NOVI SAD J. MATH. Vol. 41, No. 2, 2011, 57-61

RIESZ THEOREMS IN 2-INNER PRODUCT SPACES

P. K. Harikrishnan¹, P. Riyas², K. T. Ravindran³

Abstract. In this paper we describe the proof of 'Riesz Theorems' in 2inner product spaces. The main result holds only for a *b*-linear functional but not for a bilinear functional.

AMS Mathematics Subject Classification (2010): 41A65, 41A15

Key words and phrases: Semi norm, Banach space, Topological vector space, locally convex topology

1. Introduction

The concepts of 2-inner product and 2-inner product spaces have been intensively studied by many authors in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive list of the related references can be found in the book [1].

2. Preliminaries

Definition 2.1. ([4]) Let X be a real linear space of dimension greater than 1 and $\|.,.\|$ be a real valued function on X×X satisfying the properties,

A1 : ||x, y|| = 0 iff vectors x and y are linearly dependent.

- A2 : ||x, y|| = ||y, x||
- A3 : $||x, \alpha y|| = |\alpha| ||x, y||$

A4 : $||x, y + z|| \le ||x, y|| + ||x, z||$ for every $x, y, z \in X$ and $\alpha \in R$

then the function $\|.,.\|$ is called a 2-norm on X. The pair $(X, \|.,.\|)$ called linear 2-normed space.

Every 2-normed space is a locally convex TVS. In fact, for a fixed $b \in X$, $P_b(x) = ||x, b||$, $x \in X$ is a seminorm and the family $\{P_b; b \in X\}$ of seminorms generates a locally convex topology on X.

Definition 2.2. ([4]) Let $(X, \|., .\|)$ be a 2-normed space and $x, y \in X$ then x is said to be *b*-orthogonal to y iff there exists $b \in X$ such that for every α , $\|x, b\| \neq 0$, $\|x, b\| \leq \|x + \alpha y, b\|$ and $y \neq b$.

 $^{^1 \}rm Department$ of Mathematics, Manipal Institute of Technology, Manipal University, Manipal , Karnataka, India, e-mail: pkharikrishnans@gmail.com

²Department of Mathematics, Sir Syed College, Taliparamba, Kannur, Kerala, India e-mail: riyasmankadavu@gmail.com

 $^{^{3}{\}rm P}$ G Department and Research Centre in Mathematics, Payyan
ur College, Payyanur, Kerala, India, e-mail: drktravindran@gmail.com

Definition 2.3. ([4]) Let X be a linear space of dimension greater than 1 over the field K (either R or C). The function $\langle ., .; . \rangle : X \times X \times X \to K$ is called a 2-inner product if the following conditions holds,

A1 : $\langle x, x; z \rangle \ge 0$ and $\langle x, x; z \rangle = 0$ iff x and z are linearly dependent.

A2 : $\langle x, x; z \rangle = \langle z, z; x \rangle.$

A3 : $\langle x, y; z \rangle = \langle y, x; z \rangle.$

A4 : $\langle \alpha x, y; z \rangle = \alpha \langle x, y; z \rangle$, for all scalars $\alpha \in K$.

A5 : $\langle x_1 + x_2, y; z \rangle = \langle x_1, y; z \rangle + \langle x_2, y; z \rangle.$

Therefore, the pair $(X, \langle ., .; . \rangle)$ is called a 2-inner product space.

Let $(X, \langle ., .; . \rangle)$ be a 2-inner product space and $x, y, b \in X$ then $x \perp^{b} y$ iff $\langle x, y; b \rangle = 0$ [5].

We define a 2-norm on $X \times X$ by,

$$\left\|x, y\right\|^{2} = \left\langle x, x; y\right\rangle.$$

Definition 2.4. ([3]) Let $(X, \langle ., .; .\rangle)$ be a 2-inner product space over K. If $\{e_i\}_{1 \leq i \leq n}$ are linearly independent vectors in the 2-inner product space X, then $\{e_i\}_{1 \leq i \leq n}$ is called a *b*-orthonormal set if for $b \in X$, $\langle e_i, e_j; b \rangle = 0$ if $i \neq j$ and $\langle e_i, e_j; b \rangle = 1$ if i = j where $1 \leq i \leq n$.

Definition 2.5. ([4]) Let $(X, \langle ., .; . \rangle)$ be a 2-inner product space over $K, b \in X$, then

(a) A sequence $\{x_n\}$ in X is said to be a b-Cauchy sequence if for every $\epsilon > 0$ there exists N > 0 such that for every $m, n \ge N, 0 < ||x_n - x_m, b|| < \epsilon$.

(b) X is said to be b-Hilbert if every b-Cauchy sequence is convergent in the semi-normed space $(X, \|., b\|)$.

Theorem 2.6. Let $\{\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n\}$ be a linearly independent subset of a 2-inner product space $(X, \langle .., ; . \rangle)$. For $b \in X$ there exists a b-orthonormal set $\{e_1, e_2, e_3, ..., e_n\}$ in X such that span $\{\alpha_1, \alpha_2, \alpha_3, ..., \alpha_n\} = \text{span } \{e_1, e_2, e_3, ..., e_n\}$.

Theorem 2.7 (Bessel's Inequality in 2-inner product spaces ([2])). Let $(X, \langle ., .; . \rangle)$ be a 2-inner product space over the scalar field K, then

$$\sum_{i=1,2...n} \left| \langle x, e_i; b \rangle^2 \right| \le \|x, b\|^2$$

which holds for any $x \in X$ whenever $e_1, e_2, e_3, ..., e_n$, $b \in X$ are the vectors such that $b \in \text{span} \{e_1, e_2, e_3, ..., e_n\}$ and $\langle e_i, e_j; b \rangle = 0$ if $i \neq j$ and $\langle e_i, e_j; b \rangle = 1$ if i = j where $1 \leq i \leq n$. Also, the equality holds iff $x = u + \gamma b$ for some $u \in \text{span} \{e_1, e_2, e_3, ..., e_n\}$ and some $\gamma \in K$.

Theorem 2.8 (Cauchy Schwartz Inequality) [1, 2, 3]). Let $(X, \langle ., .; . \rangle)$ be a 2-inner product space over the scalar field K, then

$$|\langle x, y; z \rangle| \le ||x, z|| ||y, z||$$

for every $x, y, z \in X$

Theorem 2.9. Let $\{e_{\alpha}\}$ be a b-orthonormal set in a 2-inner product space X and $x, b \in X$, then $E_x = \{e_{\alpha}; \langle x, e_{\alpha}; b \rangle = 0\}$ is countable.

3. Main Results

Throughout this section we assume that X is a vector space of dimension greater than 1.

Definition 3.1. Let $(X, \|., .\|)$ be a 2-normed space. Let W be a subspace of $X, b \in X$ be fixed, then a map $T: W \times \langle b \rangle \to K$ is called a b-linear functional on $W \times \langle b \rangle$ whenever for every $x, y \in W$ and $k \in K$ holds

- 1. T(x+y,b) = T(x, b) + T(y, b),
- 2. T(k x, b) = k T(x, b).

A b-linear functional $T: W \times \langle b \rangle \to K$ is said to be bounded if there exists a real number M > 0 such that $|T(x,b)| \le M ||x, b||$ for every $x \in W$.

The norm of the *b*-linear functional $T: W \times \langle b \rangle \to K$ is defined by

$$||T|| = \inf \{M > 0; |T(x,b)| \le M ||x, .b||, \forall x \in W\}$$

It can be seen that,

$$\begin{aligned} \|T\| &= \sup \left\{ |T(x,b)| ; \|x, .b\| \le 1 \right\} \\ \|T\| &= \sup \left\{ |T(x,b)| ; \|x, .b\| = 1 \right\} \\ \|T\| &= \sup \left\{ |T(x,b)| / \|x, .b\| ; \|x, .b\| \neq 0 \right\} \end{aligned}$$

and $|T(x,b)| \le ||T|| ||x, b||$

For a 2-normed space $(X, \|., .\|)$ and $0 \neq b \in X, X_b^*$ denote the Banach space of all bounded b-linear functionals on $X \times \langle b \rangle$, where $\langle b \rangle$ is the subspace of X generated by b'.

Theorem 3.2. Let $(X, \langle ., .; . \rangle)$ be a 2-inner product space and $\{e_1, e_2, e_3, ...\}$ be a b-orthonormal set in X and $k_1, k_2, k_3, \ldots \in K$ then,

(i) If $\sum_{n} k_{n}e_{n}$ converges to some x in the semi-normed space $(X, \|., b\|)$,

then $\langle x, e_i; b \rangle = k_n$ for each n and $\sum_n |k_n|^2 < \infty$. (ii) If X is a b-Hilbert space and $\sum_n |k_n|^2 < \infty$ then $\sum_n k_n e_n$ converges to some x in the semi-normed space $(X, \|., b\|)$.

Proof. (i) If $\sum_{n} k_{n}e_{n}$ converges to some x in X, then $x = \sum_{n} k_{n}e_{n}$. Since $\{e_{1}, e_{2}, e_{3}, \ldots\}$ is a b-orthonormal set in X, we get $\langle x, e_{i}; b \rangle = k_{i}$ for each i. Therefore, by Theorem 2.8, $\sum_{n} |k_{n}|^{2} = ||x, .b||^{2} < \infty$. (ii) For $m = 1, 2, 3, \ldots$, let $x_{m} = \sum_{n=1}^{m} k_{n}e_{n}$. Therefore, $m > j, x_{m} - x_{j} = \sum_{n=j+1}^{m} k_{n}e_{n}$.

We have $||x_m - x_j, b||^2 = \langle x_m - x_j, x_m - x_j; b \rangle = \sum_{n=j+1}^m |k_n|^2 < \infty$. Therefore, $\{x_m\}$ is a b-Cauchy sequence in (X, ||, b||). Since X is a b-Hilbert space, $\{x_m\}$ converges to some x in X.

Theorem 3.3. Let $\{e_{\alpha}\}$ be a b-orthonormal basis in a b-Hilbert space X, then for every x in X, $x = \sum_{n} \langle x, e_{n}; b \rangle e_{n}$.

Proof. Since $\{e_{\alpha}\}$ is a b-orthonormal basis in a 2-inner product space X, $\{e_{\alpha}\}$ is a countable set, say $\{e_1, e_2, e_3, \ldots\}$.

By Theorem 2.8, we have, $\sum |\langle x, e_n; b \rangle|^2 \leq ||x, b||^2 < \infty, \Rightarrow |\langle x, e_n; b \rangle|^2$ converges to 0 as $n \to \infty$.

Therefore, by Theorem 3.2(ii), $\sum_{n} \langle x, e_n; b \rangle e_n$ converges to some y in X.

That is, $y = \sum_{n} \langle x, e_n; b \rangle e_n$.

Also, $\langle y, e_n; b \rangle = \langle \sum_n \langle x, e_i; b \rangle e_i, e_n, ; b \rangle = \langle x, e_n; b \rangle.$

This implies $\langle x - y, e_n; b \rangle = 0$. So, $(x - y) \perp^b e_n$ for all n.

If $y \neq x$ then let $u = (x - y) / ||x - y, b|| \Rightarrow ||u, b|| = 1$. Since $(x - y) \perp^{b} e_{n}$ for all $n, \langle u, e_n; b \rangle = 0$. Therefore, $\{e_n\} \bigcup \{u\}$ is a b-orthonormal set in X, which contradicts the maximality of the b-orthonormal set $\{e_{\alpha}\}$. So, y = x. Hence, $x = \sum_{n} \langle x, e_n; b \rangle e_n.$

Definition 3.4. Let X be a vector space over K. Let $b \in X$ and $y_1, y_2 \in X$, then y_1 is said to be b-congruent to y_2 iff $(y_1 - y_2) \in \langle b \rangle$ is the subspace generated by b.

Theorem 3.5. Let X be a b-Hilbert space and $T \in X_b^*$ then there exists a unique $y \in X$ up to b-congruence such that $T(x,b) = \langle x,y;b \rangle$ and ||T|| = ||y,b||.

Proof. Let $\{e_1, e_2, e_3, \ldots\}$ be a *b*-orthonormal set. For m = 1, 2, 3, ... let $y_m = \sum_{n=1}^m T(e_n, b)e_n$. Since $\{e_1, e_2, e_3, ...\}$ is a *b*-orthonormal set,

$$||y_m, .b||^2 = \sum_{n=1}^m |T(e_n, b)|^2 = \beta_m$$

Also, $T(y_m, b) = \sum_{n=1}^m |T(e_n, b)|^2 = \beta_m.$ Since *T* is bounded, $|T(e_n, b)| \le ||y_m, b|| \Rightarrow \beta_m \le ||T||^2.$ Letting $m \to \infty$, $\sum_n |T(e_n, b)|^2 \le ||T||^2 < \infty.$

Let $\{e_{\alpha}\}$ be a *b*-orthonormal basis for X. Set $E_T = \{\{e_{\alpha}\}, T(e_{\alpha}, b) \neq 0\}$ is countable and let $E_T = \{e_1, e_2, e_3, ...\}$. Then $\sum_n |T(e_n, b)|^2 < \infty$. Therefore, by Theorem 3.2(ii), $\sum_{n} \overline{T(e_n, b)} e_n$ converges in X.

Let $y = \sum_{n} \overline{T(e_n, b)} e_n$.

Claim: $T(x, b) = \langle x, y; b \rangle$ for every x in X.

Let $x \in X$, then $\{e_{\alpha}; \langle x, e_{\alpha}; b \rangle \neq 0\}$ is countable (see Theorem 2.9). Let it be $\{s_1, s_2, s_3, ...\}$. Then $x = \sum_m \langle x, s_m; b \rangle s_m \Rightarrow T(x, b) = \sum_m \langle x, s_m; b \rangle T(s_m, b)$. To prove the claim it is sufficient to show that $T(x,b) = \langle s_m, y; b \rangle$ for m =1,2,3,.... Fix m and let $\langle s_m, y; b \rangle = \sum_n T(e_n, b) \langle s_m, e_n; b \rangle$. If $s_m = e_{n_o}$ for some n_o , then $\langle s_m, y; b \rangle = T(e - n_o, b) = T(s_m, b)$. If $s_m \neq e_n$ for some n, then $\langle s_m, y; b \rangle = 0$, implying $T(s_m, b) = 0$. Therefore, $T(s_m, b) = \langle x, y; b \rangle$ for all m. Hence $T(x,b) = \langle x, y; b \rangle$.

Let us prove the uniqueness of such y.

Let $y_1, y_2 \in X$ such that $T(x, b) = \langle x, y_1; b \rangle$ and $T(x, b) = \langle x, y_2; b \rangle$. This gives $\langle x, y_1; b \rangle = \langle x, y_2; b \rangle$, which implies $\langle x, y_1 - y_2; b \rangle = 0$ for all x in X.

In particular, $\langle y_1 - y_2, y_1 - y_2; b \rangle = 0$, so $y_1 - y_2 = kb$ for some $k \in K$, implying $y_1 - y_2 \in \langle b \rangle$

60

Therefore y is unique up to b-congruence. It can be easily shown that ||T|| = ||y, b||. If T = 0, then T(x, b) = 0 for every x. Also $\Rightarrow \langle x, y; b \rangle = 0$ for every x, so y and b are linearly dependent $\Rightarrow ||y, b|| = 0$. Therefore, ||y, b|| = 0 = ||0, b|| = ||T||. If $T \neq 0$, then $T(x, b) \neq 0$ for all x, which gives $\langle x, y; b \rangle \neq 0$ for every x. So, $y \neq 0$ or y and b are linearly independent. Therefore, $||y, b||^2 = \langle y, y; b \rangle = T(y, b) \leq ||T|| ||y, b||$. So,

$$(1) ||y,b|| \le ||T||$$

and, by Cauchy Schwartz Inequality, $T(x,b) = |\langle x,y;b\rangle| \leq \|x,b\|\,\|y,b\|,$ which gives

(2)
$$||T|| = \sup \{ |T(x,b)|; ||x, b|| = 1 \} = \sup |\langle x, y; b \rangle| \le ||y, b||.$$

From (1) and (2) we get ||T|| = ||y, b||.

Hence the theorem.

4. Acknowledgement

The authors are thankful to the referees for giving the suggestions for the improvement of this work.

References

- Cho, Y. J., Lin, P. C. S., Kim, S. S., Misiak. A., Theory of 2-inner product spaces. New York: Nova Science Publishes, Inc. 2001.
- [2] Cho, Y. J., Matic, M., Pecaric, J. E., On Gram's determinant in 2-inner product spaces. J. Korean Math. Soc. 38 (6) (2001), 1125-1156.
- [3] Dragomir, S. S., Cho, Y. J., Kim, S. S., Sofo, A., Some Boas Bellman type Inequalities in 2-inner product spaces. J. Inequal. in Pure and Appl. Math. 6(2)55 (2005), 1-13.
- [4] Kazemi, R., Mazaheri, H., Some results on 2-inner product spaces. Novi Sad J. Math. Vol. 37. No. 2, (2007), 35-40.
- [5] Mazaheri. H., Golestani Nezhad, Some results on b-orthogonality in 2-normed spaces. Int. Journal of Math. Analysis, Vol. 1, No. 14. (2007), 681-687.

Received by the editors February 25, 2009