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1. Introduction

Analysis of white noise functionals (see [5, 4] and references therein), in-
troduced by Hida [3] and developed further by many authors, proved to be a
powerful framework for studying stochastic differential equations. It continues
to find new extensions and applications [7, 8, 9]. In [2] and [6] the ideas of
white noise analysis were used to introduce the Hilbert space valued stochas-
tic distributions (abstract stochastic distributions), which were used to study
differential-operator equations with additive noise.

In the present work we investigate the existence of general solutions to the
Cauchy problem for the equation with multiplicative noise. Within the frame-
work of the Ito calculus of H-valued random processes, where H is a Hilbert
space, the problem can be written as

(1) dX(t) = AX(t) + B(X(t))dW (t) , t ≥ 0 , X(0) = ζ ,

where A : H → H and B(·) : H → L(H) are linear operators, ζ is an H-valued
random variable and W (t) is an H-valued Wiener process. It arises in differ-
ent applications and draws interest of many researchers (see [1] and references
therein). By introducing the Hitsuda–Skorohod integral for the processes with
values in spaces of abstract stochastic distributions we rewrite equation (1) in
differential form and apply the Hermite transform to reduce it to a deterministic
equation in the Hilbert space.

In section 2 we briefly describe the spaces of abstract stochastic distributions
and the framework we use for investigation of the problem. The details can be
found in [6]. Section 3 contains the main result.
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2. Framework

We will use the white noise probability space (S ′,B(S ′), µ), where S ′ is the
space of tempered distributions, B(S ′) is the Borel σ-algebra of S ′ and µ is the
unique probability measure on B(S ′) with

(2)
∫

S′
ei〈ω , θ〉dµ(ω) = e

− 1
2‖θ‖2L2(R) , θ ∈ S .

Let (L2) = L2(S ′, µ;R) be the space of R-valued functions on S ′ square inte-
grable with respect to µ. Let {ξk}∞k=1 be the orthonormal basis of L2(R) con-

sisting of the Hermite functions ξk(x) = π−
1
4
(
(k − 1)!

)− 1
2 e−

x2
2 hk−1(x), where

{hk(x)}∞k=0 is the set of Hermite polynomials hk(x) = (−1)ne
x2
2 (d/dx)ke−

x2
2 .

Let T ⊂ (
N ∪ {0})N be the set of all finite multi-indices. Stochastic Hermite

polynomials are defined by hα(ω) :=
∏

k hαk
(〈ω , ξk〉) , ω ∈ S ′ , α ∈ T . The

family {hα}α∈T constitutes an orthogonal basis in (L2) with

(hα , hβ)(L2) =

{
0 , α 6= β ,

α! , α = β ,
α! :=

∏

k

αk! .

Let H be a separable Hilbert space over C. Denote by (L2)(H) the space of
all H-valued functions Bochner square integrable with respect to µ on S ′. Let
{ej}∞j=1 be an orthonormal basis in H. The family {hαej}α∈T ,j∈N is an orthog-
onal basis of (L2)(H). For any f ∈ (L2)(H) we have the following expansions:

f =
∑

α∈T ,j∈N
fα,jhαej =

∑

α∈T
fαhα , fα,j ∈ R , fα =

∑

j

fα,jej ∈ H

with ‖f‖2(L2)(H) =
∑

α∈T ,j∈N α!|fα,j |2 =
∑

α∈T α!‖fα‖2H . For any p ∈ N, ρ ∈
[0; 1] denote by (Sp)ρ(H) the space of all ϕ =

∑
α∈T ϕαhα ∈ (L2)(H) with

‖ϕ‖2ρ,p :=
∑

α∈T
(α!)1+ρ‖ϕα‖2H

(
2N

)pα
< ∞ ,

where
(
2N

)pα :=
∏

n∈N(2n)pαn . It is a Hilbert space with the scalar product

(ϕ , ψ)ρ,p =
∑

α∈T
(α!)1+ρ(ϕα, ψα)H

(
2N

)pα
.

Let (S)ρ(H) = ∩p∈N(Sp)ρ(H) with the projective limit topology. We will call
it the space of H-valued stochastic test functions. Denote by (S)−ρ(H) its
dual, which coincides with ∪p∈N(S−p)−ρ(H) with the inductive limit topology,
where for any p ∈ N the space (S−p)−ρ(H) is the dual of (Sp)ρ(H). It can be
represented as the totality of all formal expansions of the form

Φ =
∑

α∈T ,j∈N
Φα,jhαej =

∑

α∈T
Φαhα , Φα =

∑

j∈N
Φα,jej ∈ H ,
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such that there exists p ∈ N with

‖Φ‖2−ρ,−p :=
∑

α∈T
(α!)1−ρ‖Φα‖2H

(
2N

)−pα
< ∞ .

We will call (S)−ρ(H) the space of H-valued stochastic distributions over
(S)ρ(H). So we have the next triple:

(3) (S)ρ(H) ⊂ (L2)(H) ⊂ (S)−ρ(H) .

Let n(·, ·) : N× N→ N be a bijection such that

(4) n(i, j) ≥ ij , i , j ∈ N .

Define the sequence of independent Brownian motions {βj(t)}∞j=1 by βj(t) =∑∞
i=1

∫ t

0
ξi(s) dshεn(i,j) , where εi := (0, 0, . . . , 1

i
, 0, . . . ), and a cylindrical H-

valued Wiener process by

W (t) =
∑

j∈N
βj(t)ej =

∑

n∈N
Wεn(t)hεn , Wεn(t) =

∫ t

0

ξi(n)(s) ds ej(n) ∈ H ,

where i(n) , j(n) ∈ N are such that n(i(n), j(n)) = n. It is easy to see that
W (t) /∈ (L2)(H) for any t ∈ R. At the same time, using the estimate

∫ t

0
ξi(s) ds =

O(i−
3
4 ) and (4), one can easily see that ‖W (t)‖2−1,−2 < ∞ .

So, W (t) ∈ (S−2)−1(H) ⊂ (S)−1(H).
Define the H-valued cylindrical white noise by

W(t) :=
∑

i,j∈N
ξi(t) (hεn(i,j)ej) =

∑

n∈N
Wεn(t)hεn ,

where Wεn(t) = ξi(n)(t) ej(n) ∈ H , i.e. as a formal derivative of W (t). Since
ξi(t) = O

(
i−

1
4
)
, one can see that ‖W(t)‖2−1,−2 < ∞ , which means that W(t) ∈

(S−2)−1(H) ⊂ (S)−1(H).
We call a sequence {Φn} ⊂ (S)−1(H) strongly convergent to Φ ∈ (S)−1(H),

if 〈Φn, φ〉 −→
n→∞

〈Φ, φ〉 uniformly on all bounded subsets of (S)1(H). The next
proposition gives a characterization of strong convergence.

Proposition 2.1. Let Φn =
∑

α Φ(n)
α hα ,Φ =

∑
α Φαhα ∈ (S)−1(H). The

following assertions are equivalent:

(i) {Φn} strongly converges to Φ;

(ii) There exists p ∈ N such that Φn ∈ (S−p)−1(H) for all n ∈ N, Φ ∈
(S−p)−1(H) and lim

n→∞
‖Φn − Φ‖−1,−p = 0;

(iii) {Φn} belongs to some (S−p)−1(H), is bounded with respect to ‖ · ‖−1,−p

and for any α ∈ T lim
n→∞

‖Φ(n)
α − Φα‖H = 0 .
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Let Φ(t) ∈ (S)−1(H) for all t ∈ R. We will call Θ ∈ (S)−1(H) a strong
derivative of Φ(t) at a point t ∈ R and denote it d

dtΦ(t), if Φ(s)−Φ(t)
s−t −→

s→t
Θ

strongly in (S)−1(H). From Proposition 2.1 it follows the next proposition.

Proposition 2.2. The derivative d
dtΦ(t) will exist if and only if there exist p ∈

N, δ > 0 and M > 0 such that for any s ∈ R |t−s| < δ ⇒ ‖Φ(t)−Φ(s)‖−1,−p ≤
M |t − s| and for any α ∈ T there exists Φ′α(t) = lims→t

Φα(s)−Φα(t)
s−t in H. In

this case d
dtΦ(t) =

∑
α Φ′α(t)hα .

It is easy to see that for the H-valued cylindrical Wiener process and white
noise we have d

dtW (t) = W(t) .
We will call a function Φ(·) : R → (S)−1(H) integrable on a measurable

C ⊆ R if there exists p ∈ N such that Φ(t) ∈ (S−p)−1(H) for any t ∈ C and Φ
is Bochner integrable on C as an (S−p)−1(H)-valued function.

Proposition 2.3. Let for any α ∈ T Φα(t) be a Bochner integrable on C H-

valued function and
∑

α

( ∫
C
‖Φα(t)‖Hdt

)2(
2N

)−pα
< ∞ for some p ∈ N. Then

Φ(·) : R→ (S)−1(H) is integrable on C and
∫

C

Φ(t) dt =
∑
α

∫

C

Φα(t) dthα .

Let H and H0 be separable Hilbert spaces and HS0 be the space of all linear
Hilbert–Schmidt operators acting from H0 to H. It is a separable Hilbert space,
therefore we can define the triple

(S)ρ(HS0) ⊂ (L2)(HS0) ⊂ (S)−ρ(HS0)

in the same manner as the triple (3).

Definition 2.4. Let Ψ ∈ (S)−1(HS0) , Ψ =
∑

α∈T Ψαhα, where Ψα ∈ HS0 , α ∈
T and Φ ∈ (S)−1(H0), Φ =

∑
α∈T Φαhα, where Φα ∈ H0 , α ∈ T . The Wick

product of Ψ and Φ is defined by

Ψ ¦ Φ :=
∑

γ∈T


 ∑

α+β=γ

ΨαΦβ


hγ .

The next proposition is proved by the same scheme as its real-valued analog
in [4].

Proposition 2.5. For any Ψ ∈ (S)−1(HS0) , and Φ ∈ (S)−1(H0) their Wick
product is well defined as an element of (S)−1(H).

For any linear symmetric positive nuclear operator Q, denote by HQ the
space Q

1
2 (H) endowed with the scalar product (u , v)HQ = (Q−

1
2 u , Q− 1

2 v)H .
For the above defined H-valued cylindrical white noise we have:
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Proposition 2.6. W(t) ∈ (S)−1(HQ), t ∈ R for any Q =
∑∞

j=1 σ2
j (ej ⊗ ej) , 3

with
∑∞

j=1 σ2
j < ∞, satisfying

(5)
∞∑

j=1

σ−2
j j−p < ∞ for some p ∈ N .

Proof. We have

‖Wεn(i,j)‖2HQ

(
2N

)−pεn(i,j) = |ξi(t)|2σ−2
j

(
2n(i, j)

)−p

≤ |ξi(t)|2
σ2

j

(
2ij

)p

= O
(
σ−2

j i−p− 1
2 j−p

)

Hence the assertion follows.

Let HSQ be the space of all Hilbert–Schmidt operators acting from HQ to
H. From Proposition 2.6 it follows that if the operator Q satisfies condition (5),
then for any (S)−1(HSQ)-valued random process Ψ(t), the (S)−1(H)-valued
random process Ψ(t) ¦W(t) is well defined.

The next definition is a generalization of the Ito integral
∫ T

0
Ψ(t) dW (t) with

respect to a cylinder Wiener process.

Definition 2.7. We will call an (S)−1(HSQ)-valued random process Ψ(t) Hitsuda–
Skorohod integrable on [0; T ] if Ψ(t)¦W(t) is integrable on [0; T ] as an (S)−1(H)-
valued function. In that case we will call the integral

∫ T

0

Ψ(t) ¦W(t) dt

Hitsuda–Skorohod integral of Ψ(t).

Definition 2.8. For any Φ =
∑

α∈T Φαhα ∈ (S)−1(H), where Φα ∈ H, denote
its Hermite transform by HΦ, and defines it by

(6) HΦ(z) :=
∑

α∈T
Φαzα ,

where z = (z1, z2, . . . ) ∈ CN and zα = zα1
1 zα2

2 · . . . for α ∈ T , if the series (6)
converge in HC.

We will use the next neighborhoods of zero in CN:

Kp :=
{
z ∈ CN , |zi| ≤ (2i)−p , i ∈ N}

.

3For any v ∈ V , u ∈ U , where V and U are Hilbert spaces, we denote by v⊗u the operator,
belonging to L(U, V ), defined by (v ⊗ u)h := v(u , h)U .
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Now we list the basic properties of the Hermite transform that will be used
later. They are proved in a similar manner as the corresponding properties in
the real valued case. See details for the H-valued case in [6].

In the sequel we denote A(p) :=
∑

α∈T
(
2N

)−pα which is convergent for
p > 1 (see [4]).

Proposition 2.9. For any Φ =
∑

α∈T Φαhα ∈ (S)−1(H) there exists p ∈
N \ {1} such that HΦ(z) converges absolutely for all z ∈ Kp and

∑

α∈T
‖Φα‖H |zα| ≤ ‖Φ‖−1,−p

√
A(p) .

Proposition 2.10. Let Φ̂(z) =
∑

α∈T Φαzα with Φα ∈ H, where the series is
absolutely convergent in HC for z ∈ Kp for some p ∈ N. Then Φ =

∑
α∈T Φαhα

defines an element of (S)−1(H) with HΦ = Φ̂.

Proposition 2.11. Let X(·), F (·) : [a, b] → (S)−1(H). The next assertions are
equivalent:

1. X(·) is differentiable on [a, b] and X ′(t) = F (t) for t ∈ [a, b];

2. There exists p ∈ N \ {1} such that for all t ∈ [a, b] the Hermite transforms
HX(t, z) and HF (t, z) exist and are absolutely convergent for all z ∈ Kp

and ∂
∂tHX(t, z) = HF (t, z) , (t, z) ∈ [a, b]×Kp .

Proposition 2.12. Let Φ ∈ (S)−1(H0), Ψ ∈ (S)−1(HS0). Then, for all z ∈ CN
such that both HΦ(z) and HΨ(z) exist, it holds

H(
Ψ ¦ Φ

)
(z) = HΨ(z)HΦ(z) .

3. The Cauchy problem for a linear operator-differential
equation with multiplicative noise

Let A be a linear operator acting from Hilbert space H1 to Hilbert space H2.
We define its action on (S)−1(H1) in the next way. If A ∈ L(H1,H2), define

(7) AΦ :=
∑

α∈T
AΦαhα , Φ =

∑

α∈T
Φαhα ∈ (S)−1(H1) .

This evidently defines a linear continuous operator from (S)−1(H1) to (S)−1(H2).
If A is unbounded, define (dom A) as the set of all

∑
α∈T Φαhα ∈ (S)−1(H1)

such that Φα ∈ domA for all α ∈ T and
∑

α∈T
‖AΦα‖2H2

(
2N

)−2pα
< ∞

for some p ∈ N. Then formula (7) defines on (domA) a linear operator acting
from (S)−1(H1) to (S)−1(H2). It’s easy to see that it is closed if A is a closed
operator from H1 to H2. It is easy to prove the next statement.
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Proposition 3.1. Let A be a linear closed operator acting from Hilbert space
H1 to Hilbert space H2. For any Φ =

∑
α∈T Φαhα ∈ (domA) there exists

p ∈ N \ {1} such that for all z ∈ Kp HΦ(z) ∈ domA and

AHΦ(z) =
∑

α∈T
AΦαzα .

Let A be a linear closed operator in a Hilbert space H, B(·) ∈ L(
H,L(H)

)
,

Φ ∈ (domA) ⊆ (S)−1(H). Consider the Cauchy problem

(8)
dX(t)

dt
= AX(t) + B

(
X(t)

) ¦W(t) , t ≥ 0 , X(0) = Φ .

It can be obtained by introducing the Hitsuda–Skorohod integral instead of the
Ito one in (1) and differentiating with respect to t. We will study the existence
of a strong solution of (8) in (S)−1(H), i.e. an (S)−1(H)-valued differentiable
function satisfying (8). Note that if Q is a nuclear operator in H satisfying the
condition of Proposition 2.6 for some p ∈ N, then since B

(
X(t)

) ∈ (S)−1(HSQ)
for any X(t) ∈ (S)−1(H), the Wick product in (8) is well defined.

We will further suppose that the operator B in equation (8) satisfies the
following assumption

Assumption B For any x ∈ H

(9) B(domA)x ⊆ domA

and the commutator of A and B(·)x defined by the equality [A,B(·)x] y :=
AB(y)x−B(Ay)x , y ∈ domA is bounded.

Example 1. Let H = L2(R), A = d
dx with domA = {y ∈ L2(R) , dy

dx ∈ L2(R)}.
For B(·) ∈ L(

H;L(H)
)
, defined by [B(u)v](s) := u(s)

∫
R ψ(s−τ)v(τ) dτ , where

ψ ∈ C∞(R) has compact support, assumption B is true.

Applying the Hermite transform to both sides of (8) we come to the next
problem:

∂

∂t
X̂(t, z) = AX̂(t, z) + B

(
X̂(t, z)

)
Ŵ(t, z),(10)

t ≥ 0, X̂(0, z) = Φ̂(z), z ∈ Kp.

where X̂(t, z) = H[X(t)](z), Ŵ(t, z) = H[W(t)](z), Φ̂(z) = HΦ(z) and Kp with
p ∈ N \ {1} is such that Φ̂(z) and Ŵ(t, z) , t ∈ R, are absolutely convergent
and Φ̂(z) ∈ domA for all z ∈ Kp. Let B̂(t, z) = B(·)Ŵ(t, z), then we have
B̂(t, z) ∈ L(H) for all t ∈ R and z ∈ Kp and we can write (10) in the next way:

∂

∂t
X̂(t, z) = AX̂(t, z) + B̂(t, z)X̂(t, z),(11)

t ≥ 0, X̂(0, z) = Φ̂(z), z ∈ Kp.
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Let A be the generator of a C0-semigroup {S(t) , t ≥ 0}. Define the sequence
of operators {Tk(t, z)} , t ≥ 0 , z ∈ Kp by

T0(t, z) = S(t),

Tk(t, z)x =
∫ t

0

S(t− s)B̂(s, z)Tk−1(s, z)x ds , x ∈ H k = 1, 2, . . . .(12)

Lemma 3.2. For any t ≥ 0, z ∈ Kp and k ∈ N

(13) ‖Tk(t, z)‖L(HC) ≤ Mk+1‖B‖kCkeat t
k

k!
,

where M > 0 and a ∈ R are such that ‖S(t)‖ ≤ Meat for t ≥ 0, ‖B‖ =
‖B‖L(H,L(H)), C = 2−p sup

n∈N

(
n

1
12 sup

t∈R
|ξn(t)|) ∑

n∈N
n−p− 1

12 .

Proof. Suppose (13) holds for some k ∈ N, then for x ∈ HC we have

‖Tk+1(t, z)x‖HC =

∥∥∥∥∥
∫ t

0

S(t− s)
∑

n∈N
ξi(n)(s)B

(
Tk(s, z)x

)
ej(n)z

εn ds

∥∥∥∥∥ ≤

≤
∑

n∈N

∫ t

0

|ξi(n)(s)|
∥∥S(t− s)B

(
Tk(s, z)x

)
ej(n)

∥∥ ds |zεn | ≤

≤ M‖B‖
∫ t

0

ea(t−s)‖Tk(s, z)x‖ ds
∑

n∈N
(2n)−p sup

s∈R
|ξi(n)(s)| ≤

≤ Mk+2‖B‖k+1Ck+1eat

∫ t

0

sk

k!
ds = Mk+2‖B‖k+1Ck+1eat tk+1

(k + 1)!
.

Since (13) is true for k = 0, by induction it is true for all k ∈ N.

Define

(14) X̂(t, z) =
∞∑

k=0

Tk(t, z) .

It follows from Lemma 3.2 that the series (14) is absolutely convergent in L(HC)
for all t ≥ 0 and z ∈ Kp. Thus X̂(t, z) ∈ L(HC), with ‖X̂(t, z)‖L(HC) ≤
Me(a+MC‖B‖)t. For Φ ∈ (domA) by the properties of C0-semigroups, we obtain
T0(t, z)Φ̂(z) ∈ domA for all t ≥ 0 and z ∈ Kp. Condition (9) implies that
for all t ≥ 0 and z ∈ Kp we have B̂(s, z)(domA) ⊆ domA. Therefore, by
induction we obtain that Tk(t, z)Φ̂(z) ∈ domA for Φ ∈ (domA) , k ∈ N, t ≥ 0
and z ∈ Kp. Condition (9) also implies that B̂(s, z)Tk(s, z)Φ̂(z) ∈ domA for
Φ ∈ (domA) , k ∈ N ∪ {0} and

∂

∂t
S(t− s)B̂(s, z)Tk(s, z)Φ̂(z) = AS(t− s)B̂(s, z)Tk(s, z)Φ̂(z) , t ≥ 0 , z ∈ Kp .
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Thus for Φ ∈ (domA) we have

∂

∂t
T0(t, z)Φ̂(z) = AT0(t, z)Φ̂(z) ,(15)

∂

∂t
Tk(t, z)Φ̂(z) =

∫ t

0

AS(t− s)B̂(s, z)Tk−1(s, z)Φ̂(z) ds +(16)

+B̂(t, z)Tk−1(t, z)Φ̂(z) .

Since A is closed we can rewrite (16) as

(17)
∂

∂t
Tk(t, z)Φ̂(z) = ATk(t, z)Φ̂(z) + B̂(t, z)Tk−1(t, z)Φ̂(z) .

We will use the next estimate for Ŵ (t, z), t ≥ 0, z ∈ Kp:

(18) ‖Ŵ (t, z)‖HC ≤
∑

n∈N
|ξi(n)(t)zn| ≤

∑

i,j∈N

supi∈N
(
i

1
12 supt∈R |ξi(s)|

)

i
1
12 (2ij)p

=: Mw .

Note also that from Assumption B, by the uniform boundedness principle, it
follows that there exists K > 0 such that for all x ∈ H

(19)
∥∥[A, B(·)x]

∥∥
L(H)

≤ K‖x‖ .

Lemma 3.3. For any Φ ∈ (domA), k ∈ N, t ≥ 0 and z ∈ Kp

(20)∥∥∥ATk(t, z)Φ̂(z)
∥∥∥ ≤ Mk+1‖B‖k−1Ck−1eat t

k

k!

(
C‖B‖ ‖AΦ̂(z)‖+ MwK‖Φ̂(z)‖

)
,

where M , a, C are as in Lemma 3.2, Mw is defined by (18) and K is from (19).

Proof. For Φ ∈ (domA), k ∈ N we have

ATk(t, z)Φ̂(z) =
∫ t

0

AS(t− s)B̂(s, z)Tk−1(s, z)Φ̂(z) ds =

∫ t

0

S(t− s)
(
B̂(s, z)A + [A, B̂(s, z)]

)
Tk−1(s, z)Φ̂(z) ds =

= Tk(t, z)AΦ̂(z) +
∫ t

0

AS(t− s)[A, B̂(s, z)]Tk−1(s, z)Φ̂(z) ds .

Using this representation and the estimate (13) we obtain (20).

From Lemmas 3.2 and 3.3 follows convergence of the series
∑∞

k=0 ATk(t, z)Φ̂(z)
and

∑∞
k=0 B̂(t, z)Tk(t, z)Φ̂(z) in HC for all t ≥ 0 and z ∈ Kp. Taking the sum

of equalities (15) and (17) with k = 1, 2, . . . , we obtain that X̂(t, z) solves the
problem (11). By Proposition 2.10, there exists X(t) ∈ (S)−1(H) such that
X̂(t, z) = H[X(t)](z) and it is a solution of the problem (8).

Thus we obtain the following result:

Theorem 3.4. Let A be the generator of a C0-semigroup, B(·) ∈ L(H,L(H)
)

and Assumption B be true. Then for all Φ ∈ (domA) the Cauchy problem (8)
has a strong solution in (S)−1(H).
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