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GENERALIZED SOLUTIONS TO A SINGULAR
NONLINEAR CAUCHY PROBLEM

Victor Dévoué1

Abstract. Using regularization techniques, we give a meaning to a
singular, strong non-linear Cauchy problem by replacing it by a three-
parameter family of Lipschitz, non-characteristic, regular problems in an
appropriate algebra of genaralized functions. We prove existence and
uniqueness of the solution and we specify how it depends on the choices
made.
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1. Introduction

The main purpose of this paper is to establish the existence of a global
solution to the non-Lipschitz Cauchy problem formally written as

(P )
∂2u

∂x∂t
= F (. , ., u′)

where u′ =
∂u

∂t
, with a non-Lipschitz nonlinear function F on the right-hand

side and irregular data as distributions or generalized functions. For example:
∂2u

∂x∂t
= − |u′|p u′ + f with p > 0. So we tackle the example of a hyperbolic

nonlinear equation given by J. L. Lions in [18], pages 38 to 43, in another way:
we take the equation in canonical form, on the right-hand side the function is
non-Lipschitz nonlinear but not specified, the data are irregular and the problem
may be characteristic.

To give a meaning to this problem we use the recent theories of generalized
functions ([2], [3], [4],[5], [15], [17], [25], [25], [26], [27] ) and particularly the
(C, E ,P)-algebras of J.-A. Marti (see [19]- [21], [22], [24]). The (C, E ,P)-algebras
give an efficient algebraic framework which permits a precise study of solutions
as in [8], [13], [14], [22],[23], [24]. We investigate solutions with distributions
or other generalized functions as initial data; thus we must search for solutions
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in the algebras which are invariant under nonlinear functions and contain the
space of distributions.

To do this, we study the nonlinear problem formally written

(Pform)





∂2u

∂x∂t
= F ( . , . , u′),

u|γ = ϕ,

u′|γ = ψ.

The notation F ( . , . , u′) extends, with a meaning to be defined later, the
expression (x, t) 7→ F (x, t, u′(x, t)) in the case where u is a generalized function
of two variables x and t. Here ϕ and ψ are one-variable generalized functions.
The data are given along a characteristic curve γ of the equation t = f(x).

This ill-posed problem remains unsolvable in classical function spaces. To
overcome this difficulty, by means of regularizations, we associate to the problem
(Pform) a generalized one (Pgen) well formulated in a convenient algebraA (

R2
)
.

We search for a generalized solution u in A (
R2

)
.

For equation (P ), the characteristic Cauchy problem is ill-posed in Hadamard
sense. This characteristic irregular Cauchy problem has no smooth solution (not
even C2) even if the data ϕ and ψ are smooth.

So we must use all the results of [1], [8], [9], [11], [12], [13] to solve this
problem.

The general idea goes as follows. The characteristic problem is approached
by a three-parameter family of classical smooth problems (Pε,η,ρ). We then get a
three-parameter family of classical solutions. A generalized solution is defined as
the class of this family of smooth functions satisfying some asymptotical growth
restrictions [26]. We obtain a solution which has no classical counterpart.

The plan of this article is as follows. This section is followed by section 2
which introduces the algebras of generalized functions.

In Section 3 we define a well formulated generalized differential problem
(Pgen) associated to the ill-posed classical one. It is constructed by means
of a family (Pε,η,ρ) of regularized problems, where (ε, η, ρ) ∈ (0, 1]3. We give
estimates needed in the sequel. We replace F with a family of Lipschitz functions
(Fε) given by suitable cutoff techniques which gives rise to a family of regularized
Lipschitz problems. We use a family mollifiers (θρ)ρ to regularize the data in
singular case. Then the parameter ε is used to render the problem Lipschitz,
ρ makes it regular. Moreover, by deforming the characteristic curve t = f(x)
into a family of non-characteristic ones t = fη(x) we obtain a family of classical
problems. Then we can build a (C, E ,P)-algebra, A (

R2
)
, stable under the

family (Fε), adapted to the generalized Cauchy problem in which the irregular
problem can be solved.

Then we proceed in Section 4 with the proof of the existence of the general-
ized solution in the case where the irregular data are given along the characteris-
tic curve γ. To prove the existence of solution a three parametric representative
(uε,η,ρ)(ε,η,ρ) is constructed from the existence of smooth solutions uε,η,ρ for
each regularized Lipschitz problem

(
P(ε,η,ρ)

)
. The class of (uε,η,ρ)(ε,η,ρ) is the
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expected generalized solution. Thus, we obtain a global generalized solution,
when the classical smooth solutions often break down in finite time [30]. We
show that this solution is unique in the constructed algebra. However, the gen-
eralized problem (Pgen), and obviously its solution, depend on the choice of the
cutoff functions and, in the case of irregular data, on the family of mollifiers.
With regard to the regularization, we show that this solution depends solely on
the class of cutoff functions as a generalized function, not on the particular rep-
resentative. In the case of irregular data, the solution of the problem depends
on the family of mollifiers but not on a class of that family. We take (fη)η to
be equivalent to f for some sense in an appropriate algebra of generalized func-
tions. Furthermore, by imposing some restrictions on the asymptotical growth
of the fη, we are able to prove that the generalized solution depends solely on
the class of (fη)η as a generalized function, not on the particular representative.

So the theory of generalized functions appears as the natural continuation
of the classical theory of functions and distributions.

In section 5, we indicate how to treat the case of non-characteristic Cauchy
problem and irregular data. Moreover, we show that if the initial problem
admits a smooth solution v satisfying appropriate growth estimates on some
open subset Ω of R2, then this solution and the generalized one are equal in
a meaning given in Theorem 15. In the last Section we compute an example
of a characteristic equation. In Appendix we specify the results and estimates
obtained in classical problem.

2. Algebras of generalized functions

2.1. The presheaves of (C, E ,P)-algebras

2.1.1. Definitions

We refer the reader to [19], [20], [21], [22] for more details. Take

• Λ a set of indices;

• A a solid subring of the ring KΛ, (K = R or C), that is A has the following
stability property: whenever (|sλ|)λ ≤ (rλ)λ (i.e. for any λ, |sλ| ≤ rλ)
for any pair ((sλ)λ, (rλ)λ) ∈ KΛ × |A|, it follows that (sλ)λ ∈ A, with
|A| = {(|rλ|)λ : (rλ)λ ∈ A};

• IA a solid ideal of A with the same property;

• E a sheaf of K-topological algebras on a topological space X, such that
for any open set Ω in X, the algebra E(Ω) is endowed with a family
P(Ω) = (pi)i∈I(Ω) of seminorms satisfying

∀i ∈ I(Ω),∃(j, k, C) ∈ I(Ω)×I(Ω)×R∗+,∀f, g ∈ E(Ω) : pi(fg) ≤ Cpj(f)pk(g).

Assume that
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• For any two open subsets Ω1, Ω2 of X such that Ω1 ⊂ Ω2, we have I(Ω1) ⊂
I(Ω2) and if ρ2

1 is the restriction operator E(Ω2) → E(Ω1), then, for each
pi ∈ P(Ω1), the seminorm p̃i = pi ◦ ρ2

1 extends pi to P(Ω2);

• For any family F = (Ωh)h∈H of open subsets of X if Ω = ∪h∈HΩh, then,
for each pi ∈ P(Ω), i ∈ I(Ω), there exists a finite subfamily Ω1, ..., Ωn(i)

of F and corresponding seminorms p1 ∈ P(Ω1), ..., pn(i) ∈ P(Ωn(i)), such
that, for each u ∈ E(Ω),

pi (u) ≤ p1

(
u|Ω1

)
+ ... + pn(i)(u|Ωn(i)

).

Set

X(A,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), ((pi(uλ))λ ∈ |A|},
N(IA,E,P)(Ω) = {(uλ)λ ∈ [E(Ω)]Λ : ∀i ∈ I(Ω), (pi(uλ))λ ∈ |IA|},

C = A/IA.

One can prove that X(A,E,P) is a sheaf of subalgebras of the sheaf EΛ and
N(IA,E,P) is a sheaf of ideals of X(A,E,P) [20]. Moreover, the constant sheaf
X(A,K,|.|)/N(IA,K,|.|) is exactly the sheaf C = A/IA.

Definition 1. We call presheaf of (C, E ,P)-algebra the factor presheaf of alge-
bras over the ring C = A/IA

A = X(A,E,P)/N(IA,E,P).

We denote by [uλ] the class in A(Ω) defined by the representative (uλ)λ∈Λ ∈
X(A,E,P)(Ω).

2.1.2. Overgenerated rings

See [9]. Let Bp =
{
(rn,λ)λ ∈ (R∗+)Λ : n = 1, ..., p

}
and B be the subset of (R∗+)Λ

obtained as rational functions with coefficients in R∗+ of elements in Bp as vari-
ables. Define

A =
{
(aλ)λ ∈ KΛ | ∃ (bλ)λ ∈ B, ∃λ0 ∈ Λ, ∀λ ≺ λ0 : |aλ| ≤ bλ

}
.

Definition 2. In the above situation, we say that A is overgenerated by Bp

(and it is easy to see that A is a solid subring of KΛ). If IA is some solid ideal
of A, we also say that C = A/IA is overgenerated by Bp.

Example 1. For example, as a “canonical” ideal of A, we can take

IA =
{
(aλ)λ ∈ KΛ | ∀ (bλ)λ ∈ B, ∃λ0 ∈ Λ, ∀λ ≺ λ0 : |aλ| ≤ bλ

}
.

Remark 1. We can see that with this definition B is stable by inverse.
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2.1.3. Relationship with distribution theory

Let Ω be an open subset of Rn. The space of distributions D′(Ω) can be embed-
ded into A(Ω). If (θρ)ρ∈(0,1] is a family of mollifiers θρ (x) = 1

ρn θ
(

x
ρ

)
, x ∈ Rn,∫

θ (x) dx = 1 and if T ∈ D′ (Rn), the convolution product family (T ∗ θρ)ρ is a
family of smooth functions slowly increasing in 1

ρ . Then, taking ρ as a compo-
nent of the multi-index λ ∈ Λ, we shall choose the subring A overgenerated by
some Bp of (R∗+)Λ containing the family (ρ)λ [6], [27].

2.1.4. The association process

We assume that Λ is left-filtering for a given partial order relation ≺. We
denote by Ω an open subset of X, E a given sheaf of topological K-vector spaces
containing E as a subsheaf, a a given map from Λ to K such that (a (λ))λ = (aλ)λ

is an element of A. We also assume that

N(IA,E,P)(Ω) ⊂
{

(uλ)λ ∈ X(A,E,P)(Ω) : lim
E(Ω),Λ

uλ = 0
}

.

Definition 3. We say that u = [uλ] and v = [vλ] ∈ E(Ω) are a-E associated if

lim
E(Ω),Λ

aλ(uλ − vλ) = 0.

That is to say, for each neighborhood V of 0 for the E-topology, there exists
λ0 ∈ Λ such that λ ≺ λ0 =⇒ aλ(uλ − vλ) ∈ V . We write

u
a∼

E(Ω)
v.

Remark 2. We can also define an association process between u = [uλ] and
T ∈ E(Ω) by writing simply

u ∼ T ⇐⇒ lim
E(Ω),Λ

uλ = T.

Taking E = D′, E = C∞, Λ = (0, 1], we recover the association process defined
in the literature (J.-F. Colombeau [4]).

2.2. D′-singular support

Assume that

NA
D′(Ω) =

{
(uλ)λ ∈ X (Ω) : lim

λ→0
uλ = 0 in D′(Ω)

}
⊃ N (Ω).

Set

D′A(Ω) =
{

[uλ] ∈ A(Ω) : ∃T ∈ D′(Ω), lim
λ→0

(uλ) = T in D′(Ω)
}

.
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D′A(Ω) is clearly well defined because the limit is independent of the chosen
representative; indeed, if (iλ)λ ∈ N (Ω) we have lim

λ→0
D′(R)

iλ = 0.

D′A(Ω) is an R-vector subspace of A(Ω). Therefore we can consider the set OD′A
of all x having a neighborhood V on which u is associated to a distribution:

OD′
A(u) = {x ∈ Ω : ∃V ∈ V(x), u|V ∈ D′A(V )} ,

V(x) being the set of all neighborhoods of x.

Definition 4. The D′-singular support of u ∈ A(Ω), denoted singsuppD′(u) =
SAD′A(u), is the set

SAD′A(u) = Ω\OD′A(u).

2.3. Algebraic framework for our problem

Set E = C∞, X = Rd for d = 1, 2, E = D′ and Λ a set of indices, λ ∈ Λ.
For any open set Ω, in Rd, E(Ω) is endowed with the P(Ω) topology of uniform
convergence of all derivatives on compact subsets of Ω. This topology may be
defined by the family of the seminorms

PK,l(uλ) = sup
|α|≤l

PK,α(uλ) with PK,α(uλ) = sup
x∈K

|Dαuλ(x)| , K b Ω

and Dα =
∂α1+...+αd

∂zα1
1 ...∂zαd

d

for z = (z1, . . . , zd) ∈ Ω, l ∈ N, α = (α1, ..., αd) ∈ Nd.

Let A be a subring of the ring RΛ of the family of reals with the usual laws. We
consider a solid ideal IA of A. Then we have

X (Ω) = {(uλ)λ ∈ [C∞(Ω)]Λ : ∀K b Ω, ∀l ∈ N, (PK,l(uλ))λ ∈ |A|},
N (Ω) = {(uλ)λ ∈ [C∞(Ω)]Λ : ∀K b Ω, ∀l ∈ N, (PK,l(uλ))λ ∈ |IA|},
A(Ω) = X (Ω)/N (Ω).

The generalized derivation Dα : u(= [uλ]) 7→ Dαu = [Dαuλ] provides A(Ω)
with a differential algebraic structure.

Example 2. Set Λ = (0, 1]. Consider

A = RΛ
M

=
{
(mλ)λ ∈ RΛ : ∃p ∈ R∗+, ∃C ∈ R∗+, ∃µ ∈ (0, 1], ∀λ ∈ (0, µ],

|mλ| ≤ Cλ−p
}

and the ideal

IA =
{
(mλ)λ ∈ RΛ : ∀q ∈ R∗+, ∃D ∈ R∗+, ∃µ ∈ (0, 1], ∀λ ∈ (0, µ],
|mλ| ≤ Dλq} .

In this case we denote X s(Ω) = X (Ω) and N s(Ω) = N (Ω). The sheaf of factor
algebras G (·) = X s(·)/N s(·) is called the sheaf of simplified Colombeau algebras
[4].
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We have an analogue of Theorem 1.2.3. of [17] for (C, E ,P)-algebras. We
suppose here that Λ is left filtering and give this proposition forA (

R2
)
, although

it is valid in more general situations.

Proposition 1. Assume that there exists (aλ)λ ∈ B with limΛ aλ = 0. Consider
(uλ)λ ∈ X (R2) such that

∀K b R2, (PK,0 (uλ))λ ∈ |IA| .
Then (uλ)λ ∈ N (R2).

For a detailed proof we refer the reader to [7], [9].

Definition 5. Tempered generalized functions, [10], [17], [28], [29]. For f ∈
C∞(Rn), r ∈ Z and m ∈ N, we put

µr,m(f) = sup
x∈Rn,|α|≤m

(1 + |x|)r |Dαf(x)| .

The space of functions with slow growth is

OM (Rn) = {f ∈ C∞(Rn) : ∀m ∈ N, ∃q ∈ N, µ−q,m(f) < +∞} .

Definition 6. We put

Xτ (Rn) ={(fη)(ε,η,ρ) ∈ OM (Rn)Λ : ∀m ∈ N, ∃q ∈ N, ∃N ∈ N,

µ−q,m(fη) = O(η−N ) (η → 0)},

Nτ (Rn) ={(fη)(ε,η,ρ) ∈ OM (Rn)Λ : ∀m ∈ N, ∃q ∈ N, ∀p ∈ N,

µ−q,m(fη) = O(ηp) (η → 0)}.
Xτ (Rn) is a subalgebra of OM (Rn)Λ and Nτ (Rn) an ideal of Xτ (Rn). The
algebra Gτ (Rn) = Xτ (Rn) /Nτ (Rn) is called the algebra of tempered generalized
functions. The generalized derivation Dα : u = [uη] 7→ Dαu = [Dαuη] provides
Gτ (Rn) with a differential algebraic structure.

2.4. Some regularizing conditions

2.4.1. Generalized operator associated to a stability property

Set Λ = Λ1 × Λ2 × Λ3, denote by λ = (ε, η, ρ) an element of Λ.

Definition 7. Let Ω be an open subset of R2, Ω′ = Ω × R ⊂ R3. Let Fε ∈
C∞(Ω′,R). We say that the algebra A (Ω) is stable under the family (Fε)λ if
the following two conditions are satisfied:

• For each K b R2, l ∈ N and (uλ)λ ∈ X (Ω), there is a positive finite
sequence C0,..., Cl, such that

PK,l(Fε(·, ·, uλ)) ≤
l∑

i=0

CiP
i
K,l(uλ).
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• For each K b R2, l ∈ N, (vλ)λ and (uλ)λ ∈ X (Ω), there is a positive
finite sequence D1,..., Dl such that

PK,l(Fε(·, ·, vλ)− Fε(·, ·, uλ)) ≤
l∑

j=1

DjP
j
K,l(vλ − uλ).

Remark 3. If A (Ω) is stable under (Fε)λ then, for all (uλ)λ ∈ X (Ω) and
(iλ)λ ∈ N (Ω), we have (Fε(·, ·, uλ))λ ∈ X (Ω); (Fε(·, ·, uλ + iλ)− Fε(·, ·, uλ))λ ∈
N (Ω).

Set f ∈ C∞
(
R2

)
, we define

C∞
(
R2

) → C∞
(
R2

)

f 7→ Hλ (f) = Fε (·, ·, f) .

Hλ (f) = Fε (·, ·, f) : (x, t) 7→ Fε (x, t, f (x, t))

Clearly, the family (Hλ)λ maps
(
C∞

(
R2

))Λ into
(
C∞

(
R2

))Λ and allows to
define a map from A (

R2
)

into A (
R2

)
. For u = [uλ] ∈ A (

R2
)
, ([Fε(., ., uλ)]) is

a well defined element of A(R2) (i.e. not depending on the representative (uλ)λ

of u). This leads to the following definition [9]:

Definition 8. If A (
R2

)
if stable under (Fε)λ, the operator

F : A (
R2

) → A (
R2

)
, u = [uλ] 7→ [Fε(., ., uλ)] = [Hλ (uλ)]

is called the generalized operator associated to the family (Fε)λ. See [9].

Definition 9. Let F ∈ C∞(R3,R) and (gε)ε ∈ (C∞(R))Λ1 , we define
Fε(x, t, z) = F (x, t, zgε(z)). The family (Fε)λ is called the family associated
to F via the family (gε)ε. If A (

R2
)

is stable under (Fε)λ, the operator

F : A (
R2

) → A (
R2

)
, u = [uλ] 7→ [Fε(., ., uλ)] = [Hλ (uλ)]

is called the generalized operator associated to F via the family (gε)ε.

2.4.2. Generalized restriction mappings

Set (fη)λ be a family of functions in C∞ (R). For each g ∈ C∞
(
R2

)
set

Rη (g) : C∞ (R) → C∞ (R) , fη 7→ (x 7→ g(x, fη(x))) .

The family (Rη)λ map
(
C∞

(
R2

))Λ into (C∞ (R))Λ.

Definition 10. The family of smooth function (fη)λ is compatible with second
side restriction if

∀ (uλ)λ ∈ X ((R2), (uλ (·, fη(·)))λ ∈ X (R) ;

∀ (iλ)λ ∈ N (R2), (iλ (·, fη(·)))λ ∈ N (R).



Generalized solutions to a singular nonlinear Cauchy problem 93

Clearly, if u = [uλ] ∈ A(R2) then [uλ (·, fη(·))] is a well defined element of
A(R) (i.e. not depending on the representative of u.) This leads to the following:

Definition 11. If the family of smooth function (fη)λ is compatible with second
side restriction, the mapping

R : A (
R2

) → A (R) , u = [uλ] 7→ [uλ (·, fη(·))] = [Rη (uλ)]

is called the generalized second side restriction mapping associated to the family
(fη)λ.

Remark 4. The previous process generalizes the standard one defining the re-
striction of the generalized function u = [uλ] ∈ A (

R2
)
to the manifold {t = f (x)}

obtained when taking fη = f for each η ∈ Λ2.

First let us state a useful definition used throughout this article:

Definition 12. [17] Let (fη)λ be a family of C∞(Rn) functions. This family is
c-bounded if for all compact sets K ⊂ Rn it exists another compact set L ⊂ Rn

such that fη(K) ⊂ L for all η (L is independent of η).

Proposition 2. Assume that:
(i) For each K b R, it exists K ′ b R such that, for all η ∈ Λ2, fη(K) ⊂ K ′,
(ii) (fη)λ belongs to X (R).
Then the family (fη)λ is compatible with restriction.

For a detailed proof we refer the reader to [1].

3. A Cauchy problem

We study the differential Cauchy problem formally written as

(Pform)





∂2

∂x∂t
u = F (·, ·, u′),

u|γ = r,

u′|γ = s

where F , a nonlinear function of its arguments, may be non-Lipschitz (in u′), γ
is the monotonic curve of equation t = f (x), the data r, s may be as irregular
as distributions. We don’t have a classical surrounding in which we can pose
(and a fortiori solve) the problem.

We treat in details the case of irregular data given along the characteristic
curve γ, we add some remarks for the non-characteristic cases.

3.1. Estimates for a parametrized regular problem

First, we are going to prove that
(
P(ε,η,ρ)

)
has a unique smooth solution

under the following assumption

(H1) (Hε,η,ρ)





a) fη ∈ C∞(R), f ′η > 0, fη(R) = R;
b) Fε ∈ C∞(R3,R), ∀K b R2,

sup(x,t)∈K;z∈R |∂zFε(x, t, z)| = mK,ε < +∞;
c) ϕρ and ψρ ∈ C∞(R),
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where the notation K b R2 means that K is a compact subset of R2. According
to Appendix 7, we can say that

(
P(ε,η,ρ)

)
is equivalent to the integral formulation

(1)
(
I(ε,η,ρ)

)
: uε,η,ρ(x, t) = u0,ε,η,ρ(x, t)−

∫∫

D(x,t,fη)

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))dξdζ,

where u0,ε,η,ρ(x, t) = Υη,ρ (t)−Υη,ρ(fη(x)) + ϕρ(x) and Υρ denotes a primitive
of ψρ ◦ f−1

η , with

D(x, t, fη) =
{ {

(ξ, ζ) : f−1
η (t) ≤ ξ ≤ x, t ≤ ζ ≤ fη(ξ)

}
if t ≤ fη(x){

(ξ, ζ) : x ≤ ξ ≤ f−1
η (t), fη(ξ) ≤ ζ ≤ t

}
if t ≥ fη(x).

Theorem 3. Under Assumption (Hε,η,ρ), Problem
(
P(ε,η,ρ)

)
has a unique so-

lution in C∞(R2).

Corollary 4. Set Ka,η =
[
f−1

η (−a), f−1
η (a)

]× [−a, a],

ma,ε,η = sup
(x,t)∈Ka,η ; t∈R

∣∣∣∣
∂Fε

∂z
(x, t, t)

∣∣∣∣

and Φa,ε,η,ρ = ‖Fε(., ., 0)‖∞,Ka,η
+ma,ε,η

∥∥u′0,ε,η,ρ

∥∥
∞,Ka,η

. We have the estimate
(2)

‖uε,η,ρ‖∞,Ka,η
≤ ‖u0,ε,η,ρ‖∞,Ka,η

+
Φa,ε,η,ρ

ma,ε,η
exp[ma,ε,η(2a)

(
f−1

η (a)− f−1
η (−a)

)
].

These results are proved in Appendix 7.

3.2. Cut off procedure

Let ε be a parameter belonging to the interval (0, 1]. Let (rε)ε be in R(0,1]
∗

such that rε > 0 and lim
ε→0

rε = +∞. Set Lε = [−rε, rε]. Consider a family of

smooth one-variable functions (gε)ε such that

(A1) sup
z∈Lε

|gε(z)| = 1, gε(z) =
{

0, if |z| ≥ rε

1, if − rε + 1 ≤ z ≤ rε − 1

and
∂ngε

∂zn
is bounded on Lε for any integer n, n > 0. Set

sup
z∈Lε

∣∣∣∣
∂ngε

∂zn
(z)

∣∣∣∣ = Mn.

Let φε(z) = zgε(z). We approximate the function F by the family of functions
(Fε)ε = (Fε)ε defined by

Fε(x, t, z) = F (x, t, φε(z)).
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3.3. Construction of A (
R2

)

We recall that λ = (ε, η, ρ) ∈ Λ1 × Λ2 × Λ3 = Λ, Λ1 = Λ2 = Λ3 = (0, 1]
where the parameter ρ is used to regularize the distributions s and t, the more
general case. Consider the previous family (rε)ε .

If γ is a characteristic curve, we consider a family of smooth functions
(fη)η∈(0,1] such that

(A2)





fη ∈ C∞(R), fη strictly increasing, fη(R) = R,
∀x ∈ R, f ′η(x) 6= 0,
(fη)η, (f−1

η )η ∈ Xτ (R) , (fη)η is c-bounded and lim
η →
D′(R)

0
fη = f.

Then we consider the family of smooth non-characteristic curves γη whose equa-
tion is y = fη(x), such that γη is diffeomorphic to γ which is a consequence of
the previous assumption.

The idea is then to approach the Cauchy problem (Pform) by a family of
non-characteristic ones by replacing the characteristic curve γ by a family of
smooth non-characteristic curves γη.

Each compact K b R2 is contained in some product
[
f−1

η (−a), f−1
η (a)

] ×
[−a, a]. Set

(3)

{
aK,η = 2max(f−1

η (a),
∣∣f−1

η (−a)
∣∣),

Ka,η = K1,η ×K2 with K1,η = [−aK,η/2, aK,η/2] and K2 = [−a, a] .

By construction we have K ⊂ Ka,η.
We make the following assumptions to generate a convenient (C, E ,P)-algebra

adapted to our problem

(A3) ∀η ∈ (0, 1], ∀K b R2, ∃νK > 0, ∃aη > 0, aK,η ≤ νKaη.

(A4)





∃ (lη,ρ)(η,ρ) ∈ R
(0,1]×(0,1]
∗ such that

∀K2 b R, ∀α2 ∈ N,∃D2 = DK2,α2,η,ρ ∈ R∗+, ∃q ∈ N,

max
[
sup
K2

∣∣Dα2ψρ(f−1
η (t))

∣∣ , sup
K2

|Dα2Υη,ρ (t)|
]
≤ D2 (lη,ρ)

−q
.

(A5)





C = A/IA is overgenerated
by the following elements of R(0,1]×(0,1]×(0,1]

∗
(ε)(ε,η,ρ) , (η)(ε,η,ρ) , (ρ)(ε,η,ρ) , (rε)(ε,η,ρ) , (lη,ρ)(ε,η,ρ) , (erεaη )(ε,η,ρ) .

ThenA (
R2

)
= X (R2)/N (R2) is built on the ring C of generalized constants with

(E ,P) =
(
C∞(R2), (PK,l)KbR2,l∈N

)
. In the same way A (R) = X (R)/N (R) is

built on C with (E ,P) =
(
C∞(R), (PK,l)KbR,l∈N

)
. We take φ, ψ ∈ OM (R).
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Proposition 5. We have the following relations
(
f−1

η (−a)
)
(ε,η,ρ)

,
(
f−1

η (a)
)
(ε,η,ρ)

, (aK,η)(ε,η,ρ) ∈ |A| ,(4)

∀η,∀(x, y) ∈ Kη, D(x, y, fη) ⊂ Kη.(5)

Proof. First (f−1
η )(ε,η,ρ) ∈ Xτ (R) so

(
f−1

η (−a)
)
(ε,η,ρ)

,
(
f−1

η (a)
)
(ε,η,ρ)

∈ |A| and
then obviously (aK,η)(ε,η,ρ) ∈ |A|. Next, as (fη)(ε,η,ρ) ∈ Xτ (R), we can find
p ∈ N such that ∀x, η, |fη(x)| ≤ η−p(1 + |x|)p so we have

|µη| = |fη(aK,η)| ≤ η−p(1 + |aK,η|)p

then (|µη|)(ε,η,ρ) ∈ |A| .

3.4. Stability of A (
R2

)

Proposition 6. Set Sn =
{
α ∈ N3 : |α| = n

}
when n ∈ N∗. Let F ∈ C∞(R3,R),

Fε defined as above in Section 3.2. Assume that

∀ε ∈ (0, 1] , ∀ (x, t) ∈ R2, Fε(x, t, 0) = 0 ,(H3)

∃p > 0, ∀n ∈ N,∃cn > 0, ∀ε ∈ (0, 1] , ∀K b R2,(H4)
sup

(x,t)∈K; z∈R;α∈Sn

|DαFε(x, t, z)| ≤ cnrp
ε ,

then A (
R2

)
is stable under the family (Fε)ε.

Corollary 7. Set F (x, t, z) = G(z) = zp, Gε(z) = Fε(x, t, z), then A (
R2

)
is

stable under (Gε)ε .

For a detailed proof we refer the reader to [13].

3.5. A generalized differential problem associated to the formal one

Our goal is to give a meaning to the differential Cauchy problem formally
written as (Pform).

As the data r and s are as irregular as distributions, we set

ϕρ = r ∗ θρ and ϕ = [ϕρ] ,(A8)
ψρ = s ∗ θρ and ψ = [ψρ](A9)

where (θρ)ρ is a chosen family of mollifiers. Then the data ϕ, ψ belong to A (R)
and u is sought in the algebra A (

R2
)
.

Let (gε)ε ∈ (C∞(R))Λ1 and F the generalized operator associated to F via
the family (gε)ε in Definition 9. Let f = (fη)η and Rf given by Definition 11.

The problem associated to problem (Pform) can be written as the well for-
mulated one

(Pgen)





∂2u

∂x∂t
= F(u′),

Rf (u) = ϕ,

Rf

(
∂u

∂t

)
= ψ
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where u is searched in the algebra A (
R2

)
and F , Rf are defined as previously

by taking into account the family (gε)εand f .
In terms of representatives, and thanks to the stability and restriction hy-

pothesis, solving (Pgen) amounts to find a family (uε,η,ρ)(ε,η,ρ) ∈ X (R2) such
that 




∂2uε,η,ρ

∂x∂t
(x, t)− Fε(x, t, u′ε,η,ρ(x, t)) = iε,η,ρ (x, t) ,

uε,η,ρ (x, fη(x))− ϕρ (x) = jρ (x) ,
∂uε,η,ρ

∂t
(x, fη(x))− ψρ (x) = lρ (x) ,

where (iε,η,ρ)(ε,η,ρ) ∈ N
(
R2

)
, (jρ)(ε,η,ρ), (lρ)(ε,η,ρ) ∈ N (R).

Suppose we can find uε,η,ρ ∈ C∞
(
R2

)
verifying

(
P(ε,η,ρ)

)





∂2uε,η,ρ

∂x∂t
(x, t) = Fε(x, t, u′ε,η,ρ(x, t)),

uε,η,ρ (x, fη(x)) = ϕρ (x) ,
∂uε,η,ρ

∂t
(x, fη(x)) = ψρ (x) ,

then, if we can prove that (uε,η,ρ)(ε,η,ρ) ∈ X (R2), u = [uε,η,ρ] is a solution of
(Pgen).

Remark 5. Uniqueness in the algebra A (
R2

)
. Let v = [vε,η,ρ] another solution

to (Pgen). There are (kε,η,ρ)(ε,η,ρ) ∈ N (
R2

)
, (αρ)(ε,η,ρ), (βρ)(ε,η,ρ) ∈ N (R),

such that




∂2vε,η,ρ

∂x∂t
(x, t)− Fε(x, t, v′ε,η,ρ(x, t)) = kε,η,ρ (x, t) ,

vε,η,ρ

(
x, fη(λ)(x)

)
= ϕρ (x) + αρ(x),

∂vε,η,ρ

∂t
(x, fη(x)) = ψρ (x) + βρ(t).

The uniqueness of the solution to (Pgen) will be a consequence of

(wε,η,ρ)(ε,η,ρ) = (vε,η,ρ − uε,η,ρ)(ε,η,ρ) ∈ N (R2).

Remark 6. Dependence on some regularizing family. The problem (Pgen) it-
self, so a solution of it, a priori depends on the family of cutoff functions and,
in the case of irregular data, on the family of mollifiers.
If (θρ)ρ∈Λ3

and (τρ)ρ∈Λ3
are families of mollifiers in D (R) and T ∈ D′ (R), it is

well known that generally [T ∗ θρ] 6= [T ∗ τρ] in the Colombeau simplified algebra
even if [θρ] = [τρ] in these algebras. Therefore, in the case of irregular data the
solution of Problem (Pgen) in some Colombeau algebra depends on the family of
mollifiers (θρ)ρ but not on a class of that family.
We have associated the generalized operator F to F via the family (gε)ε. Let
(hε)ε ∈ (C∞(R))Λ1 another family representative of the class [gε] = g in a mean-
ing specified in (4.2) and leading to another generalized operator H associated
to F . We can prove that in fact H = F , that is to say Problem (Pgen) only
depends on the class g of cutoff functions.
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Remark 7. Independence of the solution from the class [fη]. If v = [vε,η,ρ] is
another solution of (Pgen) obtained by replacing γ by another family of smooth
non-characteristic curves γ′η whose equation is t = lη(x). We have to prove that

(vε,η,ρ − uε,η,ρ)(ε,η,ρ) ∈ N (R2)

if we intend to prove that the solution of (Pgen) in the algebra A (
R2

)
does not

depend on the representative of the class [fη] in Gτ (R).

4. Non Lipschitz characteristic problem with irregular data

4.1. Solution to (Pgen)

Theorem 8. With the previous assumptions, if uε,η,ρ is the solution to problem(
P(ε,η,ρ)

)
, then problem (Pgen) admits [uε,η,ρ]A(R2) as solution.

Proof. We have

uε,η,ρ(x, t) = u0,ε,η,ρ(x, t)−
∫∫

D(x,t,fη)

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))dξdζ,

where u0,ε,η,ρ(x, t) = Υη,ρ (t)−Υη,ρ(fη(x)) + ϕρ(x) and Υ′η,ρ = ψρ ◦ f−1
η . Then

u′0,ε,η,ρ(x, t) = ψρ ◦ f−1
η (t) − f ′η (x) ψρ(x) + ϕ′ρ(x). We will actually prove that

(PKε,n(uε))ε ∈ |A|.
We have f−1

η (K2) = K1η and ψρ ∈ OM (R),
(
f−1

η (−a)
)
(ε,η,ρ)

,
(
f−1

η (a)
)
(ε,η,ρ)

∈
|A| ,

∀α2 ∈ N, ∃D2 ∈ R∗+, ∃q ∈ N : sup
K2

|Dα2Υη,ρ (t)| ≤ D2 (lη,ρ)
−q

and
sup
K2

∣∣Dα2ψρ(f−1
η (t))

∣∣ ≤ D2 (lη,ρ)
−q

,

then

∀l ∈ N, (PK2,l(Υη,ρ))(ε,η,ρ) ∈ |A| ,
(
PK2,l(ψρ ◦ f−1

η

)
(ε,η,ρ)

∈ |A| .

Moreover as ϕρ ∈ OM (R) we also have that

∀l ∈ N,
(
PK1,ηl(ϕρ)

)
(ε,η,ρ)

∈ |A|

and as (Υη,ρ ◦ fη)′ = f ′ηψρ and (f ′η)η ∈ Xτ (R) we can conclude that

∀l ∈ N,
(
PKη,l (u0,ε,η,ρ)

)
(ε,η,ρ)

∈ |A| , (PKη,l

(
u′0,ε,η,ρ

))
(ε,η,ρ)

∈ |A| .

We have ∀K b R2, ∃Ka,η = K1η ×K2 b R2, K ⊂ Ka,η,

‖uε,η,ρ‖∞,K ≤ ‖uε,η,ρ‖∞,Ka,η
≤ ‖u0,ε,η,ρ‖∞,Ka,η

+
Φa,ε,η,ρ

ma,ε,η
exp (ma,ε,η2aaK,η)



Generalized solutions to a singular nonlinear Cauchy problem 99

where

ma,ε,η = sup
(x,t)∈Ka,η ; z∈R

∣∣∣∣
∂Fε

∂z
(x, t, z)

∣∣∣∣ ≤ c1r
p
ε

and
Φa,ε,η,ρ = ma,ε,η

∥∥u′0,ε,η,ρ

∥∥
∞,Ka,η

.

Then

‖uε,η,ρ‖∞,K ≤ ‖u0,ε,η,ρ‖∞,Ka,η
+

∥∥u′0,ε,η,ρ

∥∥
∞,Ka,η

exp(2ac1r
p
ενKaη).

We have (‖u0,ε,η,ρ‖∞,Ka,η
)(ε,η,ρ) ∈ A and (

∥∥u′0,ε,η,ρ

∥∥
∞,Ka,η

)(ε,η,ρ) ∈ A, thus

‖u0,ε,η,ρ‖∞,Kη
+

∥∥u′0,ε,η,ρ

∥∥
∞,Kη

exp(2ac1r
p
ενKaη) ∈ |A| .

A being stable, we have (‖uε,η,ρ‖∞,Kη
)(ε,η,ρ) ∈ |A| and then (‖uε,η,ρ‖∞,K)(ε,η,ρ) ∈

|A|, that is
(PK,0 (uε,η,ρ))(ε,η,ρ) ∈ |A| .

Let us show that (PK,1(uε,η,ρ))(ε,η,ρ) ∈ |A|. We have

∂uε,η,ρ

∂x
(x, t) =

∂u0,ε,η,ρ

∂x
(x, t) +

t∫

f(x)

Fε(x, ζ, u′ε,η,ρ(x, ζ)) dζ,

thus

PK,(1,0)(uε,η,ρ) ≤ supK

∣∣∣∣
∂u0,ε,η,ρ

∂x
(x, t)

∣∣∣∣ + 2a supKa,η

∣∣Fε(x, t, u′ε,η,ρ(x, t))
∣∣ .

We have

PKa,η,(0,0)(Fε( . , . , u′ε,η,ρ)) ≤ PKa,η,0(Fε( . , . , u′ε,η,ρ)) ≤ c0r
p
ε .

Then
PK,(1,0)(uε,η,ρ) ≤ ‖∂/∂x u0,ε,η,ρ‖∞,K + c0r

p
ε2a.

Moreover (‖∂/∂x u0,ε,η,ρ‖∞,K)(ε,η,ρ) ∈ |A|, then we get (PK,(1,0)(uε,η,ρ))(ε,η,ρ) ∈
|A|. We have

∂uε,η,ρ

∂t
(x, t) =

∂u0,ε,η,ρ

∂t
(x, t)−

f−1(t)∫

x

Fε(ξ, t, u′ε,η,ρ(ξ, t)) dξ,

thus

PK,(0,1)(uε,η,ρ) ≤ supK

∣∣∣∣
∂u0,ε,η,ρ

∂t
(x, t)

∣∣∣∣ + aK,η supKa,η

∣∣Fε(x, t, u′ε,η,ρ(x, t))
∣∣ .
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We obtain
PK,(0,1)(uε,η,ρ) ≤ ‖∂/∂t u0,ε,η,ρ‖∞,K + νKaηc0r

p
ε

and then
(‖∂/∂t uε,η,ρ‖∞,K)(ε,η,ρ) ∈ |A| .

Now we proceed by induction. Suppose that (PK,l(uε,η,ρ))(ε,η,ρ) ∈ |A| for every
l ≤ n, and let us show that it implies (PK,n+1(uε,η,ρ))(ε,η,ρ) ∈ |A|. We have
PK,n+1 = max (PK,n, P1,n, P2,n, P3,n, P4,n) with

P1,n = PK,(n+1,0), P2,n = PK,(0,n+1),
P3,n = supα+β=n; β≥1 PK,(α+1,β), P4,n = supα+β=n; α≥1 PK,(α,β+1).

First, let us show that (P1,n(uε,η,ρ))(ε,η,ρ), (P2,n(uε,η,ρ))(ε,η,ρ) ∈ |A| for every
n ∈ N. We have by successive derivations, for n ≥ 1,

∂n+1uε,η,ρ

∂xn+1
(x, t) =

∂n+1u0,ε,η,ρ

∂xn+1
(x, t)

−
n−1∑

j=0

Cj
nf (n−j)

η (x)
∂j

∂xj
Fε(x, f(x), ψρ(x))

+

t∫

f(x)

∂n

∂xn
Fε(x, ζ, u′ε,η,ρ(x, ζ)) dζ.

As K ⊂ Ka,η, we can write

sup(x,t)∈K

∣∣∣∣
∂n+1uε,η,ρ

∂xn+1
(x, t)

∣∣∣∣ ≤
∥∥∥∥

∂n+1u0,ε,η,ρ

∂xn+1

∥∥∥∥
∞,K

+ supx∈K1η

n−1∑

j=0

Cj
n

∣∣∣f (n−j)
η (x)

∣∣∣
∣∣∣∣

∂j

∂xj
Fε(x, f(x), ψρ(x))

∣∣∣∣

+ aK,η sup(x,t)∈K

∣∣∣∣
∂n

∂xn
Fε(x, t, u′ε,η,ρ(x, t))

∣∣∣∣ .

We have fη ∈ Xτ then for all k, we can find p ∈ N such that

∀η, sup
R

(1 + |x|)−p
∣∣∣f (k)

η (x)
∣∣∣ ≤ η−p,

but then we have
∣∣∣
∣∣∣f (k)

η

∣∣∣
∣∣∣
K1,η

≤ max
{
(1 +

∣∣f−1
η (a)

∣∣)p, (1 +
∣∣f−1

η (−a)
∣∣)p

}
η−p ∈ |A| .

Moreover

sup(x,t)∈K

∣∣∣∣
∂n

∂xn
Fε(x, t, u′ε,η,ρ(x, t))

∣∣∣∣ ≤ PK,n(Fε( . , . , u′ε,η,ρ)) ≤ cnrp
ε ,
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supx∈[−a,a]

∣∣∣∣
∂j

∂xj
Fε(x, f(x), ψρ(x))

∣∣∣∣ ≤ PK,n(Fε( . , . , u′ε,η,ρ)) ≤ cnrp
ε ,

and (
∥∥∂n+1/∂xn+1 u0,ε,η,ρ

∥∥
∞,K

)(ε,η,ρ) ∈ |A|. According to the stability hypoth-
esis, a simple calculation shows that, for every K b R2,

(PK,(n+1,0) (uε,η,ρ))(ε,η,ρ) ∈ |A| .
Let us show that (P2,n(uε,η,ρ))ε ∈ |A|, for every n ∈ N. We have by successive
derivations, for n ≥ 1

∂n+1uε,η,ρ

∂tn+1
(x, t) =

∂n+1u0,ε,η,ρ

∂tn+1
(x, t)−

f−1(t)∫

x

∂n

∂tn
Fε(ξ, t, u′ε,η,ρ(ξ, t)) dξ

−
n−1∑

j=0

Cj
n

(
f−1

η

)(n−j)
(t)

∂j

∂tj
Fε(f−1

η (t), t, ψε(f−1(t))) .

As K ⊂ Ka,η, we can write

sup(x,t)∈K

∣∣∣∣
∂n+1uε,η,ρ

∂tn+1
(x, t)

∣∣∣∣

≤
∥∥∥∥

∂n+1u0,ε,η,ρ

∂tn+1

∥∥∥∥
∞,K

+ aK,η sup(x,t)∈K

∣∣∣∣
∂n

∂tn
Fε(x, t, u′ε,η,ρ(x, t))

∣∣∣∣

+ sup
t∈[−a,a]

n−1∑

j=0

Cj
n

∣∣∣
(
f−1

η

)(n−j)
(t)

∣∣∣
∣∣∣∣
∂j

∂tj
Fε(f−1

η (t), t, ψε(f−1(t)))
∣∣∣∣ .

We have

sup(x,t)∈K

∣∣∣∣
∂n

∂tn
Fε(x, t, u′ε,η,ρ(x, t))

∣∣∣∣ ≤ PK,n(Fε(., ., u′ε,η,ρ)) ≤ cnrp
ε ,

supt∈[f(−a),f(a)]

∣∣∣∣
∂j

∂tj
Fε(f−1

η (t), t, ψε(f−1
η (t)))

∣∣∣∣ ≤ PK,n(Fε( . , . , u′ε,η,ρ)) ≤ cnrp
ε .

For all k, we can find p ∈ N such that
∣∣∣
∣∣∣f (k)

η

∣∣∣
∣∣∣
K1,η

≤ max
{
(1 +

∣∣f−1
η (a)

∣∣)p, (1 +
∣∣f−1

η (−a)
∣∣)p

}
η−p ∈ |A| .

According to the stability hypothesis, a simple calculation shows that, for every
K b R2 and n ∈ N, (PK,(0,n+1) (uε,η,ρ))(ε,η,ρ) ∈ |A|. For α + β = n and β ≥ 1,
we now have

PK,(α+1,β)(uε,η,ρ) = sup(x,t)∈K

∣∣∣D(α,β−1)D(1,1)uε,η,ρ (x, t)
∣∣∣

= sup(x,t)∈K

∣∣∣D(α,β−1)Fε(x, t, u′ε,η,ρ (x, t))
∣∣∣

= PK,(α,β−1)(Fε( . , . , u′ε,η,ρ))

≤ PK,n(Fε( . , . , u′ε,η,ρ)) ≤ cnrp
ε .
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Then we finally have

P3,n(uε,η,ρ) = supα+β=n;β≥1 PK,(α+1,β)(uε,η,ρ) ≤ cnrp
ε

and the stability hypothesis ensures that (P3,n(uε,η,ρ))(ε,η,ρ) ∈ |A|. In the same
way, for α + β = n and α ≥ 1, we have

PK,(α,β+1)(uε,η,ρ) = sup(x,t)∈K

∣∣∣D(α−1,β)D(1,1)uε,η,ρ (x, t)
∣∣∣

= sup(x,t)∈K

∣∣∣D(α−1,β)Fε(x, t, u′ε,η,ρ (x, t))
∣∣∣

= PK,(α−1,β)(Fε( . , . , u′ε,η,ρ))

≤ PK,n(Fε( . , . , u′ε,η,ρ)) ≤ cnrp
ε .

Thus we have P4,n(uε,η,ρ) = supα+β=n;α≥1 PK,(α,β+1)(uε,η,ρ) ≤ cnrp
ε and the

stability hypothesis ensures that (P4,n(uε,η,ρ))(ε,η,ρ) ∈ |A|. Finally, we clearly
have (PK,n+1(uε,η,ρ))(ε,η,ρ) ∈ |A|, consequently (uε,η,ρ)(ε,η,ρ) ∈ X (R2).

Theorem 9. Problem (Pgen) has a unique solution in the algebra A (
R2

)
.

Proof. Let [uε,η,ρ]A(R2) be the solution to (Pgen) obtained in Theorem 8. Let
v = [vε] be another solution to (Pgen). There are (iε,η,ρ)(ε,η,ρ) ∈ N

(
R2

)
and

(αρ)ρ, (βρ)ρ ∈ N (R), such that




∂2vε,η,ρ

∂x∂t
(x, t) = Fε(x, t, v′ε,η,ρ(x, t)) + iε,η,ρ(x, t),

vε,η,ρ (x, f(x)) = ϕρ(x) + αρ(x),
∂vε,η,ρ

∂t
(x, f(x)) = ψρ(x) + βρ(x).

The uniqueness of the solution to (PG) will be a consequence of

(vε,η,ρ − uε,η,ρ)(ε,η,ρ) ∈ N (R2).

It is easy to see that

(x, t) 7→

∫∫

D(x,t,f)

iε,η,ρ(ξ, η) dξ dη




(ε,η,ρ)

∈ N (
R2

)
.

So, there is (jε,η,ρ)(ε,η,ρ) ∈ N
(
R2

)
such that

vε,η,ρ(x, t) = v0,ε,ρ(x, t)−
∫∫

D(x,t,f)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ)) dξ dζ + jε,η,ρ(x, t),

with v0,ε,η,ρ(x, t) = u0,ε,η,ρ(x, t) + θρ(x, t), where θρ(x, t) = Bρ(t)−Bρ(f (x)) +
αρ(x) and Bρ is a primitive of βρ ◦ f−1

η . So (θρ)ε,ρ belongs to N (R2). Hence
there is (σε,η,ρ)(ε,η,ρ) ∈ N (R2) such that

vε,η,ρ(x, t) = u0,ε,η,ρ(x, t) + σε,η,ρ(x, t)−
∫∫

D(x,t,f)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ)) dξ dζ.
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Let us put wε,η,ρ = vε,η,ρ − uε,η,ρ and show that (wε,η,ρ)(ε,η,ρ) ∈ N (R2). We
have to prove that

∀K b R2, ∀n ∈ N, (PK,n(wε,η,ρ))(ε,η,ρ) ∈ IA.

We have

wε,η,ρ(x, t) =∫∫

D(x,t,f)

(−Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ)) + Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))
)

dξ dζ + σε,η,ρ(x, t),

but

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))

= w′ε,η,ρ(ξ, ζ)

1∫

0

∂Fε

∂z
(ξ, ζ, u′ε,η,ρ(ξ, ζ) + θw′ε,η,ρ(ξ, ζ)) dθ,

then

wε,η,ρ(x, t) =

−
∫∫

D(x,t,f)

w′ε,η,ρ(ξ, ζ)




1∫

0

∂Fε

∂z
(ξ, ζ, u′ε,η,ρ(ξ, ζ) + θ(w′ε,η,ρ(ξ, ζ))) dθ


 dξ dζ

+ σε,η,ρ(x, t).

Let (x, t) ∈ Ka,η. Since D(x, t, f) ⊂ Ka,η, if t ≥ f(x), we have

|wε,η,ρ(x, t)| ≤ ma,ε,η

f−1
η (t)∫

x

t∫

fη(ξ)

∣∣w′ε,η,ρ(ξ, ζ)
∣∣ dξ dζ + ‖σε,η,ρ‖∞,Ka,η(6)

≤ c1r
p
ε

f−1
η (a)∫

f−1
η (−a)

t∫

fη(x)

∣∣w′ε,η,ρ(ξ, ζ)
∣∣ dξ dζ + ‖σε,η,ρ‖∞,Ka,η .

As

∂u

∂t
(x, t) =

∂u0

∂t
(x, t)−

f−1
η (t)∫

x

Fε(ξ, t, u′ε,η,ρ(ξ, t)) dξ,
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we have

w′ε,η,ρ(ξ, t) =

f−1
η (t)∫

x

(
Fε(ξ, t, u′ε,η,ρ(ξ, t))− Fε(ξ, t, v′ε,η,ρ(ξ, t))

)
dξ

=

f−1
η (t)∫

x


w′ε,η,ρ(ξ, t)

1∫

0

∂Fε

∂z
(ξ, t, u′ε,η,ρ(ξ, η) + θw′′ε,ρ(ξ, η)) dθ


 dξ

so

∣∣w′ε,η,ρ(ξ, t)
∣∣ ≤ c1r

p
ε

f−1
η (t)∫

x

∣∣w′ε,η,ρ(ξ, t)
∣∣ dξ.

Put eε,η,ρ(ξ) = supt∈[−a,a]

∣∣w′ε,η,ρ(ξ, t)
∣∣. Then

∣∣w′ε,η,ρ(ξ, t)
∣∣ ≤ c1r

p
ε

f−1
η (t)∫

x

eε,η,ρ(ξ) dξ.

We deduce that

∀ξ ∈ [
f−1

η (−a), f−1
η (a)

]
, eε,η,ρ(ξ) ≤ c1r

p
ε

f−1(t)∫

x

eε,η,ρ(ξ) dξ.

Thus, according to Gronwall’s lemma, eε,η,ρ(ξ) = 0 and consequently

∀ (ξ, t) ∈ [
f−1

η (−a), f−1
η (a)

]× [−a, a] , w′ε,η,ρ(ξ, t) = 0.

We obtain the same result for t ≤ fη(x). Then, according to (6), we have

|wε,η,ρ(x, t)| ≤ ‖σε,η,ρ‖∞,Ka,η
.

Since (σε,η,ρ)(ε,η,ρ) ∈ N (R2) we have (‖σε,η,ρ‖∞,Ka,η
)(ε,η,ρ) ∈ IA then

(‖wε,η,ρ‖∞,Ka,η
)(ε,η,ρ) ∈ IA

This implies the 0th order estimate. According to (1) (wε,η,ρ)(ε,η,ρ) ∈ N (R2),
and consequently u is the unique solution to (PG).

Remark 8. Construction of A (
R2

)
in the case of regular data. If the data

s and t are smooth, we take (ε, η) ∈ Λ = Λ1 × Λ2 = (0, 1] × (0, 1]. Let
(rε)ε be in (R+

∗ )(0,1] such that lim
ε→0

rε = +∞. We take C = A/IA the ring

overgenerated by (ε)(ε,η), (η)(ε,η), (rλ)(ε,η), (lη)(ε,η), (eaηrε)(ε,η), elements of

(R+
∗ )(0,1]×(0,1]. Then A (

R2
)

= X (R2)/N (R2) is built on the ring C of gen-

eralized constants with (E ,P) =
(
C∞(R2), (PK,l)KbR2,l∈N

)
and, in the same
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way, A (R) = X (R)/N (R) is built on C with (E ,P) =
(
C∞(R), (PK,l)KbR,l∈N

)
.

Nonetheless, the algebra A (
R2

)
is not the same in the two cases, regular data

and irregular data.
We set ϕ = s and ψ = t, elements of C∞(R) canonically embedded in A (R). If
α ∈ A (R) we take αρ = α, if α ∈ N (R) we take αρ = 0. Then we can rewrite
this section and get similar results. We have the same definitions as previously
and we obtain the same theorems, the same proofs replacing ϕρ by ϕ and ψρ by
ψ. As previously, we can prove that Problem (Pgen) has a generalized solution
u = [uε,η] in the algebra A (

R2
)
.

4.2. Independence of the generalized solution from the class of cutoff
functions

See [14]. Recall that Λ1 = (0, 1], set

X1(R) = {(gε)ε ∈ [C∞(R)]Λ1 : ∀K b R, ∀l ∈ N, (PK,l(gε))ε ∈ |A|},
N1(R) = {(gε)ε ∈ [C∞(R)]Λ1 : ∀K b R, ∀l ∈ N, (PK,l(gε))ε ∈ |IA|},
A1(R) = X1(R)/N1(R).

Consider T (R) the set of families of smooth one-variable functions (hε)ε∈Λ1
∈

X1(R), verifying the following assumptions

∃ (sε)ε ∈ R(0,1]
∗ : sup

z∈[−sε,sε]

|hε(z)| = 1,(7)

hε(z) =
{

0, if |z| ≥ sε

1, if − sε + 1 ≤ z ≤ sε − 1 .

(8) ∃q ∈ N∗, ∀ (hε)ε ∈ T (R), ∀ε, sε ≤ rq
ε .

Moreover, assume that
∂nhε

∂zn
is bounded on Jε = [−sε, sε] for any integer n,

n > 0.
We have (gε)ε∈Λ1

∈ T (R). Recall that φε(z) = zgε(z) for z ∈ R, Fε(x, y, z) =
F (x, y, φε(z)) for (x, y, z) ∈ R3 and

sup
z∈[−rε,rε]

∣∣∣∣
∂ngε

∂zn
(z)

∣∣∣∣ = Mn.

Let g ∈ T (R)/N1(R) be the class of (gε)ε. Take (hε)ε another representative of
g, that is to say (hε)ε ∈ T (R) and

(9) (gε − hε)ε ∈ N1(R).

Set σε(z) = zhε(z) for z ∈ R, Hε(x, y, z) = F (x, y, σε(z)) for (x, y, z) ∈ R3

and

sup
z∈[−sε,sε]

∣∣∣∣
∂nhε

∂z
(z)

∣∣∣∣ = M ′
n.
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Our choice is made such that (supp (hε))ε have the same growth as (supp (fε))ε

with respect to the scale (rq
ε)ε, in this way the corresponding solutions are lying

in the same algebra A (
R2

)
.

Proposition 10. Set Sn =
{
α ∈ N3 : |α| = n

}
when n ∈ N∗. Let

F ∈ C∞(R3,R), Hε defined by

Hε(x, y, z) = F (x, y, σε(z)).

Assume that
∀ (x, y) ∈ R2, F (x, y, 0) = 0 ,

∃p0 > 0, ∀α ∈ N3, |α| = n > p0, D
αF (x, y, z) = 0,

(10)
∀n ∈ N, n ≤ p0,∃dn > 0, ∀ε ∈ (0, 1] ,∀K b R2,

sup
(x,y)∈K; z∈Jε;α∈Sn

|DαF (x, y, z)| ≤ dnrp0
ε ,

then
∀n ∈ N, n ≤ p0, ∃cn > 0, ∀ε ∈ (0, 1] ,∀K b R2,

sup
(x,y)∈K; z∈R;α∈Sn

|DαHε(x, y, z)| ≤ cnr
p0(1+q)
ε

and A (
R2

)
is stable under the family (Hε)(ε,ρ).

We refer the reader to [14] for a detailed proof.

Theorem 11. Assume that p = p0(1 + q) and the hypotheses of Proposition 10
are verified. Let F be the generalized operator associated to F via the family
(gε)ε. Let (hε)ε ∈ (C∞(R))Λ1 be another family representative of the class
[gε] = g and leading to another generalized operator H associated to F . Then
we have H = F , that is to say H (u) = F (u) for any u ∈ A(R2). Then, in
terms of representatives, that is to say, if (uλ)λ, (vλ)λ ∈ X (R2) and (wλ)λ =
(vλ − uλ)λ ∈ N (R2), then

(
F (·, ·, σµ(λ) (vλ))− F (·, ·, φµ(λ) (uλ))

)
λ
∈ N (R2).

We refer the reader to [14] for a detailed proof.

Corollary 12. Problem (Pgen), a fortiori its solution, does not depend of the
choice of the representative (fε)ε of the class f ∈ T (R)/N1(R).

Proof. (wλ)(ε,η,ρ) = (vε,η,ρ − uε,η,ρ)(ε,η,ρ) ∈ N (R2) then

(
w′ε,η,ρ

)
(ε,η,ρ)

=
(
v′ε,η,ρ − u′ε,η,ρ

)
(ε,η,ρ)

∈ N (R2).

We deduce that
(
F (·, ·, σε

(
v′ε,η,ρ

)
)− F (·, ·, φε

(
u′ε,η,ρ

)
)
)
(ε,η,ρ)

∈ N (R2),

that is to say H (u′) = F (u′) for any u ∈ A(R2).
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4.3. Independence of the generalized solution from the class [fη]

Lemma 13. Let (fη)η , (hη)η ∈ Xτ (R) such that for every η, fη, hη are bijective
and (

f−1
η

)
η
,
(
h−1

η

)
η
∈ Xτ (R).

If moreover (hη − fη)η ∈ Nτ (R) we have that

(
f−1

η − h−1
η

)
η
∈ Nτ (R)

We refer the reader to [1] for a detailed proof.

Theorem 14. Under the same hypotheses as Theorem 8, the generalized func-
tion u represented by the family (uε,η,ρ)(ε,η,ρ) of solutions to Problems (Pε,η,ρ),
does not depend on the choice of the representative (fη)η of the class f = [fη] ∈
Gτ (R).

Proof. We have

uε,η,ρ(x, t) = u0,ε,η,ρ(x, t)−
∫∫

D(x,t,fη)

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))dξdζ,

where u0,ε,η,ρ(x, t) = Υf
η,ρ (t)−Υf

η,ρ(fη(x)) + ϕρ(x) and
(
Υf

η,ρ

)′ = ψρ ◦ f−1
η . So

we take (hη)η ∈ Xτ (R), such that (fη − hη)η ∈ Nτ (R); let v = [vε,η,ρ] be the
corresponding generalized solution. Let us prove that u = v. We will in fact
prove a slightly stronger statement for reasons that will be clear in the course
of the proof

∀K b R2, ∀α ∈ N2,
(
PKη,α(uε,η,ρ − vε,η,ρ)

)
(ε,η,ρ)

∈ IA.

Let us now fix KbR2. We have

vε,η,ρ(x, t) = v0,ε,η,ρ(x, t)−
∫∫

D(x,t,hη)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dξdζ,

where v0,ε,η,ρ(x, t) = Υh
η,ρ (t) − Υh

η,ρ(hη(x)) + ϕρ(x) and
(
Υh

η,ρ

)′ = ψρ ◦ h−1
η .

Then we get

u0,ε,η,ρ(x, t)− v0,ε,η,ρ(x, t) = Υf
η,ρ (t)−Υh

η,ρ (t)−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x)).

We compute

∂

∂x

(−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x))
)

= ψρ(x)
(
f ′η(x)− h′η(x)

)

and (fη − hη)η ∈ Nτ (R), but we can find p ∈ N such that for any m ∈ N we
have

∀x ∈ R,
∂

∂x

(−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x))
) ≤ ηm(1 + |x|)p,
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so
∥∥∥∥

∂

∂x

(−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x))
)∥∥∥∥

Ka,η

≤ ηm max {(1 + |aK,η/2|)p} ,

but ((1 + |aK,η/2|)p)(ε,η,ρ) ∈ |A| thus we have obtained that

(∥∥∥∥
∂

∂x

(−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x))
)∥∥∥∥

Kη

)

(ε,η,ρ)

∈ IA.

Then we obtain that
(
PKη,1

(−Υf
η,ρ(fη(x) + Υh

η,ρ(hη(x))
))

(ε,η,ρ)
∈ IA. The

proof is similar for higher derivatives. Now as
(
f−1

η − h−1
η

)
η
∈ N (R) and

ψρ ∈ OM then
(
ψρ ◦ f−1

η − ψρ ◦ h−1
η

)
η
∈ N (R) and then we finally obtain that

∀α,
(
PKη,α(u0,ε,η,ρ − v0,ε,η,ρ)

)
(ε,η,ρ)

∈ IA.

We compute

u1,ε,η,ρ(x, t)− v1,ε,η,ρ(x, t)

=
∫ x

f−1
η (t)

∫ fη(ξ)

t

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))dζdξ

−
∫ x

h−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

=
∫ x

f−1
η (t)

∫ fη(ξ)

t

[
Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))

]
dζdξ

−
∫ f−1

η (t)

h−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

−
∫ x

f−1
η (t)

∫ hη(ξ)

fη(ξ)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ.

As fη ◦ h−1
η ≡ id mod N s(R), we have

sup
t∈[−a,a]

∣∣∣∣∣
∫ h−1

η (t)

f−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

∣∣∣∣∣

≤ 2b

∫ h−1
η (t)

f−1
η (t)

sup
ζ∈[−a,a]

∣∣Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))
∣∣ dξ

≤ 2b
∥∥f−1

η − h−1
η

∥∥
[−a,a]

‖Fε‖[λη,µη]×[−a,a]×R

where {
λη = min{f−1

η (−a), h−1
η (−a)}

µη = max{f−1
η (a), h−1

η (a)}.
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As (fη − hη)η ∈ Nτ (R) and ‖Fε‖[λη,µη]×[−a,a]×R ∈ |A|, then

sup
t∈[−a,a]

∣∣∣∣∣
∫ h−1

η (t)

f−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

∣∣∣∣∣ ∈ IA.

For the first derivative we have

d

dt

(∫ h−1
η (t)

f−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

)

= −
∫ hη(f−1

η (t))

t

Fε(f−1
η (t), ζ, v′ε,η,ρ(f

−1
η (t), ζ))dζ

+
∫ h−1

η (t)

f−1
η (t)

Fε(ξ, t, v′ε,η,ρ(ξ, t))dξ.

And the same kind of arguments take care of those two terms. Now for the
higher derivatives

d2

dt2

(∫ h−1
η (t)

f−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

)
(11)

=− Fε(f−1
η (t), hη(f−1

η (t)), v′ε,η,ρ(f
−1
η (t), hη(f−1

η (t))))(12)

+ Fε(f−1
η (t), t, v′ε,η,ρ(f

−1
η (t), t))

−
∫ hη(f−1

η (t))

t

d

dt

(
Fε(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))

)
dζ(13)

+Fε(h−1
η (t), t, v′ε,η,ρ(h

−1
η (t), t))− Fε(f−1

η (t), t, v′ε,η,ρ(f
−1
η (t), t))(14)

+
∫ h−1

η (t)

f−1
η (t)

d

dt

(
Fε(ξ, t, v′ε,η,ρ(ξ, t))

)
dξ.(15)

The hypotheses on Fε and the fact that (h−1
η − f−1

η )η ∈ Nτ (R) takes care of
the terms of lines (12) and (14). Let us now turn our attention to line (13). We
have

∫ hη(f−1
η (t))

t

d

dt

(
Fε(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))

)
dζ

=
∫ hη(f−1

η (t))

t

[(f−1
η )′(t)

∂Fε

∂ξ
(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))

+ (f−1
η )′(t)

∂2vε,η,ρ

∂x∂t
(f−1

η (t), ζ)
∂Fε

∂z
(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))]dζ.

As (hη ◦ f−1
η − id)η ∈ Nτ (R) we can find a compact L ⊂ R such that

∀η, {hη ◦ f−1
η (t) : t ∈ [−b, b]} ∪ [−b, b] ⊂ L,
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and moreover it is sufficient to prove that

( sup
t∈[−b,b],ζ∈L

| (f−1
η )′(t)

∂Fε

∂ξ
(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))

+ (f−1
η )′(t)

∂2vη

∂x∂t
(f−1

η (t), ζ)
∂Fε

∂z
(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ)) |)ε,η,ρ ∈ |A| .

But it is easy to see that
(

sup
t∈[−b,b],ζ∈L

∣∣∣∣(f−1
η )′(t)

∂Fε

∂ξ
(f−1

η (t), ζ, v′ε,η,ρ(f
−1
η (t), ζ))

∣∣∣∣
)

(ε,η,ρ)

∈ |A| .

For the other term the only part needing some new explanations is to prove that

(
sup

t∈[−b,b],ζ∈L

∂2vε,η,ρ

∂x∂t
(f−1

η (t), ζ)

)

(ε,η,ρ)

=

(
sup

t∈[−b,b],ζ∈L

Fε(f−1
η (t), ζ, v′ε,η,ρ

(
f−1

η (t), ζ
)
)

(ε,η,ρ)

∈ |A| .

But here we use the fact that (h−1
η − f−1

η )η ∈ Nτ (R) to find η0 such that

(16) ∀0 < η < η0,
∥∥f−1

η − h−1
η

∥∥
[−b,b]

< 1.

We proved in the proof of Theorem 8 that
(
PKη,α(vε,η,ρ)

)
(ε,η,ρ)

∈ |A| and be-
cause of (16) we have that f−1

η (L) × [−b, b] ⊂ Kη, which settles this case. For
higher derivatives the reasoning involves the same estimate and presents no new
obstacles. So this proves that

∀α,

(
PKη,α

(∫ h−1
η (t)

f−1
η (t)

∫ hη(ξ)

t

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

))

(ε,η,ρ)

∈ IA.

Similar arguments apply to prove that

∀α,

(
PKη,α

(∫ x

f−1
η (t)

∫ hη(ξ)

fη(ξ)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))dζdξ

))

(ε,η,ρ)

∈ IA.

So we have proved that

PKη,α (u1,ε,η,ρ(x, t)− v1,ε,η,ρ(x, t))(ε,η,ρ) ≡(∫ x

f−1
η (t)

∫ fη(ξ)

t

[
Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))

]
dζdξ

)

(ε,η,ρ)

mod IA.
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We define

σε,η,ρ(x, t) = uε,η,ρ(x, t)− vε,η,ρ(x, t)

−
∫ x

f−1
η (t)

∫ fη(ξ)

t

[
Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))

]
dζdξ.

So, by the above arguments we just proved that
(
PKη,α (σε,η,ρ)

)
(ε,η,ρ)

∈ IA. We
now define wε,η,ρ(x, t) = uε,η,ρ(x, t)−vε,η,ρ(x, t). Keeping the same notations as
in the proof of Theorem 8, we want to prove that ∀n,

(
PKη,n (wε,η,ρ)

)
(ε,η,ρ)

∈ IA.

Let us first prove that
(
PKη,0(wε,η,ρ)

)
(ε,η,ρ)

∈ IA. First we have

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))

= w′ε,η,ρ(ξ, ζ)
∫ 1

0

∂Fε

∂z
(ξ, ζ, u′ε,η,ρ(ξ, ζ) + θ(w′ε,η,ρ(ξ, ζ))dθ,

then

wε,η,ρ(x, t) = σε,η,ρ(x, t)+
∫ x

f−1
η (t)

∫ fη(ξ)

t

w′ε,η,ρ(ξ, ζ)
(∫ 1

0

∂Fε

∂z
(ξ, ζ, u′ε,η,ρ(ξ, ζ) + θ(w′ε,η,ρ(ξ, ζ))dθ

)
dζdξ.

Now we have

∀η, ∪(x,t)∈Kη
{(ξ, ζ) | ξ ∈ [x, f−1

η (t)], t ≤ ζ ≤ fη(ξ)} ⊂ Lη = [αK,η, βK,η]×[−b, b],

so that setting lη = supLη×R
∣∣∂F

∂z

∣∣ we have

|wε,η,ρ(x, t)| ≤ lη

∫ βK,η

αK,η

∫ fη(x)

t

∣∣w′ε,η,ρ(ξ, ζ)
∣∣ dζdξ + |σε,η,ρ(x, t)| ,

then
(17)

∀(x, t) ∈ Kη, |wε,η,ρ(x, t)| ≤ lη

∫ βK,η

αK,η

∫ fη(x)

t

∣∣w′ε,η,ρ(ξ, ζ)
∣∣ dζdξ + ‖σε,η,ρ‖Kη

.

We have

w′ε,η,ρ(x, ζ) =
∂

∂t
(u0,ε,η,ρ − v0,ε,η,ρ) (x, ζ)

+

f−1
η (ζ)∫

x

Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ)) dξ −
h−1

η (ζ)∫

x

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ)) dξ,
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then

w′ε,η,ρ(x, ζ) =
∂w0,ε,η,ρ

∂t
(x, ζ)

+

f−1
η (ζ)∫

x

(
Fε(ξ, ζ, u′ε,η,ρ(ξ, ζ))− Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ))

)
dξ

−
h−1

η (ζ)∫

f−1
η (ζ)

Fε(ξ, ζ, v′ε,η,ρ(ξ, ζ)) dξ.

Thus we have
∣∣w′ε,η,ρ(x, ζ)

∣∣ ≤ iε,η,ρ

+

f−1(ζ)∫

x

∣∣w′ε,η,ρ(ξ, ζ)
∣∣
∣∣∣∣∣∣

1∫

0

∂Fε

∂z
(ξ, ζ, u′ε,η,ρ(ξ, ζ)) + θw′′ε,η,ρ(ξ, ζ)) dθ

∣∣∣∣∣∣
dξ

where

(iε,η,ρ)ε,η,ρ =
(
PKη,1(w0,ε,η,ρ) +

∥∥f−1
η − h−1

η

∥∥
[−a,a]

‖Fε‖[λη,µη]×[−a,a]×R
)

ε,η,ρ
∈ IA.

We deduce

∣∣w′ε,η,ρ(x, ζ)
∣∣ ≤ iε,η,ρ + c1r

p
ε

f−1
η (t)∫

x

∣∣w′ε,η,ρ(ξ, ζ)
∣∣ dξ.

Put eε,η,ρ(x) = supζ∈[−a,a]

∣∣w′ε,η,ρ(x, ζ)
∣∣. Then

∣∣w′ε,η,ρ(x, t)
∣∣ ≤ iε,η,ρ + c1r

p
ε

f−1
η (t)∫

x

eε,η,ρ(ξ) dξ.

We deduce that

∀x ∈ [λη, µη], eε,η,ρ(x) ≤ iε,η,ρ + c1r
p
ε

f−1
η (t)∫

x

eε,η,ρ(ξ) dξ.

Thus, according to Gronwall’s lemma,

0 ≤ eε,η,ρ(x) ≤ iε,η,ρ exp




f−1
η (t)∫

x

c1r
p
ε dξ.


 ≤ iε,η,ρc1r

p
ε (µη − λη) ,
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then
0 ≤ ∥∥w′ε,η,ρ

∥∥
∞,Kη

≤ iε,η,ρc1r
p
ε (µη − λη)

and consequently
(
PKη,1(wε,η,ρ)

)
(ε,η,ρ)

∈ IA. According (17), we deduce

(
PKη,0(wε,η,ρ)

)
(ε,η,ρ)

∈ IA.

Which implies the 0th order estimate. According to Proposition 1, we deduce
(wε,η,ρ)(ε,η,ρ) ∈ N (R2); consequently u does not depend on the choice of the
representative (fη)η of the class f = [fη] ∈ Gτ (R).

5. Non-characteristic non-Lipschitz problem with irregu-
lar data

5.1. Notations

We take Λ = Λ1×Λ3 = (0, 1]× (0, 1], and λ = (ε, ρ); (η is fixed and fη = f).
Let (rε)ε be in (R+

∗ )(0,1] such that lim
ε→0

rε = +∞. Set

(A′2)
{

f ∈ C∞(R), f strictly increasing, f(R) = R,
∀x ∈ R, f ′(x) 6= 0,

(18)

{
aK = 2 max(f−1(a),

∣∣f−1(−a)
∣∣),

Ka = K1 ×K2 with K1 = [−aK/2, aK/2] and K2 = [−a, a] .





∃ (lρ)(ρ) ∈ R
(0,1]
∗ such that ∀K2 b R,∀α2 ∈ N, ∃D2 = DK2,α2,ρ ∈ R∗+,∃q ∈ N,

max
[
sup
K2

∣∣Dα2ψρ(f−1 (t))
∣∣ , sup

K2

|Dα2Υρ (t)|
]
≤ D2 (lρ)

−q
.

We take C = A/IA the ring overgenerated by (ε)(ε,ρ), (ρ)(ε,ρ), (rε)(ε,ρ), (lρ)(ε,ρ),

(erε)(ε,ρ) elements of (R+
∗ )(0,1]×(0,1]. Then A (

R2
)

= X (R2)/N (R2) is built

on the ring C of generalized constants with (E ,P) =
(
C∞(R2), (PK,l)KbR2,l∈N

)

and, in the same way, A (R) = X (R)/N (R) is built on C with
(E ,P) =

(
C∞(R), (PK,l)KbR,l∈N

)
. Then we can rewrite the previous section

and get similar results. We have the same definitions as previously and we
obtain the same theorems, the same proofs replacing fη by f . As previously,
we can prove that Problem (Pgen) has a generalized solution u = [uε,ρ] in the
algebra A (

R2
)
.

5.2. Comparison with classical solutions

Even if the data are as irregular as distributions, it may happen that the
initial formal ill-posed problem (Pform) has nonetheless a local smooth solution
as it will be seen in the following example 3. We are going to prove that this
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solution is exactly the restriction (according to the sheaf theory sense) of the
generalized one.

The generalized solution to Problem (Pgen) is defined from the integral rep-
resentation (1). Thus, we are going to study the relationship between this
generalized function and the classical solutions to (Pform) (when they exist) on
a domain Ω such that ∀ (x, y) ∈ Ω, D(x, y, g) ⊂ Ω. This justified to choose
Ω =

]
f−1(µ), f−1f−1(ν)

[× ]µ, ν[ when (µ, ν) ∈ R2 with µ < 0 < ν.

Remark 9. If the non-regularized problem (Pform) has a smooth solution v on
Ω then, necessarily, we have Ω ⊂ R2\singsupp (u).

Recall that there exists a canonical sheaf embedding of C∞(·) into A (·),
through the morphism of algebra

σO : C∞ (O) → A (O) , f 7→ [fε,ρ] (where O is any open subset of R2
and fε,ρ = f).

The presheaf A allows restriction and, as usually, we denote by u|O the restric-
tion on O of u ∈ A (

R2
)
.

Theorem 15. Let u = [uε,ρ] be the solution to Problem (Pgen). Let Ω be an
open subset of R2 such that Ω ⊂ R2\singsupp (u). Assume that Ω =

⋃
ε∈Λ1

Ωε with

(Ωε)ε is an increasing family of open subsets of R2 such that Ωε = ]g(aε), g(bε)[×
]aε, bε[ when (aε, bε) ∈ R2 with aε < 0 < bε. Assume that problem (Pform) has
a smooth solution v on Ω such that sup

(x,y)∈Ωε

|v′(x, y)| < rε − 1 for any ε. Then v

(element of C∞ (Ω) canonically embedded in A(Ω)) is the restriction (according
to the sheaf theory sense) of u to Ω, v = u|Ω.

Proof. We clearly have ∀ (x, y) ∈ Ω, ∃ε0, ∀ε ≤ ε0, (x, y) ∈ Ωε. Then D(x, y, g) ⊂
Ωε ⊂ Ω; we have

v(x, y) = v0(x, y)−
∫∫

D(x,y,g)

F (ξ, ζ, v′(ξ, ζ))dξdζ

then

∂v

∂t
(x, t) =

∂v0

∂t
(x, t)−

f−1(t)∫

x

F (ξ, t, v′(ξ, t)) dξ,

We take a representative of u in the family (uε,ρ)(ε,ρ); we have

∀ (x, y) ∈ Ω, uε,ρ(x, y) = u0,ε,ρ(x, y)−
∫∫

D(x,y,g)

Fε(ξ, ζ, u′ε,ρ(ξ, ζ))dξdζ

and v0(x, y) = u0,ε,ρ(x, y). Moreover

∂uε,ρ

∂t
(x, t) =

∂u0,ε,ρ

∂t
(x, t)−

f−1(t)∫

x

Fε(ξ, t, u′ε,ρ(ξ, t)) dξ,
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Set (wε,ρ)(ε,ρ) =
(
uε,ρ|Ω − v

)
(ε,ρ)

and take K b Ω. There exists ε1 such that,
for all ε < ε1, K b Ωε. According to the definition of Ωε, there exists a, 0 < a <
(bε − aε) /2, such that K ⊂ Qa ⊂ Ω with Qa =

[
f−1(aε + a), f−1(bε − a)

] ×
[aε + a, bε − a]. Take (x, y) ∈ K, then D(x, y, g) ⊂ Qa. Note that, for (ξ, ς, z) ∈
Ωε× ]−rε + 1, rε − 1[, we have F (ξ, ς, z) = Fε(ξ, ς, z) by construction of Fε and
values of v′ are in ]−rε + 1, rε − 1[. Thus v′ and u′ε,ρ are solutions of the same
integral equation, which admits a unique solution since Fε is a smooth function
of its arguments. Thus, for all ε ≤ ε1, v′ and u′ε,ρ are equal on Ωε. Moreover,
we have (like 6)

|wε,ρ(x, t)| ≤ c1r
p
ε

f−1(aε+a)∫

f−1(bε−a)

t∫

f(x)

∣∣w′ε,ρ(ξ, ζ)
∣∣ dξ dζ,

then wε,ρ = 0. We deduce that v and uε,ρ are solutions of the same integral
equation, which admits a unique solution. Thus (PK,n(v))(ε,ρ) ∈ |A| for any K b
Ω and n ∈ N. Then v (identified with

[
(v)(ε,ρ)

]
) belongs to A (Ω). Moreover,

for all ε ≤ ε1, sup(x,y)∈Qa
|wε,ρ(x, y)| = 0, hence (PK,l(wε,ρ))(ε,ρ) ∈ |IA| for

any l ∈ N as wε,ρ vanishes on K. Thus (wε,ρ)(ε,ρ) ∈ N (Ω) and v = u|Ω as
claimed.

6. Example

Example 3. Assume that (ε, η, ρ) ∈ Λ = (0, 1]3. Consider the problem

(Pform)





∂2u

∂x∂t
=

(
∂u

∂t

)2

,

u|(Ox) = 0,
∂u

∂t

∣∣∣∣
(Ox)

= vp( 1
1−x ).

This problem is classically highly ill-posed. We build A (
R2

)
like in (3.3). Let

be (Pgen) the generalized associated problem as it is done in Subsection 3.5.

Pgen





∂2u

∂x∂t
= F(u′),

Rf (u) = 0,
Rf (u′) = ψ

where F is associated to F (·, ·, u′) = (u′)2 via the family (gε)ε and fη(x) = ηx.
The generalized functions ϕ = [ϕρ] ∈ A (R), ψ = [ψρ] ∈ A (R) are constructed
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from

ψρ(x) =
(

θρ ∗ vp(
1

1− · )
)

(x)

= 〈vp(
1

1− z
), z 7→ θρ (x− z)〉

= lim
ε→0

∫
|1−z|>ε

θρ (x− z)
1− z

dz,

ϕρ(x) = 0

where (θρ)ρ is a chosen family of mollifiers. Then ψρ regularize vp( 1
1−x ). To

solve Problem (Pgen) associated to (Pform) we can consider the family of prob-
lems

(
P(ε,η,ρ)

)




∂2

∂x∂t
u(ε,η,ρ) (x, t) =

(
u′(ε,η,ρ) (x, t))gε(u′(ε,η,ρ) (x, t))

)2

,

u(ε,η,ρ)(x, ηx) = 0,
u′(ε,η,ρ)(x, ηx) = ψρ(x).

If uε,η,ρ is a solution to
(
P(ε,η,ρ)

)
then u = [uε,η,ρ] is the solution to (Pgen).

We have the restriction

vp(
1

1− x
)
∣∣∣∣
(Ox)

=
(

x 7→ 1
1− x

)
.

Let (Pgen,η) be the generalized associated problem to the problem

(Pform,η)





∂2u

∂x∂t
=

(
∂u

∂t

)2

,

u|(t=ηx) = 0,
∂u

∂t

∣∣∣∣
(t=ηx)

= vp( 1
1−x ).

To solve Problem (Pgen,η) associated to (Pform,η) we can consider the same
family of problems

(
P(ε,η,ρ)

)
.Then (uε,η,ρ)(ε,ρ) is a representative of the solution

uη to (Pgen,η). On Ω = ]−∞, 1[× R and for η fixed, problem (Pform,η) has the
classical solution v in C∞(Ω) where

v(x, t) =
t

(1− x)
,

and Theorem 15 shows that the restriction of uη ∈ A (
R2

)
to Ω is precisely

v. The local classical solution v which blows-up for x = 1 extends to a global
generalized solution uη which absorbs this blow-up.
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7. Appendix

7.1. Global smooth solutions to the Cauchy problem

We build the solution of the Cauchy problem by means of successive approx-
imation techniques (See [16]).

Here Fε = F , fη = f , ϕρ = ϕ and ψρ = ψ. Then we denote by (P∞) the
problem

(
P(ε,η,ρ)

)
, by (Pi) the problem

(
I(ε,η,ρ)

)
and by D(x, t, f) the domain

D(x, t, fη).

Theorem 16. Let u ∈ C0(R2). The function u is a solution to (P∞) if and
only if u is a solution to (Pi) .

Proof. The existence of f−1 is ensured by (H1). Hypothesis (H1) also ensures
that the domain D(x, t, f) is bounded. If u is a solution to (P∞), suppose that
t ≥ f(x). We have

∫∫

D(x,t,f)

(
∂2u

∂x∂t
(ξ, η) dξ

)
dη =

t∫

f(x)

∂u

∂t
(f−1(η), η) dη −

t∫

f(x)

∂u

∂t
(x, η) dη

= Υ (t)−Υ(f(x))− u(x, t) + ϕ(x),

where Υ denotes a primitive of ψ ◦ f−1. Then

u(x, t) = u0(x, t)−
∫∫

D(x,t,f)

F (ξ, η, u′(ξ, η)) dξ dη,

where u0(x, t) = Υ (t)−Υ(f(x))+ϕ(x). We obtain the same result if we suppose
t ≤ f(x). Thus u satisfies (Pi). If u satisfies (Pi), suppose that t ≥ f(x) we can
write

u(x, t) = u0(x, t)−
f−1(t)∫

x




t∫

f(ξ)

F (ξ, η, u′(ξ, η)) dη


 dξ.

As u ∈ C0(R2) we have

∂

∂t

(
∂u

∂x

)
(x, t) = F (x, t, u′(x, t)).

Let us calculate again u(x, t) in the following way:

u(x, t) = u0(x, t)−
t∫

f(x)




f−1(η)∫

x

F (ξ, η, u′(ξ, η)) dξ


 dη.

As u ∈ C0(R2) we have

∂

∂x

(
∂u

∂t

)
(x, t) = F (x, t, u′(x, t)).
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Finally, the partial derivatives can be exchanged and we have

∂2u

∂x∂t
(x, t) = F (x, t, u′(x, t)).

Furthermore,

u (x, f(x)) = u0 (x, f(x)) = ϕ(x),

u′ (x, f(x)) = u′0 (x, f(x)) = ψ ◦ f−1 (f(x)) = ψ (x) .

These results remain unchanged if we suppose t ≤ f(x), so u satisfies (P∞). We
can show by induction, that u is therefore of class C∞. For more details, we
refer the reader to [11], [12], in which similar calculation is made. We have, of
course, the following corollary.

Corollary 17. If u is a solution to (Pi) (or to (P∞)), then u belongs to C∞(R2).

7.2. Uniqueness of the solution

Theorem 18. From hypothesis (H1) it follows that problem (P∞) has a unique
solution in C∞(R2).

Proof. According to Theorem 16, solving problem (P∞) amounts to solving
problem (Pi), that is searching for u ∈ C0(R2) satisfying (1). For every compact
subset of R2, we can find a > 0, large enough, so that this compact subset is
contained in Ka =

[
f−1(−a), f−1(a)

] × [−a, a]. Let us assume always that
t ≥ f(x) and let us make the change of variables X = x− f−1(−a), T = t + a.
The relation (1) can be written as

u(X + f−1(−a), T − a) = u0(X + f−1(−a), T − a)

−
∫∫

D(X+f−1(−a),T−a,f)

F (ξ + f−1(−a), η − a, u′(ξ + f−1(−a), η − a)) dξ dη,

whose form is

(1.5) U(X, T ) = U0(X, T )−
∫∫

D(X,T,g)

F(ξ, η, U ′(ξ, η)) dξ dη,

with g(X) = f(X + f−1(−a)) + a; Ka turns into the compact subset Qa =[
0,

(
f−1(a)− f−1(−a)

)] × [0, 2a]. The equation of (γ) can then be written as
T = g(X) and g(0) = 0. So we now have X ≥ 0 and T ≥ g(X). According to
hypothesis (H1), we can put

ma = sup
(ξ,η)∈Qa; z∈R

∣∣∣∣
∂F

∂z
(ξ, η, z)

∣∣∣∣ .

We consider the sequence of approximations (Un)n∈N defined by

(I) ∀n ∈ N∗, Un(X, T ) = U0(X, T )−
∫∫

D(X,T,g)

F(ξ, η, U ′
n−1(ξ, η)) dξ dη.
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Using the auxiliary series
∑

n≥1 (Un(X,T )− Un−1(X, T )) and∑
n≥1

(
U ′

n(X, T )− U ′
n−1(X, T )

)
we show the uniform convergence of (Un)n on

every compact subset K b R2, toward a continuous function U satisfying (I),
that the uniform limit U is derivable on every compact subset K b R2 and that
the sequence (U ′

n)n∈N converges uniformly on every compact subset K b R2, to
the function U ′on every compact subset K b R2. Consider W to be another so-
lution to (I), ∆ = W −U , ∆′ = W ′−U ′. Let (X, T ) ∈ Qλ. As D(X, T, g) ⊂ Qλ

and T ≥ g(X), we have

(An1) |∆(X,T )| ≤ mλ

2λ∫

0

T∫

0

|∆′(ξ, η)| dη dξ.

and

|∆′(X, T )| ≤ mλ

2λ∫

0

|∆′(ξ, T )| dξ.

Thus ∆′ = 0 and W = U . Note that we use, in an essential way, the hypothesis
(H1) in the proof. For more details, we refer the reader to [11], [12], in which
similar Picard’s procedure is used.

Remark 10. We deduce easily the following estimates useful in the sequel. For
every compact subset K b R2, there exists a compact subset

Ka =
[
f−1(−a), f−1(a)

]× [−a, a] b R2

containing K, such that
(1.8)

ma = sup
(x,t)∈Ka; r∈R

∣∣∣∣
∂F

∂z
(x, t, r)

∣∣∣∣ ; Φa = ‖F (( . , . , 0)‖∞,Ka
+ ma ‖u′0‖∞,Ka

;

(1.9) ‖u‖∞,K ≤ ‖u‖∞,Ka
≤ ‖u0‖∞,Ka

+
Φa

ma
exp

(
2a

(
f−1(a)− f−1(−a)

)
ma

)
.
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