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ON A SEMI-LINEAR ELLIPTIC EQUATION WITH
COEFFICIENTS WHICH ARE GENERALIZED

FUNCTIONS

Kamal N. Soltanov1

Abstract. This article investigates a certain class of the semilinear
elliptic equations in which the nonlinear part has a term, the coefficient,
that is a generalized function. We considered the problem which is, for
instance, a semiclassical NLS type of problem, and prove a theorem on its
solvability.
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We consider the following problem

(1) −∆u + f (x, u) = h (x) , x ∈ Ω ⊂ Rn,

(2) u | ∂Ω = 0, n ≥ 1

where h (x) is a generalized function (h ∈ W−1
2 (Ω)), Ω is a bounded domain

with sufficiently smooth boundary ∂Ω. And we investigate the existence of
solutions for the f (x, u) that is represented as f (x, u) = q (x) |u (x)|p−2

u (x) +
f0 (x, u (x)), where f0 : Ω× R1 −→ R1 is a Caratheodory function2 and q (x)
is a generalized function, p ≥ 2. It is known that in this case the equation (1)
is an equation of the semiclassical Nonlinear Schrodinger type (i.e. NLS) (see,
[1, 2, 3, 6, 10] and references therein). Considerable attention has been paid
in recent years to the problem (1) for small ε > 0 as the Laplacian coefficient
since the solutions are known as in the semiclassical states, which can be used
to describe the transition from Quantum to Classical Mechanics (see, [3, 5, 7,
11, 12, 14, 16, 17, 23, 24, 25] and references therein).

The equations of such type were studied in many articles under different
conditions on the function f (see, for example, [4, 8, 9, 13, 18, 19, 20, 22]
and references therein). In these articles the equation (1) was considered with
various functions f(x, u) that are mainly Caratheodory functions with some
additional properties. Although such cases when f(x, u) possesses a singularity

1Department of Mathematics, Faculty of Sciences, Hacettepe University, Beytepe, Ankara,
TR-06532, Turkey, e-mail: soltanov@hacettepe.edu.tr

2Let f : Ω × Rm −→ R be a given function, where Ω is a nonempty measurable set in
Rn and n, m ≥ 1. Then f is Caratheodory function if the following holds: x −→ f (x, η) is
measurable on Ω for all η ∈ Rm, and η −→ f (x, η) is continuous on Rm for almost all x ∈ Ω.
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with respect to the variable x of certain type were also investigated (as equations
Emden-Fowler, Yamabe, NLS, etc.), but in all of these articles the coefficient
q (x) is a function in the usual sense (of a Lebesgue space). Here an existence
theorem for the problem (1) - (2) is proved in the model case when f (x, u) only
has the above expression (section 4). In section 2 we have explained how to
understand the equation (1) with use of representation of certain generalized
functions and properties of some special class of functions. In section 3 we have
presented some general results from [21, 22], on which the proof of the solvability
of the theorem is based.

1. Statement of the Main Solvability Result

Let the operator f (x, u) have the form

(3) f (x, u) = q (x) |u|p−2
u + f0 (x, u)

in the generalized sense, where q ∈ W−1
p0

(Ω), p0 ≥ 2 (it should be noted that
either p0 ≡ p0 (p) or p ≡ p (p0)) and u (x) is an element of the space of sufficiently
smooth functions that will be determined below (see, Section 2). Consequently,
the function q (x) is a generalized function, which has singularity of the order 1.

Assume (i) f0 (x, τ) is a Caratheodory function on Ω× R1 and there exist
numbers p̃, p1 ≥ 1, c > 0 such that

(4) |f0 (x, η)− f0 (x, ξ)| ≤ c
(
|η|p̃−1 + |ξ|p̃−1

)
|η − ξ| ,

holds for a.e. x ∈ Ω and any η, ξ ∈ R1, moreover f0 (x, 0) ∈ Lp1 (Ω), p1 ≥ n+2
n−2 ,

where p̃ < n+2
n−2 if n ≥ 3, p̃ ∈ [1,∞) if n = 1, 2;

(ii) there exist numbers 2 ≥ θ ≥ 0, k0 (θ) ≥ 0, c0 ≥ 0, p2 ≥ 1 and k1 ∈ R1

such that 1 ≤ p2 ≤ 2n
n−2 , if n ≥ 3, 1 ≤ p2 < ∞, if n = 1, 2 and

(5) 〈f0 (x, u) , u〉 ≥ −k0 (θ) ‖u‖θ
p2
− c0

∫

Ω

q (x) |u (x)|p dx + k1

holds for any u ∈
0

W 1
2 (Ω), where 〈·, ·〉 (here and in the sequel) denote the dual

form for the pair (X, X∗) of the Banach space X and its dual space X∗, in this

case we have
(

0

W 1
2 (Ω) ,W−1

2 (Ω)
)

, k0 (θ) ≥ 0 is arbitrary if 0 ≤ θ < 2, and

1 > C (2, p2)
−2 · k0 (2) ≥ 0 if θ = 2; 1 ≥ c0 ≥ 0 3.

3here C (2; p2) is the constant of the known inequality of Embedding Theorems for Sobolev
spaces

‖∇u‖2 ≥ C (2; p2) ‖u‖p2
, ∀u ∈

0
W 1

2 (Ω) .
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Definition 1.1. A function u ∈
0

W 1
2 (Ω) is called a solution of the problem (1)

- (2) if the following equation is fulfilled

(6)
∫

Ω

[−∆u + f (x, u)] ϕ dx =
∫

Ω

h ϕ dx

for any ϕ ∈
0

W 1
2 (Ω).

It should be noted that the sense in which equation (6) is to be understood
will be explained below (section 2). We have proved the following result for the
considered problem.

Theorem 1.2. Let the function f have the representation (3) in the generalized
sense, where q ∈ W−1

p0
(Ω) is a nonnegative distribution (generalized function,4),

p0 = 2n
2(n−1)−p(n−2) ,

2(n−1)
n−2 > p > 2 if n ≥ 3; p0, p > 2 are arbitrary if n = 2,

and p0, p ≥ 2 are arbitrary if n = 1 (in particular, if n = 3 then 2 < p < 4
and p0 = 6

4−p) and f0 : Ω× R1 −→ R1 is a Caratheodory function such that
conditions (i), (ii) are fulfilled. Then for any h ∈ W−1

2 (Ω) the problem (1) -

(2) is solvable in
0

W 1
2 (Ω).

For the investigation of the considered problem we used some general solv-
ability theorems, which are conducted in section 3. We begin with explanation
of equation (6).

2. The Solution Concept and Function Spaces

So we will consider the case when the function f (x, u) has the form (3),
where the functions q and u are the same as above. Consequently, the function
q (x) is a generalized function, which has singularity of order 1. Therefore we
must understand the equation (1) in the sense of the generalized function space,
i.e.
∫

Ω

[−∆u + f (x, u)] ϕ (x) dx ≡
∫

Ω

[
−∆u (x) + q (x) |u (x)|p−2

u (x) + f0 (x, u (x))
]

ϕ (x) dx =
∫

Ω

h (x)ϕ (x) dx

for any ϕ ∈ D (Ω), where D (Ω) is C∞0 (Ω) and suppϕ ⊂ Ω with the correspond-
ing topology.

In the beginning we need to define the expression q |u|p−2
u. It is known

that (see, for example, [15]) in the case when q ∈ W−1
p0

(Ω) we can represent

it in the form q (x) ≡
n∑

i=0

∂
∂xi

qi (x), ∂
∂x0

≡ I, qi ∈ Lp0 (Ω), i = 0, 1, n in the

4see, Definition 2 of the section 2
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sense of generalized function space. From here it follows that if a solution of

the considered problem belongs to the space which contains
0

W 1
p̃1

(Ω) for some
number p̃1 ≥ 1, then we can understand the term q |u|p−2

u in the following
sense

(7)
〈
q |u|p−2

u, ϕ
〉
≡

∫

Ω

q (x) |u (x)|p−2
u (x)ϕ (x) dx

for any ϕ ∈ D (Ω). Therefore we must find the needed number p̃1 ≥ 1. Namely,
we have to find the relation between the numbers p0 and p̃1. So, taking into

account that for a function u ∈
0

W 1
2 (Ω), i.e. p̃1 = 2 (as h ∈ W−1

2 (Ω) by the
assumption) we have u ∈ Lp̃∗1 (Ω), where p̃∗1 = 2∗ = 2n

n−2 for n ≥ 3 by virtue of
the embedding theorem, from (7) we get

〈
q |u|p−2

u, ϕ
〉
≡

∫

Ω

q (x) |u (x)|p−2
u (x) ϕ (x) dx

=
∫

Ω

n∑

i=0

∂

∂xi
qi (x) |u (x)|p−2

u (x)ϕ (x) dx = −
∫

Ω

n∑

i=1

qi |u|p−2
u

∂ϕ

∂xi
dx

− (p− 1)
∫

Ω

n∑

i=1

qi |u|p−2 ∂u

∂xi
ϕdx +

∫

Ω

q0 |u|p−2
uϕdx

= I1 + I2 +
∫

Ω

q0 |u|p−2
uϕdx

(8)

by virtue of the generalized function theory.
Here and in what follows we assume n ≥ 3. Because if n = 1, 2 then we

can choose arbitrary p ≥ 2, as will be observed below. Let us take into account
that ϕ ∈ D (Ω) and n ≥ 3, then in order for the expression in the left part
of (8) to have the meaning, it is enough for us to take 1 ≤ p − 1 ≤ 2n(p0−1)

p0(n−2)

for the integral I1 and 0 ≤ p − 2 ≤ n(p0−2)
p0(n−2) for the integral I2. Therefore, if

2 ≤ p ≤ 3np0−2(n+2p0)
p0(n−2) then the left part of (8) is defined. Now, let ϕ ∈

0

W 1
2 (Ω) .

Then it is sufficient to study one of the I1 and I2. Let us consider I1, from
which we obtain that 2 ≤ p ≤ 2np0−2(n+p0)

p0(n−2) , moreover we can choose p ≥ 2 only
if p0 > n. On the other hand, if we take into account the given p, we obtain
p0 = 2n

2(n−1)−p(n−2) , and consequently, in order for p0 < ∞, we must choose

2 (n− 1) > p (n− 2) or p < 2(n−1)
n−2 . In the case when n = 3 then p < 4 and

p0 = 6
4−p .

Thus we determined under what conditions the left part of (8) is defined.
Hence, this implies the correctness of the statement

Proposition 2.1. Assume f̃ be an operator defined by expression f̃ (u) ≡
q |u|p−2

u, where q ∈ W−1
p0

(Ω), and u ∈
0

W 1
2 (Ω). If 2 ≤ p < 2(n−1)

n−2 and
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p0 = 2n
2(n−1)−p(n−2) if n ≥ 3 (in particular, if n = 3 then 2 ≤ p < 4 and

p0 = 6
4−p) then f̃ :

0

W 1
2 (Ω) −→ W−1

2 (Ω) is a bounded operator.

And also, the following statements are true5.

Lemma 2.2. Let u ∈
0

W 1
2 (Ω) and the number p satisfy the inequation 2 < p <

2(n−1)
n−2 , n ≥ 3. Then the function v (x) ≡ η (u (x)) ≡ |u (x)|p belongs to

0

W 1
β (Ω)

for any β ∈ [1, p′0], where p0 = 2n
2(n−1)−p(n−2) and p′0 = p0

p0−1 = 2n
p(n−2)+2 . (It is

obvious: u ∈
0

W 1
2 (Ω) =⇒ v ≡ |u|p ∈

0

W 1
β (Ω) for any β ∈ [1, 2) if n = 2, and

for any β ∈ [1, 2] if n = 1.)

Corollary 2.3. Let u,w ∈
0

W 1
2 (Ω) and the number p be such that 2 < p <

2(n−1)
n−2 , n ≥ 3. Then the function v (x) ≡ |u (x)|p−2

u (x)w (x) belongs to
0

W 1
β (Ω) (i.e. v ∈

0

W 1
β (Ω)) for any β ∈ [1, p′0], where p0 = 2n

2(n−1)−p(n−2)

and p′0 = p0
p0−1 .

Now we introduce a concept of the nonnegative generalized function

Definition 2.4. A generalized function q (x) is called a non-negative distribu-
tion (“q ≥ 0”) iff 〈q, ϕ〉 ≥ 0 holds for any non-negative test function ϕ ∈ D (Ω).

3. General Solvability Results

Let X, Y be reflexive Banach spaces and X∗, Y ∗ their dual spaces, moreover
Y is a reflexive Banach space with strictly convex norm together with Y ∗ (see,
for example, references of [21]). So we present variant of the main result of [21]
(the more general cases can be found in [22]). Consider the following conditions:

(a) X, Y be Banach spaces such as above and f : D (f) ⊆ X −→ Y be
a continuous mapping, moreover the closed ball BX

r0
(0) ⊂ X belongs to D (f)

(BX
r0

(0) ⊆ D (f));
The following conditions are fulfilled on the closed ball BX

r0
(0) ⊆ D (f) :

(b) f is a bounded mapping, i.e. ‖f (x)‖Y ≤ µ (‖x‖X) holds for ∀x ∈ BX
r0

(0)
where µ : R1

+ −→ R1
+ is a continuous function;

(c) there is a mapping g : D (g) ⊆ X −→ Y ∗, and a continuous function
ν : R1

+ −→ R1 nondecreasing for τ ≥ τ0 such that D (f) ⊆ D (g), and for
any SX

r (0) ⊂ BX
r0

(0), 0 < r ≤ r0, closure of g
(
SX

r (0)
) ≡ SY ∗

r (0), SX
r (0) ⊆

g−1
(
SY ∗

r (0)
)

(3.1) 〈f (x) , g (x)〉 ≥ ν (‖x‖X) ‖x‖X , a.e. x ∈ BX
r0

(0) & ν (r0) ≥ δ0 > 0

holds, here δ0 > 0, τ0 ≥ 0 are constants;
5For additional explanation of these results see, for example, Soltanov K. N. - J. Nonlinear

Analysis : T.M. & APPL. (2006), 65, 2103-2134
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(d) almost each x̃ ∈ intBX
r0

(0) possesses a neighborhood Vε (x̃), ε ≥ ε0 > 0
such that the inequation

(3.2) ‖f (x2)− f (x1)‖Y ≥ Φ(‖x2 − x1‖X , x̃, ε) + ψ (‖x1 − x2‖Z , x̃, ε)

holds for any x1, x2 ∈ Vε (x̃) ∩ BX
r0

(0), where Φ (τ, x̃, ε) ≥ 0 is a continuous
function of τ and Φ (τ, x̃, ε) = 0 ⇔ τ = 0 (in particular, may be x̃ = 0,
ε = ε0 = r0 and Vε (x̃) = Vr0 (0) ≡ BX

r0
(0), consequently Φ (τ, x̃, ε) ≡ Φ(τ, 0, r0)

on BX
r0

(0)), Z is a Banach space and the inclusion X ⊂ Z is compact, and
ψ (·, x̃, ε) : R1

+ −→ R1 is a continuous function at τ and ψ (0, x̃, ε) = 0.

Theorem 3.1. Let the conditions (a), (b), (c), (d) be fulfilled. Then the image
f

(
BX

r0
(0)

)
of the ball BX

r0
(0) is a bodily subset (i.e. with nonempty interior) of

Y , moreover f
(
BX

r0
(0)

)
contains a bodily subset M that has the form

M ≡ {
y ∈ Y | 〈y, g (x)〉 ≤ 〈f (x) , g (x)〉 , ∀x ∈ SX

r0
(0)

}
.

Now we present a solvability theorem for the nonlinear equation in Banach
spaces, which is proved using Theorem 3.1. Let F0 : D (F ) ⊆ X −→ Y and
F1 : D (F1) ⊆ X −→ Y be some nonlinear mappings such that D (F0)∩D (F1) =
G ⊆ X and G 6= ∅. Consider the following equation

(3.3) F (x) ≡ F0 (x) + F1 (x) = y, y ∈ Y

where y is an arbitrary element of Y .
Let BX

r (0) ⊆ D (F0) ∩ D (F1) ⊆ X be a closed ball, r > 0 be a number.
Consider the following conditions:

1) F0 : BX
r (0) −→ Y is a bounded continuous operator together with its

inverse operator F−1
0 , (as F−1

0 : D
(
F−1

0

) ⊆ Y −→ X);
2) F1 : BX

r (0) −→ Y is a nonlinear continuous operator;
3) There are continuous functions µi : R1

+ −→ R1
+ , i = 1, 2 and ν : R1

+ −→
R1 such that the inequations

‖F0 (x)‖Y ≤ µ1 (‖x‖X) & ‖F1 (x)‖Y ≤ µ2 (‖x‖X) ,

〈F0 (x) + F1 (x) , g (x)〉 ≥ c 〈F0 (x) , g (x)〉 ≥ ν (‖x‖X) ‖x‖X

hold for any x ∈ BX
r (0), moreover ν (r) ≥ δ0 holds for some number δ0 > 0,

where the mapping g : BX
r (0) ⊆ D (g) ⊆ X −→ Y ∗ fulfills the conditions of

Theorem 3.1, c > 0 is some number.
4) Almost each x̃ ∈ intBX

r (0) possesses a neighborhood BX
ε (x̃), ε ≥ ε0 > 0,

such that the inequation

‖F (x1)− F (x2)‖Y ≥ c1 ‖F0 (x1)− F0 (x2)‖Y ≥
k0 (‖x1 − x2‖X , x̃, ε)− k1 (‖x1 − x2‖Z , x̃, ε) , X b Z

holds for any x1, x2 ∈ BX
ε (x̃) and some number ε0 > 0, where ki (τ, x̃, ε) ≥ 0,

i = 0, 1 are continuous functions of τ for any given x̃, and such that k0 (τ, x̃, ε) =
0 ⇐⇒ τ = 0, k1 (0, x̃, ε) = 0, and X b Z (i.e. X ⊂ Z is compact).

Then the following statement is true, which follows from Theorem 3.1 .
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Theorem 3.2. Let the conditions 1, 2, 3, 4 be fulfilled. Then equation (3.3)
has a solution in the ball BX

r (0) for any y ∈ Y satisfying the inequation

〈y, g (x)〉 ≤ ν (‖x‖X) ‖x‖X , ∀x ∈ SX
r (0) .

4. Proof of Theorem 1.2

To apply Theorem 3.2 to the considered problem (1) - (2) we define the
corresponding spaces and mappings in the following form

X ≡
0

W 1
2 (Ω) , Y ≡ W−1

2 (Ω) ≡ X∗, F0 ≡ −∆, F1 (u) ≡ f (x, u) , g ≡ id ≡ I

and we assume (3) in the corresponding sense, the number p > 2 and the
function f0 (x, ξ) satisfying all conditions of Theorem 1.2.

The defined spaces and mappings F0, g satisfy the conditions of Theorem 3.2

on the ball B
0

W 1
2

r (0) for each number r > 0. Indeed, it is enough to show that
the inequations of Theorem 3.2 are fulfilled. As known ‖∆u‖W−1

2
≡ ‖u‖ 0

W 1
2

holds for any u ∈
0

W 1
2 (Ω). Let u ∈

0

W 1
2 (Ω). Then we have

‖f (x, u)‖W−1
2
≤

∥∥∥q (x) |u|p−2
u + f0 (x, u)

∥∥∥
W−1

2

≤

(9)
∥∥∥q (x) |u|p−2

u
∥∥∥

W−1
2

+ ‖f0 (x, u)‖W−1
2

From Proposition 2.1 and Lemma 2.2 it follows that the first term in the right
part is bounded , i.e.

∥∥∥q (x) |u|p−2
u
∥∥∥

W−1
2

= sup

〈
q (x) |u|p−2

u,w
〉

‖w‖ 0
W 1

2

≤
‖q (x)‖W−1

p0

∥∥∥|u|p−2
u · w

∥∥∥
W−1

p‘
0

‖w‖ 0
W 1

2

≤ ‖q (x)‖W−1
p0

1
‖w‖ 0

W 1
2

{
[u]p−1

0
S1,(p−1)p‘

0,p‘
0

+ ‖u‖p−1
2n

n−2

}
‖w‖ 0

W 1
2

≤ C0 ‖q (x)‖W−1
p0
‖u‖p−1

0
W 1

2

=⇒
∥∥∥q (x) |u|p−2

u
∥∥∥

W−1
2

≤ C0 ‖q (x)‖W−1
p0
‖u‖p−1

0
W 1

2

.
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If we expand inequation (9), using condition (i) we get

‖f (x, u)‖W−1
2
≤ C0 ‖q (x)‖W−1

p0
‖u‖p−1

0
W 1

2

+
∥∥∥c |u|p̃

∥∥∥
W−1

2

+ ‖f0 (x, 0)‖W−1
2

≤ C0 ‖q (x)‖W−1
p0
‖u‖p−1

0
W 1

2

+ c ‖u‖p̃
p̃ + ‖f0 (x, 0)‖p1

≡ µ

(
‖u‖ 0

W 1
2

)
.

Hence we obtain that F :
0

W 1
2 (Ω) −→ W−1

2 (Ω) is a bounded operator.

Now we estimate the dual form 〈F (u) , u〉 for any u ∈
0

W 1
2 (Ω), for which

we have

〈F (u) , u〉 ≡
〈
−∆u + q (x) |u|p−2

u + f0 (x, u) , u
〉

= ‖∇u‖22 +
〈
q (x) |u|p−2

u, u
〉

+ 〈f0 (x, u) , u〉

≥ ‖∇u‖22 + (1− c0)
∫

Ω

q (x) |u|p dx− k0 (θ) ‖u‖θ
p2

+ k1.

Taking into account the expression of the dual form and conditions of Theorem
1.2 and using Definition 1, and the Young inequality we obtain

〈F (u) , u〉 ≥ δ ‖∇u‖22 + k2 =
(
δ ‖∇u‖2 + k2 ‖∇u‖−1

2

)
‖∇u‖2

i.e. ν (τ) ≡ δτ + k2τ
−1, if θ < 2, δ = 1 − k0 (θ) ε0, k2 = k1 − C (ε0, θ), where

ε0 > 0 is a sufficiently small number, C (ε0, θ) corresponds to ε0; and if θ = 2
then δ = 1− C (2, p2)

−2 · k0 (2), k2 = k1.

Further we show that condition 4 is fulfilled in a ball B
0

W 1
2

r (0) for some

r > 0. So, if we assume u, v ∈
0

W 1
2 (Ω) then we get

〈F (u)− F (v) , u− v〉
= ‖∇ (u− v)‖22 +

〈
q (x)

(
|u|p−2

u− |v|p−2
v
)

, u− v
〉

+ 〈f0 (x, u)− f0 (x, v) , u− v〉
≥ ‖∇ (u− v)‖22 − ‖f0 (x, u)− f0 (x, v)‖W−1

2
‖u− v‖ 0

W 1
2

≥ ‖∇ (u− v)‖22 − c
(
‖u‖p̃−1

2∗ + ‖v‖p̃−1
2∗

)
‖u− v‖p̃1

‖u− v‖ 0
W 1

2

,

where 1 < p̃1 < 2∗ ≡ 2n
n−2 if n ≥ 3, and p̃1 ∈ (1,∞) is arbitrary if n = 1, 2.

Consequently, we have

‖F (u)− F (v)‖W−1
2
≥ C ‖u− v‖ 0

W 1
2

− c

(
‖u‖p̃−1

0
W 1

2

+ ‖v‖p̃−1
0

W 1
2

)
‖u− v‖p̃1
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holds for any u, v ∈
0

W 1
2 (Ω). From here it follows that condition 4 of Theorem

3.2 is fullfilled. Thus we proved that the conditions of Theorem 1.2 imply that

all conditions of Theorem 3.2 are fulfilled on the ball B
0

W 1
2

r (0) for any r > 0.
Therefore problem (1) - (2) is solvable for any h ∈ W−1

2 (Ω) by virtue of Theorem
3.2.
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