qk,q

(Σ monadic or S left distributive)
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=
∑

q1,...,qk∈Q

∑

κ∈RA(ξ)
κ(1)=q1,...,κ(k)=qk

κ(ε)=q

wt(κ|1) · . . . · wt(κ|k) · µk(σ)q1...qk,q

=
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ|1) · . . . · wt(κ|k) · µk(σ)q1...qk,q

=
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ).

(8)

Hence,

(rrun
A , ξ) =

∑

κ∈RA(ξ)

(
wt(κ) · νκ(ε)

)
=

∑

q∈Q

∑

κ∈RA(ξ)
κ(ε)=q

(
wt(κ) · νq

)

=
∑

q∈Q

( ∑

κ∈RA(ξ)
κ(ε)=q

wt(κ)
) · νq (S right distributive)

=
∑

q∈Q

hµ(ξ)q · νq = (rA, ξ).

(9)

2. ⇒ 1.: Let a, b, c ∈ S. We should prove that
i) (a + b) · c = a · c + b · c and

ii) if Σ is non-monadic, then a · (b + c) = a · b + a · c.
To prove the first equation, assume that α ∈ Σ(0) and γ ∈ Σ(k) for some

k ≥ 1. We consider the wta A = (Q, Σ, S, µ, ν) defined as follows: Q = {p, q, 1},
νp = ν1 = 0, νq = c. Moreover, we define the transition mappings as follows:

• µ0(α)ε,p = a , µ0(α)ε,q = b, µ0(α)ε,1 = 1,

• µk(γ)p1...1,q = µk(γ)q1...1,q = 1,

• µk(γ)w,u = 0 for every (w, u) /∈ {(p1 . . . 1, q), (q1 . . . 1, q)}

• for every other input symbol σ ∈ Σ(k) with k ≥ 0 and state behaviour
(w, r) ∈ Qk ×Q we can define µk(σ)w,r arbitrarily.

Take ξ = γ(α, . . . , α︸ ︷︷ ︸
k

) ∈ TΣ. We will calculate (rA, ξ) and (rrun
A , ξ).
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(rA, ξ) =
∑

u∈Q

hµ(ξ)u · νu = hµ(ξ)q · νq

=
( ∑

u1,...,uk∈Q

hµ(α)u1 · . . . · hµ(α)uk
· µk(σ)u1...uk,q

) · c

=
(
hµ(α)p · hµ(α)1 · . . . · hµ(α)1︸ ︷︷ ︸

k−1

·µk(γ)p1...1,q +

+hµ(α)q · hµ(α)1 · . . . · hµ(α)1︸ ︷︷ ︸
k−1

·µk(γ)q1...1,q

) · c

=
(
a · 1 · . . . · 1 · 1 + b · 1 · . . . · 1 · 1) · c

= (a + b) · c.(10)

(11) (rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ)·νκ(ε) =
∑

κ∈RA(ξ)
κ(ε)=q

(
wt(κ)·c) = wt(κ1)·c+wt(κ2)·c

where κ1(ε) = κ2(ε) = q, κ1(1) = p, κ2(1) = q, and κ1(i) = κ2(i) = 1 for every
i ∈ {2, . . . , k}.

One can easy calculate that wt(κ1) = a and wt(κ2) = b; thus (rrun
A , ξ) =

a · c + b · c.
Since rrun

A = rA, we obtain that Statement i) holds.
Now we prove Statement ii). Let Σ be non-monadic. Recall that Σ is non-

trivial. Thus Σ(0) 6= ∅ and there is k ≥ 2 such that Σ(k) 6= ∅. Let α ∈ Σ(0) and
σ ∈ Σ(k). Now consider the wta A = (Q, Σ, S, µ, ν) with Q = {a, b, c, p, q, 1},
νq = 1, νu = 0 for every u 6= q, and the transition mappings:

• µ0(α)ε,x = x for every x ∈ {a, b, c, 1},
• µ0(α)ε,p = µ0(α)ε,q = 0,

• µk(σ)b1...1,p = µk(σ)c1...1,p = µk(σ)a1...1p,q = 1,

• for every other combination (w, r) ∈ Qk ×Q, we let µk(σ)w,r = 0,

• for every other input symbol δ ∈ Σ(k), k ≥ 0, and state behaviour (w, r) ∈
Qk ×Q we can define µk(δ)w,r arbitrarily.

Take ξ = σ(α, . . . α︸ ︷︷ ︸
k−1

, σ(α, . . . , α︸ ︷︷ ︸
k

)) ∈ TΣ. First we calculate

hµ(σ(α, . . . , α︸ ︷︷ ︸
k

))p =
∑

u1,...,uk∈Q

hµ(α)u1 · hµ(α)u2 · . . . · hµ(α)uk−1

·hµ(α)uk
· µk(σ)u1u2...uk−1uk,p

= hµ(α)b · hµ(α)1 · . . . · hµ(α)1 · µk(σ)b1...1,p +
+hµ(α)c · hµ(α)1 · . . . · hµ(α)1 · µk(σ)c1...1,p

= b + c.(12)
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Then,

hµ

(
σ(α, . . . α︸ ︷︷ ︸

k−1

, σ(α, . . . , α︸ ︷︷ ︸
k

))
)
q

= hµ(α)a · hµ(α)1 · . . . · hµ(α)1 · hµ(σ(α, . . . , α))p · µk(σ)a1...1p,q

= a · (b + c).(13)

Let κb ∈ RA(ξ) be such that κb(ε) = q, κb(1) = a, κb(i) = 1 for every
i ∈ {2, . . . , k − 1}, κb(k) = p, κb(k1) = b, κb(kj) = 1 for every j ∈ {2, . . . , k},
and κc ∈ RA(ξ) is the same as κb but κc(k1) = c. Then

(rrun
A , ξ) =

∑

κ∈RA(ξ)

wt(κ) · νκ(ε)

=
∑

κ∈RA(ξ)
κ(ε)=q

wt(κ)

= wt(κb) + wt(κc) = a · b + a · c.(14)

Since rrun
A = rA, we obtain a · (b + c) = a · b + a · c.

5. Closure properties

First we prove that Rec(Σ, S) and budRec(Σ, S) are closed under sum. The
construction is the straightforward ”union” of the two given wta (cf., e.g.,
Lemma 6.4 of [4]).

Lemma 5.1. Let r1, r2 ∈ S〈〈TΣ〉〉. Then the following statements hold:

1. If r1, r2 ∈ Rec(Σ, S), then r1 + r2 ∈ Rec(Σ, S).

2. If r1, r2 ∈ bud-Rec(Σ, S), then r1 + r2 ∈ bud-Rec(Σ, S).

Proof. Let A1 = (Q1,Σ, S, µ1, ν1) and A2 = (Q2, Σ, S, µ2, ν2) be the wta such
that r1 = rA1 and r2 = rA2 . Clearly, we can choose Q1 and Q2 such that
Q1 ∩Q2 = ∅. We construct the wta A = (Q, Σ, S, µ, ν) with Q = Q1 ∪Q2. For
every k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q, we define the mappings µ and ν as
follows:

(15) µk(σ)q1...qk,q =





µ1
k(σ)q1...qk,q, if q1, . . . qk, q ∈ Q1,

µ2
k(σ)q1...qk,q, if q1, . . . qk, q ∈ Q2,

0 otherwise,

(16) νq =

{
ν1

q if q ∈ Q1,

ν2
q if q ∈ Q2.



Weighted tree automata over strong bimonoids 99

Then, for every ξ ∈ TΣ, we have hµ(ξ)q = hµ1(ξ)q if q ∈ Q1, and hµ(ξ)q =
hµ2(ξ)q if q ∈ Q2. Thus,

(rA, ξ) =
∑

q∈Q

hµ(ξ)q · νq =
∑

q∈Q1

hµ(ξ)q · νq +
∑

q∈Q2

hµ(ξ)q · νq

=
∑

q∈Q1

hµ1(ξ)q · ν1
q +

∑

q∈Q2

hµ2(ξ)q · ν2
q = (rA′ , ξ) + (rA′′ , ξ)

= (r1, ξ) + (r2, ξ) = (r1 + r2, ξ).(17)

Hence, r1 + r2 is recognizable.
If the wta A1 and A2 are bu-deterministic, then the wta A is bu-determinis-

tic, which proves Statement 2.

In the following lemma we recall that Rec(Σ, S) and budRec(Σ, S) are closed
under Hadamard product if S is a commutative semiring, which has been proved
in Corollary 3.9 of [3].

Lemma 5.2 (Corollary 3.9 of [3]). Let S be a commutative semiring, and
r1, r2 ∈ S〈〈TΣ〉〉. Then the following statements hold:

1. If r1, r2 ∈ Rec(Σ, S), then r1 ¯ r2 ∈ Rec(Σ, S).

2. If r1, r2 ∈ budRec(Σ, S), then r1 ¯ r2 ∈ budRec(Σ, S).

The next lemma generalizes Lemma 5.2(2) from commutative semirings to
commutative s-bimonoids.

Lemma 5.3. Let S be commutative and r1, r2 ∈ budRec(Σ, S). Then r1¯ r2 ∈
budRec(Σ, S).

Proof. Let A1 = (Q1,Σ, S, µ1, ν1) and A2 = (Q2, Σ, S, µ2, ν2) be the bu-deter-
ministic wta such that r1 = rA1 and r2 = rA2 . We construct the wta A =
(Q, Σ, S, µ, ν) with Q = Q1 ×Q2. We define ν(q1,q2) = ν1

q1 · ν2
q2 and

µk(σ)(q1
1 ,q2

1)...(q1
k,q2

k),(q1,q2) = µ1
k(σ)q1

1 ...q1
k,q1 · µ2

k(σ)q2
1 ...q2

k,q2

for every k ≥ 0, σ ∈ Σ(k), q1
1 , . . . , q1

k, q1 ∈ Q1, and q2
1 , . . . , q2

k, q2 ∈ Q2.
Clearly, a wta A is bu-deterministic.
We show by structural induction that the following statement holds:

(18)
hµ(ξ)(q1,q2) = hµ1(σ)q1 · hµ2(σ)q2 for every ξ ∈ TΣ, q1 ∈ Q1 and q2 ∈ Q2.
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Let k ≥ 0, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ and ξ = σ(ξ1, . . . , ξk). Then

hµ(ξ)(q1,q2)

=
∑

q1
1 ,...,q1

k∈Q1

q2
1 ,...,q2

k∈Q2

hµ(ξ1)(q1
1 ,q2

1) · . . . · hµ(ξk)(q1
k,q2

k) · µk(σ)(q1
1 ,q2

1)...(q1
k,q2

k),(q1,q2)

=
∑

q1
1 ,...,q1

k∈Q1

q2
1 ,...,q2

k∈Q2

(
hµ1(ξ1)q1

1
· hµ2(ξ1)q2

1

) · . . . · (hµ1(ξk)q1
k
· hµ2(ξk)q2

k

) ·

·(µ1
k(σ)q1

1 ...q1
k,q1 · µ2

k(σ)q2
1 ...q2

k,q2

)
(19)

(induction hypothesis and definition of µ)

=
∑

q1
1 ,...,q1

k∈Q1

∑

q2
1 ,...,q2

k∈Q2

(
hµ1(ξ1)q1

1
· . . . · hµ1(ξk)q1

k
· µ1

k(σ)q1
1 ...q1

k,q1

) ·

·(hµ2(ξ1)q2
1
· . . . · hµ2(ξk)q2

k
· µ2

k(σ)q2
1 ...q2

k,q2

)

(commutativity)

There are two possibilities:

1. there is an i with 1 ≤ i ≤ k such that hµ(ξ)q1 = 0 for every q1 ∈ Q1 or
hµ(ξ)q2 = 0 for every q2 ∈ Q2,

2. for every i with 1 ≤ i ≤ k there are exactly one p1
i ∈ Q1 and exactly one

p2
i ∈ Q2 such that hµ1(ξi)p1

i
6= 0 and hµ2(ξi)p2

i
6= 0.

It is easy to check that Statement (18) holds in the both cases.
Now take ξ ∈ TΣ. Since A1 and A2 are bu-deterministic, it is possible that

hµ1(ξ)p = 0 for every p ∈ Q1 or hµ2(ξ)q = 0 for every q ∈ Q2, or, the second
possibility is that there exists the unique u ∈ Q1 such that hµ1(ξ)u 6= 0 and
there exists the unique v ∈ Q2 such that hµ2(ξ)v 6= 0.

In the first case, it follows from Statement (18) that hµ(ξ)(q1,q2) = 0 for
every q1 ∈ Q1 and q2 ∈ Q2. Then, one can easily check that (rA, ξ) = 0 =
(rA1 , ξ) · (rA2 , ξ).

In the second case let u ∈ Q1 (and v ∈ Q2) be the unique state such that
hµ1(ξ)u 6= 0 (respectively, hµ2(ξ)v 6= 0). Then we have that

(rA, ξ)

=
∑

q1∈Q1

q2∈Q2

hµ(ξ)(q1,q2) · ν(q1,q2) =
∑

q1∈Q1

q2∈Q2

(
hµ1(ξ)q1 · hµ2(ξ)q2

) · (νq1 · νq2

)

= hµ1(ξ)u · νu · hµ2(ξ)v · νv =
∑

q1∈Q1

hµ1(ξ)q1 · νq1 ·
∑

q2∈Q2

hµ2(ξ)q2 · νq2

= (rA1 , ξ) · (rA2 , ξ).(20)
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In Lemma 6.3 of [4] it was proved that the class of recognizable tree series
over semirings is closed under left multiplication with a coefficient from the
semiring. Here we deal with multiplication from left and right.

Theorem 5.4. Let r ∈ Rec(Σ, S) and a ∈ S. Then the following statements
hold:

1. If r ∈ budRec(Σ, S), then r · a ∈ budRec(Σ, S).

2. If S is right distributive, then r · a ∈ Rec(Σ, S).

3. If S is left distributive or r ∈ budRec(Σ, S), then a · r ∈ Rec(Σ, S).

Proof. Let A = (Q, Σ, S, µ, ν) be some wta such that r = rA. We consider the
wta A′ = (Q, Σ, S, µ, ν′) with ν′q = νq · a for every q ∈ Q.

Proof of Statement 1: We assume that A is bu-deterministic. Then, clearly,
also A′ is bu-deterministic. Let ξ ∈ TΣ. By Observation 3.3(1), there is at
most one q ∈ Q such that hµ(ξ)q 6= 0. If hµ(ξ)q = 0 for every q ∈ Q, then
(rA′ , ξ) =

∑

q∈Q

hµ(ξ)q · ν′q = 0 =
( ∑

q∈Q

hµ(ξ)q · νq

) · a = (rA, ξ) · a. Now, let

u ∈ Q be such that hµ(ξ)u 6= 0. Then, (rA′ , ξ) = hµ(ξ)u · ν′u = hµ(ξ)u · νu · a =
(rA, ξ) ·a = (rA ·a, ξ) = (r ·a, ξ). Thus, r ·a is bu-deterministically recognizable.

Proof of Statement 2: We assume that S is right distributive. Thus, for every
ξ ∈ TΣ, we have (r · a, ξ) =

( ∑
q∈Q hµ(ξ)q · νq

) · a =
∑

q∈Q(hµ(ξ)q · νq · a) =∑
q∈Q hµ(ξ)q · ν′q = (rA′ , ξ). Hence, r · a ∈ Rec(Σ).
Proof of Statement 3: We define the wta Ã = (Q̃, Σ, S, µ̃, ν̃) as follows:

• Q̃ = Q0 ∪Q1 where Q0 = {q0 | q ∈ Q} and Q1 = {q1 | q ∈ Q},
• for every q ∈ Q and α ∈ Σ(0), we let µ̃(α)ε,q0 = µ0(α)ε,q and µ̃(α)ε,q1 =

a · µ0(α)ε,q

• for every k ≥ 1, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q, we let

µ̃k(σ)q1
1q0

2 ...q0
k,q1 = µ̃k(σ)q0

1q0
2 ...q0

k,q0 = µk(σ)q1q2...qk,q,

and for every s1, . . . , sk, s ∈ {0, 1} such that

(s1, . . . , sk, s) /∈ {(0, . . . , 0, 0), (1, 0 . . . , 0, 1)},
we let µ̃k(σ)q

s1
1 ...q

sk
k ,qs = 0,

• for every q ∈ Q, we let ν̃q0 = 0 and ν̃q1 = νq.

One can easily prove by structural induction that the following statement
holds:

(21) hµ̃(ξ)q0 = hµ(ξ)q for every ξ ∈ TΣ and q ∈ Q.

Now we show that

(22) hµ̃(ξ)q1 = a · hµ(ξ)q for every ξ ∈ TΣ and q ∈ Q.
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Let k ≥ 0, σ ∈ Σ(k), ξ1, . . . , ξk ∈ TΣ and ξ = σ(ξ1, . . . , ξk). Then,

hµ̃(ξ)q1 =
∑

q̃1,...,q̃k∈Q̃

hµ̃(ξ1)q̃1 · . . . · hµ̃(ξk)q̃k
· µ̃k(σ)q̃1...q̃k,q1

=
∑

q1,...,qk∈Q
s1,...,sk∈{0,1}

hµ̃(ξ1)q
s1
1
· . . . · hµ̃(ξk)q

sk
k
· µ̃k(σ)q

s1
1 ...q

sk
k ,q1

=
∑

q1,...,qk∈Q

hµ̃(ξ1)q1
1
· hµ̃(ξ2)q0

2
· . . . · hµ̃(ξk)q0

k
· µ̃k(σ)q1

1q0
2 ...q0

k,q1

=
∑

q1,...,qk∈Q

a · hµ(ξ1)q1 · hµ(ξ2)q2 · . . . · hµ(ξ)qk
· µk(σ)q1...qk,q(23)

(induction hypothesis, property of h for q0
2 , . . . q0

k,

and definition ofµ̃k(σ)).

If S is left distributive, then we can continue with

= a ·
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q,(24)

and we have proved Statement (22) if S is left distributive.
Now assume that A is bu-determinisic. Then there are two possibilities:

1. there is an i with 1 ≤ i ≤ k and hµ(ξi)q = 0 for every q ∈ Q,

2. for every i with 1 ≤ i ≤ k there is exactly one qi ∈ Q with hµ(ξi) 6= 0.

Case 1. Then we can continue with

=
∑

q1,...,qk∈Q

a · hµ(ξ1)q1 · . . . · hµ(ξi−1)qi−1 · 0 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= 0
= a ·

∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξi−1)qi−1 · 0 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q.(25)

Case 2. Let p1, . . . , pk ∈ Q be the unique states such that hµ(ξi)pi 6= 0. Then
we can continue with

= a · hµ(ξ1)p1 · hµ(ξ2)p2 · . . . · hµ(ξk)pk
· µk(σ)p1...pk,q

= a ·
∑

q1,...,qk∈Q

hµ(ξ1)q1 · . . . · hµ(ξk)qk
· µk(σ)q1...qk,q

= a · hµ(ξ)q(26)

and we have proved Statement (22) if A is bu-deterministic. Hence Statement
(22) holds.
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Now we prove that rÃ = a · rA. For this let ξ ∈ TΣ. Then

(rÃ, ξ) =
∑

q̃∈Q̃

hµ̃(ξ)q̃ · ν̃q̃ =
∑

q∈Q

hµ̃(ξ)q1 · νq

=
∑

q∈Q

a · hµ(ξ)q · νq(27)

If S is left distributive, then we can continue as follows:

(28) a ·
∑

q∈Q

hµ(ξ)q · νq = a · (rA, ξ) = (a · rA, ξ).

Now let A be bu-deterministic. Thus there are two cases:

1. hµ(ξ)q = 0 for every q ∈ Q,

2. there is the unique q ∈ Q such that hµ(ξ)q 6= 0.

It is easy to show that rÃ = a · rA in the both cases.
Hence, a · r is recognizable.

6. Determinization

In this section we deal with the question under which conditions a recog-
nizable tree series can be recognized by a bu-deterministic wta. We follow the
approach of Section 3.4 of [9] (also cf. [5]). First, we prove that S is locally finite
if and only if every wta over S and Σ can be represented by a finite Σ-algebra.
The only-if direction is a generalization of Sec. 4 of [3] (also cf. Sec. 3.1 of [11]
and Lemma 3.14 of [9]).

Lemma 6.1. The following statements are equivalent.

1. S is locally finite.

2. For every ranked alphabet Σ and every wta A over Σ and S there is a
finite Σ-algebra (Q, θ) and a mapping f : Q → S such that rA = f ◦ hQ.

In particular, for every bu-fta A over Σ there is a finite Σ-algebra (Q, θ) and a
subset F ⊆ Q such that L(A) = h−1

Q (F ).

Proof. 1. ⇒ 2. Cf. Lemma 3.14 of [9].
2. ⇒ 1. We prove this implication by contraposition: If S is not locally

finite, then there is a ranked alphabet Σ and a wta A over Σ and S such that
rA 6= f ◦ hQ for every finite Σ-algebra (Q, θ) and every mapping f : Q → S.

Since S is not locally finite, there is a set A ⊆ S such that the set S′, the
smallest sub-s-bimonoid of S containing A, is not finite. We let Σ̃ = {a(0) | a ∈
A}∪{⊕(2),¯(2)}, and we define the mapping val : TΣ̃ → S as follows: val(a(0)) =
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a for every a ∈ A; val(⊕(ξ1, ξ2)) = val(ξ1)+val(ξ2) and val(¯(ξ1, ξ2)) = val(ξ1) ·
val(ξ2) for every ξ1, ξ2 ∈ TΣ̃.

Now we construct the wta A = (Q, Σ̃, S, µ, ν) with Q = {v, 1} as follows:
νv = 1 and ν1 = 0, µ0(a)ε,v = a and µ0(a)ε,1 = 1 for every a ∈ A. Moreover,
for every p, q, r ∈ Q we let

µ2(⊕)pq,r =

{
1, if (pq, r) ∈ {(11, 1), (v1, v)}, (1v, v)};
0, otherwise

,(29)

µ2(¯)pq,r =

{
1, if (pq, r) ∈ {(11, 1), (vv, v)};
0, otherwise

.(30)

We show by structural induction that hµ(ξ)v = val(ξ) and hµ(ξ)1 = 1 for
every ξ ∈ TΣ̃. Take a ∈ Σ̃(0), we have hµ(a)v = µ0(a)ε,v = a = val(a) and
hµ(a)1 = µ0(a)ε,1 = 1. Moreover,

hµ(⊕(ξ1, ξ2))v =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(⊕)pq,v

= hµ(ξ1)v · hµ(ξ2)1 · µ2(⊕)v1,v

+hµ(ξ1)1 · hµ(ξ2)v · µ2(⊕)1v,v

= val(ξ1) · 1 · 1 + 1 · val(ξ2) · 1
= val(ξ1) + val(ξ2) = val(⊕(ξ1, ξ2)),(31)

hµ(⊕(ξ1, ξ2))1 =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(⊕)pq,1

= hµ(ξ1)1 · hµ(ξ2)1 · µ2(⊕)11,1 = 1,(32)

hµ(¯(ξ1, ξ2))v =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(¯)pq,v

= hµ(ξ1)v · hµ(ξ2)v · µ2(¯)vv,v

= val(ξ1) · val(ξ2) = val(¯(ξ1, ξ2)),(33)

hµ(¯(ξ1, ξ2))1 =
∑

p,q∈Q

hµ(ξ1)p · hµ(ξ2)q · µ2(¯)pq,1

= hµ(ξ1)1 · hµ(ξ2)1 · µ2(¯)11,1 = 1 · 1 = 1.(34)

Thus, (rA, ξ) = hµ(ξ)v · νv = val(ξ).
It is clear from the definition of the mapping val that for every s ∈ S′ there

is some tree ξ ∈ TΣ̃ such that val(ξ) = s. (The elements of set A are the images
of the elements of Σ̃(0), and for every s1, s2 ∈ S′ we have s1 +s2 = val(⊕(ξ1, ξ2))
and s1 · s2 = val(¯(ξ1, ξ2)), where ξ1, ξ2 ∈ TΣ̃ and s1 = val(ξ1), s2 = val(ξ2).)
Hence, for every s ∈ S′, there is ξ ∈ TΣ̃ such that (rA, ξ) = s. Thus S′ ⊆ im(rA),
and im(rA) is not finite.
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Now take any finite Σ-algebra (Q, θ) and any mapping f : Q → S. Then
the set im(f ◦ hQ) is finite, because Q is finite. Thus, im(rA) 6= im(f ◦ hQ) for
every finite Σ-algebra (Q, θ) and mapping f : Q → S. This finishes the proof of
2. ⇒ 1.

Now let A be a bu-fta over Σ. Since B is locally finite, there is a finite
Σ-algebra (Q, θ) and a mapping f : Q → {0, 1} such that rA = f ◦ hQ. De-
note f−1(1) by F . Then, clearly, F ⊆ Q and L(A) = supp(rA) = r−1

A (1) =
h−1

Q (f−1(1)) = h−1
Q (F ).

The next lemma shows how to implement a finite Σ-algebra by a crisp and
bu-deterministic wta (cf. Lemma 3.10 of [9]).

Lemma 6.2. Let (Q, θ) be a finite Σ-algebra.

1. For every s-bimonoid S and mapping f : Q → S there is a crisp and
bu-deterministic wta A over Σ and S such that rA = f ◦ hQ. Thus, in
particular, f ◦ hQ ∈ budRec(Σ, S).

2. For every P ⊆ Q the language h−1
Q (P ) ⊆ TΣ is recognizable.

Proof. Cf. Lemma 3.10 of [9]. We construct the bu-deterministic wta

A = (Q, Σ, S, µ, ν)

by defining µk(σ)q1...qk,q = 1 if θ(σ)(q1, . . . , qk) = q, and µk(σ)q1...qk,q = 0
otherwise, and νq = f(q) for every σ ∈ Σ(k), q1, . . . , qk, q ∈ Q. (We note that
no distributivity law is needed for the proof of this statement.)

Next we prove Statement 2. Let f = 1(B,P ). Then, by Statement 1, there
is a crisp bu-deterministic wta A = (Q, Σ,B, µ, ν) such that rA = f ◦ hQ, in
particular, νq = f(q) for every q ∈ Q. In fact, A is the bu-fta (Q, Σ, µ, P ) with
P = {q ∈ Q | νq = 1} and L(A) = supp(rA) = supp(f ◦ hQ) = supp(1(B,P ) ◦
hQ) = {ξ ∈ TΣ | 1(B,P )(hQ(ξ)) = 1} = {ξ ∈ TΣ | hQ(ξ) ∈ P} = h−1

Q (P ). Thus,
h−1

Q (P ) ⊆ TΣ is recognizable.

The next two theorems generalize Theorems 3.15 and 3.17 of [9] from semir-
ings to s-bimonoids.

Theorem 6.3. Let S be locally finite, E ⊆ S, and r ∈ Rec(Σ, S). Then
r−1(E) ∈ Rec(Σ).

Proof. Cf. Theorem 3.15 of [9].

Theorem 6.4. Let S be locally finite, r ∈ Rec(Σ, S), and g : S → S. Then
g(r) ∈ budRec(Σ, S). In particular, Rec(Σ, S) = budRec(Σ, S).

Proof. Cf. Theorem 3.17 of [9].

Since the Boolean semiring is locally finite, we obtain from Theorem 6.4 and
Lemma 3.4 the well known result that every recognizable tree language can be
recogized by a total deterministic bu-fta.
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7. Recognizable step functions

Definition 7.1. A tree series r ∈ S〈〈TΣ〉〉 is a recognizable step function if there
are n ≥ 0, recognizable tree languages L1, . . . , Ln ⊆ TΣ, and a1, . . . , an ∈ S
such that r =

∑n
i=1 ai · 1(S,Li).

It is easy to see that the characteristic tree series of L with respect to S is in
budRec(Σ, S) provided that L is a recognizable tree language (cf. Lemma 3.3
of [6] and Lemma 3.11 of [9]).

Lemma 7.2. If L ⊆ TΣ is a recognizable tree language, then 1(S,L) ∈ bud-
Rec(Σ, S).

Proof. Let L be a recognizable tree language. Then there is a bu-fta A =
(Q, Σ, µ, F ) such that L = L(A). Clearly, rA = 1(B,L). Recall that (Q, Σ, µ, F )
abbreviates (Q, Σ,B, µ, ν) with ν = χF . Since the Boolean semiring is locally
finite, we obtain by Lemma 6.1 that there is a finite Σ-algebra (Q, θ) and a
mapping f : Q → B such that rA = f ◦ hQ. We define g : B → S by g(0) = 0
and g(1) = 1. Clearly, 1(S,L) = g ◦ 1(B,L). Thus, 1(S,L) = g ◦ 1(B,L) = g ◦ rA =
(g ◦ f) ◦hQ. Then, by Lemma 6.2(1) we obtain that 1(S,L) ∈ budRec(Σ, S).

In the next theorem we will characterize recognizable step funtions (cf.
Lemma 10 and Proposition 11 of [5]).

Theorem 7.3. Let r ∈ S〈〈TΣ〉〉. Then the following three statements are equiv-
alent:

1. r is a recognizable step function.

2. There exists a crisp and bu-deterministic wta A over Σ and S such that
r = rA.

3. The set im(r) is finite and r=a is a recognizable tree language for every
a ∈ S.

In particular, if r is a recognizable step function, then r is bu-deterministi-
cally recognizable.

Proof. 1. ⇒ 2.: Let n ∈ N, L1, . . . , Ln ⊆ TΣ, and a1, . . . , an ∈ S such that
L1, . . . , Ln are recognizable and r =

∑n
i=1 ai·1(S,Li). For every i ∈ {1, . . . , n}, let

Ai = (Qi, Σ, µi, Fi) be a total deterministic bu-fta over Σ such that L(Ai) = Li.
Let Q = Q1 × · · · ×Qn, then every q ∈ Q is of the form q = (q1, . . . , qn), where
qi ∈ Qi for every i ∈ {1, . . . , n}. We define the wta A = (Q, Σ, S, µ, ν) as
follows: for every k ≥ 0, σ ∈ Σ(k), and q1, . . . , qk, q ∈ Q:

(35) µk(σ)q1...qk,q =

{
1, if µk(σ)qi

1...qi
k,qi = 1 for every i ∈ {1, . . . , n};

0, otherwise
,

(36) νq =
∑

i∈{1,...,n}
qi∈Fi

ai.
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Clearly, A is total, bu-deterministic, and crisp.
One can easily check by structural induction that for every q ∈ Q and ξ ∈ TΣ

the following holds: hµ(ξ)q = 1 iff hµi(ξ)qi = 1 for every i ∈ {1, . . . , n}.
Now, let ξ ∈ TΣ. By Observation 3.3(4) there is a unique state, say qξ ∈ Q

such that hµ(ξ)qξ
= 1. Then ξ ∈ Li iff qi

ξ ∈ Fi for every i ∈ {1, . . . , n}. Let
Iξ = {i ∈ {1, . . . , n} | ξ ∈ Li}. Then:

(r, ξ) =
∑

i∈{1,...,n}
ai ·

(
1(S,Li), ξ

)

=
∑

i∈Iξ

ai =
∑

i∈{1,...,n}
qi

ξ∈Fi

ai

= νqξ
= hµ(ξ)qξ

· νqξ
= (rA, ξ).(37)

Thus r can be recognized by a total, bu-deterministic, and crisp wta.
2. ⇒ 3.: Let A = (Q, Σ, S, µ, ν) be a crisp and bu-deterministic wta over Σ

and S such that rA = r. It follows, by Observation 3.3(3), that im(r) is finite.
Let a ∈ im(r), we show that r=a is recognizable. Define the deterministic bu-fta
Aa = (Q, Σ, µ, Fa) by Fa = {q ∈ Q | νq = a}. Then r=a is recognizable, because
r=a = L(Aa).

3. ⇒ 1.: Since r =
∑

a∈im(r)

a · 1(S,r=a), it follows by assumption that r is

recognizable step function.

The next lemma generalizes Theorem 13 of [5] from strings to trees.

Lemma 7.4. Let S be locally finite, and r recognizable tree series. Then r is
recognizable step function.

Proof. Let A = (Q, Σ, S, µ, ν) be a wta such that r = rA. Let S′ be the
smallest sub-s-bimonoid containing wts(A). Since S is locally finite, S′ is finite.
Then im(r) = im(rA) ⊆ S′ is finite. By Theorem 6.3, for every a ∈ S, the tree
language r=a = r−1(a) is recognizable. Hence, by Theorem 7.3, r is recognizable
step function.
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