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Abstract. We review some aspects of the geometry of length spaces and
metric spaces, in particular Alexandrov spaces with curvature bounded be-
low and/or above. We then point out some possible directions of research
to explore connections between the synthetic approach to Riemannian
geometry and some aspects of the approach to non-smooth differential
geometry through generalised functions.
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1. Introduction

In classical Riemannian geometry, one often studies Riemannian metrics that
satisfy a curvature bound of some type. Standard examples would be where one
has a lower and/or upper bound on the sectional curvature of a metric or a
lower bound on the Ricci tensor. Theorems that arise in such contexts include,
for example, Myers’s theorem, the Cartan-Hadamard theorem, the Bishop—
Gromov relative volume comparison theorem and the Toponogov comparison
theorem (see, e.g., [B]). The proofs of these results generally rely on the use of
the exponential map, and require that the metric has at least C? regularity. One
can often argue, however, that these results hold for metrics that are C*!, where
one still has existence and uniqueness of solutions of the geodesic equations. If
one attempts to lower the regularity of the metric further, for example to a
metric that is C1® for some a < 1, then one encounters metrics for which
the geodesic equations do not have unique solutions. Since this implies that
the exponential map is no longer a homeomorphism onto a neighbourhood of
a point, this poses a genuine obstacle to generalising the standard proofs to
low-regularity metrics.

Approaches to semi-Riemannian manifolds of low-regularity have been de-
veloped within the context of algebras of generalised functions (see, e.g., [13], [14]
and [20] for a review). Here a low-regularity semi-Riemannian metric is embed-
ded into the space of generalised metrics (essentially an equivalence class of nets
of smooth metrics) with the properties of the low-regularity metric being en-
coded in the asymptotics of the net. Such methods have been employed to give
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detailed descriptions of the curvature of, for example, conical metrics and, more
recently, metrics the curvature of which is well-defined as a distribution [21].

There is, alternatively, a well-developed approach to low-regularity Rieman-
nian manifolds (and more general structures) by synthetic geometry. In par-
ticular, in the theory of Alexandrov spaces, one works with length spaces and
metric spaces. These spaces need not be manifolds, and as such, concepts such
as a Riemannian metric are not classically well-defined. On the other hand, one
has well-defined notions of (minimising) geodesics and of curvature bounds.

The motivating idea here is that it may be fruitful to investigate elements of
the theory of synthetic geometry (in particular, Alexandrov spaces, and recent
constructions of Sturm [22] 23] and Lott—Villani [I6] defining Ricci-curvature
bounds for metric-measure spaces) within the framework of generalised func-
tions. Conversely, given that synthetic geometry is a mature field, investigation
of the results in this field may lead to some clarification of, and new directions
in, the generalised functions approach to low-regularity geometry.

The main aim of this article is to introduce the basic concepts of synthetic
geometry to the generalised functions community. Therefore, a large part is
devoted to an introduction to and review of known material on the geometry of
metric spaces and, in particular, Alexandrov spaces. Note that none of this work
is original to the author, and I apologise, in advance, to anyone who believes
that I have overlooked their work. We then point out some initial directions of
research, some of which are currently being investigated, that may connect this
approach with the theory of generalised functions.

2. The geometry of length spaces and metric spaces

The material in this section is standard. The monographs [2] 3] and the
papers [4, 1] are recommended for a more detailed introduction to the theory
of Alexandrov spaces. See also [I0] for articles on related topics and [9] for
information on the geometry of metric spaces.

Let X be a topological space. A path in X will be a continuous map ~: I —
X, where I is a connected subset of R. The set of paths will be denoted P(X).

Definition 2.1. Let X be a topological space. A length structure on X is a pair
(A, L) where A C P(X) and L: A — Ry U{+o0}. A is the class of admissible
paths, and is required to satisfy the following conditions:

Al). If v: [a,b] — X is an admissible path and [c,d] C [a, b], then the restriction
Y|jc,a) is also admissible.

A2). Ify1: [a,¢] = X and 72 [¢,b] — X are admissible paths such that vy (c) =
~2(c), then the concatenation 71 - vo: [a,b] — X is an admissible path.

A3). A is closed under linear reparametrisations: given an admissible path
v: [a,b] — X and a linear homeomorphism ¢: [¢,d] — [a,b]; ¢ — at + (3, the
composition v o p(t) = y(¢(t)) is also an admissible path.
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Given v € A, L(7) is called the length of 7v. The map L is required to have the
following properties:

L1). L(Vl(a,5) = L(V|[a,e]) + L(V][c,)) for any ¢ € [a, b].

L2). Given a path v: [a,b] — X of finite length, the map [a,b] — R;t —
L(7|[a,s7) is continuous.

L3). L(y o) = L(7) for any linear homeomorphism ¢ as in Condition A3).

L4). Given z € X and any neighbourhood U of z, then the length of paths
connecting x to the complement of U should be strictly positive:

inf{L(’y) "}/EA,’}/(G) =x,7v(b) EX\U} > 0.

Definition 2.2. Let X be a topological space with length structure (A, L). Let
dr: X x X — Ry U{+o0} be the metric on X defined by

dr(z,y):=inf {L[c] ‘ ¢: la,b] — X an admissible curve with ¢(a) = =, ¢(b) = y}

for z,y € X. A metric that can be obtained in this way from a length structure is
called an intrinsic metric. A metric space (X, d), where the metric d is intrinsic,
is called a length space. Given points z,y in a metric space (X, d), we will often
denote the metric distance between them, d(z,y), by |zy|.

Given z,y € X, an admissible curve c¢: [a,b] — X is a minimising geodesic
(or shortest path [3]) from x to y if ¢(a) = z, ¢(b) = y and L[c] = |zy|. A length
space is complete if, given any x,y € X, there exists a minimising geodesic from
2 to y. Such a minimising geodesic will be denoted by [zy]. More generally, a
geodesic is defined as a locally-minimising admissible curve.

Remark 2.3. If (X, d) is a locally compact length space and complete (as a metric
space), then for any z,y € X such that |zy| < oo, there exists a minimising
geodesic between x and y [3] Theorem 2.5.23]. Moreover, the Hopf-Rinow
theorem is valid on locally compact length spaces [3, Theorem 2.5.28].

Example 2.4. The main example of a length space of interest to us is when X
is a C' manifold with a continuous Riemannian metric g. We take A to consist
of all piece-wise C'! paths on X and, given an admissible path v: [a,b] — X, we
define the Riemannian length by

b
L] = / VG 3) ds.

The distance function defined by Lg, which we denote by dg in this case, is the
Riemannian distance function on X. If the metric g is C?, then geodesics are
determined by solutions of the classical geodesic equations. We may, however,
still define (minimising) geodesics within the length-space approach even if the
metric is, for example, only continuous, even though the Levi-Civita connection
is not (classically) well-defined.
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Comparison triangles

In the theory of Alexandrov spaces, curvature bounds are defined by compar-
ing properties of geodesic triangles with the properties of corresponding geodesic
triangles in model spaces. The model spaces are the two-dimensional, simply-
connected Riemannian manifolds of constant curvature K € R, which we denote
by (Mg, gk). As such, we have

K > 0: My is the standard two-sphere with the round metric of curvature K;
K =0: M, is R?, with the flat metric;
K < 0: My is the hyperbolic plane, with the metric of constant curvature K.

Let (X,d) be a metric space. Let p,q,r € X be the vertices of a geodesic
triangle, Apgr, with sides of length |pql|, |gr|, |rp|. A comparison triangle in
M is a geodesic triangle Apgr in the constant curvature space (Mg, gk ) with
sides of the same length as those in the triangle Apgr, i.e.

Ipq] = |pql, lgr| = lqr|, [7p| = |rpl.

Given a triangle Apgr in X, it can be shown that, for K < 0, there exists a
geodesic triangle in the space My with the required side-lengths. This triangle
is unique up to an isometry of My. For K > 0, comparison triangles exist,
and are unique up to an isometry of My, if the side-lengths obey the condition
pal + lar| + |rp| < 27/VE.

Definition 2.5. An Alexandrov space with curvature bounded below by K is a
connected, locally compact length space of finite (Hausdorff) dimension such
that, given any = € X, there exists a neighbourhood, U, of x such that for all
points p,q,r € U the geodesic triangle Apgr has a corresponding comparison
triangle Apgr in (Mg, gk ), and we have

for all z € [gr] with Z the point corresponding to z in the comparison triangle.
(See Figure[2.1]) Similarly, if for all such geodesic triangles we have

for all z € [gr], then (X, d) is an Alexandrov space with curvature bounded above
by K.

Remark 2.6. The above definition of an Alexandrov space with curvature boun-
ded above/below is the most direct within our framework. In the case of cur-
vature > K, it admits a suitable globalised version (cf., e.g., [4, §3]). There are
several equivalent definitions of Alexandrov spaces with curvature bound

3See, for example, [4] §2] for equivalent definitions for curvature bounded below.
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Figure 2.1: A geodesic triangle in (X, d) and comparison triangle in (Mg, gx).

Examples

Example 2.7. Let (M, g) be a Riemannian manifold without boundary, where
the metric g is of differentiability class C? or above. The Riemannian distance
function dg defined in Example furnishes (M, dg) with the structure of a
metric space. It follows from the Toponogov comparison theorem (see, e.g., [17])
that (M, dg) is an Alexandrov space with curvature bounded below (above) by
K € R if and only if the metric g has sectional curvature bounded below (above)
by K

Example 2.8. By a theorem of Alexandrov, a convex polytope in R™ is an
Alexandrov space with non-negative curvature (see Figure [2.2f(a)).

Rt

]RQ

=N

Figure 2.2: (a). An Alexandrov space with non-negative curvature. (b).
An Alexandrov space with non-positive curvature.
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Example 2.9. The two-dimensional plane with a line attached at a point is
an Alexandrov space with non-positive curvature (see Figure 2.2b)). Note that
this space is not a manifold.

Remark 2.10. From Example 2.7 we see that Alexandrov spaces with curva-
ture bounded below/above may be viewed as a generalisation of Riemannian
manifolds with a corresponding lower/upper bound on their sectional curva-
ture. From Example we note that Alexandrov spaces need not be manifolds
and, as such, it may not be possible to define classical differential geometrical
structures such as tensor fields. As such, we may not be able to define, for
example, a Riemannian metric and its corresponding curvature tensor, but we
can still define the notion of a curvature bound.

Remark 2.11. In an Alexandrov space with curvature bounded below, geodesics
do not branch [, pp. 6]. It follows, from the branching of geodesics at the
point ¢ in Figure b), that this space has curvature bounded above, but un-
bounded below. Recall that examples of Riemannian metrics where the geodesic
equations have non-unique solutions have been constructed by Hartman [IT]. A
simple calculation of the curvature in these examples shows that the sectional
curvature diverges to —oo on the set where geodesics bifurcate.

Properties of Alexandrov spaces

Alexandrov spaces with curvature bounded both above and below (that sat-
isfy an additional completeness condition) have the following properties (see,
e.g., [):

1). X is a C® manifold;

2). d is induced by a Riemannian metric, which is C1® for all a € [0,1). (Note,
not C11, so the curvature tensor is not locally bounded in general.)

3). The Riemannian metric can be approximated by smooth Riemannian met-
rics.

More generally, Alexandrov spaces with curvature bounded below have the
following properties:

1). The Hausdorff dimension of an Alexandrov space with curvature bounded
below is an integer [4] §6].

2). There exists a set Sx C X of Hausdorff dimension less than or equal to n—1
such that X \ Sx carries a CY-Riemannian structure that induces the metric
d [18];

3). Alexandrov spaces of Hausdorff dimension 1 or 2 are topological manifolds
(see, e.g., [l Chapter 10]). However, there exist examples in dimensions n > 3
that are not topological manifolds (see, e.g., [7]).

4). The class of Alexandrov spaces with curvature uniformly bounded below is
closed with respect to Gromov—Hausdorff convergence.

5). Generically, (X,d) cannot be approximated by smooth Riemannian man-
ifolds (at least with respect to the Gromov—Hausdorff topology) of the same
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dimension as X and with curvature bounded below. In particular, let M be
a compact Alexandrov space of dimension n with curvature bounded below by
K. Perelman’s stability theorem [I9] then states that M™ has a neighbour-
hood with respect to the Gromov—Hausdorff topology such that any complete
Alexandrov space of dimension n and curvature > K in this neighbourhood, is
homeomorphic to M™.

3. Generalised functions

There is now a well-developed approach to non-smooth semi-Riemannian
geometry within the context of generalised functions. In particular, an approach
to non-smooth differential geometry within the context of “special” Colombeau
algebras has been developed in [I3] 14]@

The natural question that arises is whether there is any relationship between
non-smooth differential geometry as developed in the generalised functions ap-
proach, and the description in terms of Alexandrov spaces (and more general
structures) that are studied in synthetic geometry. In particular, it may be lu-
crative to investigate more analytical aspects of, for example, Alexandrov spaces
with the general philosophy of generalised functions in mind and, conversely, the
geometrical insight gained from the clear geometrical motivations in synthetic
geometry, combined with the large body of existing results in the field, when
translated into the language of generalised functions, may allow us to gain a
deeper understanding of the generalised functions approach to non-smooth ge-
ometries.

In particular, in proofs of many classical results, a strong role is played
by convexity or concavity properties of the distance function on a manifold,
when compared to the corresponding distance function on a constant curvature
space. If one considers structures of low regularity, one may adopt such con-
vexity /concavity conditions as the definition of particular types of curvature
bound. Within a generalised functions approach, it is more natural to consider
non-smooth objects as defining nets of smooth objects, with the non-smooth be-
haviour being encoded in the asymptotic behaviour of the net. One of our main
proposals is to investigate the connection between curvature bounds defined in
terms of convexity/concavity properties of geodesics, and asymptotic properties
of nets of smoothed metrics that appear in the generalised functions approach.

Geroch—Traschen metrics

A natural place to begin an investigation would be to study Riemannian
metrics on closed (i.e. compact without boundary) manifolds, the curvature of
which is well-defined as a distribution. A class of such metrics, the Geroch—
Traschen class [8], have recently been studied in [2I] within the framework of
generalised functionsﬂ It was shown that such metrics lead to a well-defined,
non-degenerate, generalised metric, as long as two additional conditions are
satisfied:

4For a review of applications of generalised functions in non-smooth geometry, see [20]
5See [15] for an alternative approach.
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Condition 1: The determinant of the generalised metric is strictly positive
in the generalised sense. In particular, there exists a representative g. of the
metric and an m > 0 such that detg. > ™ as ¢ — 0.

Condition 2: The eigenvalues of the metric g., A2, i = 1,...,n do not converge
to zero too quickly as e — 0. (See the discussion after Definition 4.5 in [21].)

Condition 1 may be viewed as a localised version of the condition that the
volume of M with respect to g. does not converge to zero too quickly. Moreover,
if det g. is not converging to zero too quickly and no eigenvalue of g, is con-
verging to zero quickly, then no eigenvalue of g. can diverge too quickly. If an
eigenvalue were to diverge to +oo, this would imply that distances are growing
unboundedly, and hence that the diameter of M would be diverging. As such,
Conditions 1 and 2 are, heuristically speaking, localised, generalised versions of
the classical conditions that a Riemannian manifold should obey the condition

(3.1) Vol(M) >V, diam(M) <d

for some positive constants V,d. On a closed manifold, conditions (3.1)), along
with a bound on sectional curvature

(3:2) |Ku| < K,

are precisely the conditions of the Cheeger finiteness theorem [6]. Moreover,
Cheeger has shown that, given constants V,d, K and a positive integer n, then
there exists a constant ¢, (V,d, K) > 0 such that any n-dimensional, compact
Riemannian manifold satisfying conditions and has injectivity radius
bounded below by ¢, (V, d, K). Such injectivity radius estimates are of great im-
portance when one wishes to establish that a sequence of Riemannian manifolds
does not “collapse”. It is therefore interesting to note that there are similarities
between the criteria for a Geroch—Traschen metric to give a well-defined gen-
eralised metric, and the non-collapse criteria in classical differential geometry.
It would be of interest to investigate the analysis of [2I] with the proof of the
Cheeger finiteness theorem (and the Gromov compactness theorem) in mind.

More generally, one can extend the investigation of the Geroch—Traschen
class of metrics from the viewpoint of Alexandrov spaces. It is known [§] that
the (0,4) form of the curvature tensor, R, of a Geroch—Traschen metric is well-
defined. One should therefore investigate the consequences for such a metric
if the curvature, viewed as a distribution, satisfies the weak lower curvature

bound®t
R,XY®X®Y)>K(gNhg,XY®X®Y).

for some K, and for all compactly supported smooth vector fields X,Y on M.
The expectation, from the Alexandrov space point of view, would be that the
geodesics in such a Geroch—Traschen metric may not branch, despite the fact

6This appears to be the closest analogue of a sectional curvature bound that one can expect
in the distributional case.
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that the metric may be well below the regularity (C1'!) required for classical
existence and uniqueness of geodesics. Given the results of [1§], it is also con-
ceivable that such a metric may have better regularity properties than a general
metric with distributional curvature. If one imposes that a Geroch—Traschen
metric has curvature bounded both below and above, one would expect addi-
tional extra regularity as for Alexandrov spaces with curvature bounded both
above and below [I].

More broadly, within the context of synthetic geometry, lower bounds on
Ricci curvature have been discussed in the context of metric measure spaces [22]
23, [16]. It would be of interest to investigate the Geroch—Traschen class of
metrics within this framework. Whether the methods of [22] 23] [16] may be
adapted to Lorentzian geometry and applied to the problem of lowering the
regularity conditions required in the singularity theorems [12] is currently under
investigation.
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