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RIESZ THEOREMS IN 2-INNER PRODUCT SPACES
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Abstract. In this paper we describe the proof of ’Riesz Theorems’ in 2-
inner product spaces. The main result holds only for a b-linear functional
but not for a bilinear functional.
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1. Introduction

The concepts of 2-inner product and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presen-
tation of the recent results related to the theory of 2-inner product spaces as
well as an extensive list of the related references can be found in the book [1].

2. Preliminaries

Definition 2.1. ([4]) Let X be a real linear space of dimension greater than 1
and ∥., .∥ be a real valued function on X×X satisfying the properties,

A1 : ∥x, y∥=0 iff vectors x and y are linearly dependent.
A2 : ∥x, y∥ = ∥y, x∥
A3 : ∥x, αy∥ = |α| ∥x, y∥
A4 : ∥x, y + z∥ ≤ ∥x, y∥ + ∥x, z∥ for every x, y, z ∈ X and α ∈ R

then the function ∥., .∥ is called a 2-norm on X. The pair (X, ∥., .∥) called linear
2-normed space.

Every 2-normed space is a locally convex TVS. In fact, for a fixed b ∈
X,Pb(x) = ∥x, b∥ , x ∈ X is a seminorm and the family {Pb; b ∈ X} of seminorms
generates a locally convex topology on X.

Definition 2.2. ([4]) Let (X, ∥., .∥) be a 2-normed space and x, y ∈ X then
x is said to be b-orthogonal to y iff there exists b ∈ X such that for every α,
∥x, b∥ ̸= 0, ∥x, b∥ ≤ ∥x+ αy, b∥ and y ̸= b.
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Definition 2.3. ([4]) Let X be a linear space of dimension greater than 1 over
the field K (either R or C). The function ⟨., .; .⟩ : X ×X ×X → K is called a
2-inner product if the following conditions holds,

A1 :⟨x, x; z⟩ ≥ 0 and ⟨x, x; z⟩ = 0 iff x and z are linearly dependent.
A2 :⟨x, x; z⟩ = ⟨z, z;x⟩.
A3 :⟨x, y; z⟩ = ⟨y, x; z⟩.
A4 :⟨αx, y; z⟩ = α ⟨x, y; z⟩, for all scalars α ∈ K.
A5 :⟨x1 + x2, y; z⟩ =⟨x1, y; z⟩ + ⟨x2, y; z⟩.

Therefore, the pair (X, ⟨., .; .⟩) is called a 2-inner product space.

Let (X, ⟨., .; .⟩) be a 2-inner product space and x, y, b ∈ X then x⊥by iff
⟨x, y; b⟩ = 0 [5].

We define a 2-norm on X ×X by,

∥x, y∥2 = ⟨x, x; y⟩ .

Definition 2.4. ([3]) Let (X, ⟨., .; .⟩) be a 2-inner product space over K. If
{ei}1≤i≤n are linearly independent vectors in the 2-inner product space X, then
{ei}1≤i≤n is called a b-orthonormal set if for b ∈ X, ⟨ei, ej ; b⟩ = 0 if i ̸= j and
⟨ei, ej ; b⟩ = 1 if i = j where 1 ≤ i ≤ n.

Definition 2.5. ([4]) Let (X, ⟨., .; .⟩) be a 2-inner product space over K, b ∈ X,
then

(a) A sequence {xn} in X is said to be a b-Cauchy sequence if for every ϵ > 0
there exists N > 0 such that for every m,n ≥ N , 0 < ∥xn − xm, b∥ < ϵ .

(b) X is said to be b-Hilbert if every b-Cauchy sequence is convergent in the
semi-normed space (X, ∥., b∥).

Theorem 2.6. Let {α1, α2, α3, ..., αn} be a linearly independent subset of a
2-inner product space (X, ⟨., .; .⟩). For b ∈ X there exists a b-orthonormal set
{e1, e2, e3, ..., en} in X such that span {α1, α2, α3, ..., αn} = span {e1, e2, e3, ..., en}.

Theorem 2.7 (Bessel’s Inequality in 2-inner product spaces ([2])). Let (X, ⟨., .; .⟩)
be a 2-inner product space over the scalar field K, then∑

i=1,2...n

∣∣∣⟨x, ei; b⟩2∣∣∣ ≤ ∥x, b∥2

which holds for any x ∈ X whenever e1, e2, e3, ..., en, b ∈ X are the vectors such
that b ∈ span {e1, e2, e3, ..., en} and ⟨ei, ej ; b⟩ = 0 if i ̸= j and ⟨ei, ej ; b⟩ = 1
if i = j where 1 ≤ i ≤ n. Also, the equality holds iff x = u + γb for some
u ∈ span {e1, e2, e3, ..., en} and some γ ∈ K.

Theorem 2.8 (Cauchy Schwartz Inequality) [1, 2, 3]). Let (X, ⟨., .; .⟩) be a
2-inner product space over the scalar field K, then

|⟨x, y; z⟩| ≤ ∥x, z∥ ∥y, z∥

for every x, y, z ∈ X

Theorem 2.9. Let {eα} be a b-orthonormal set in a 2-inner product space X
and x, b ∈ X, then Ex = {eα; ⟨x, eα; b⟩ = 0} is countable.
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3. Main Results

Throughout this section we assume that X is a vector space of dimension
greater than 1.

Definition 3.1. Let (X, ∥., .∥) be a 2-normed space. Let W be a subspace of
X, b ∈ X be fixed, then a map T : W × ⟨b⟩ → K is called a b-linear functional
on W × ⟨b⟩ whenever for every x, y ∈ W and k ∈ K holds

1. T(x+y,b)= T(x, b) + T(y, b),

2. T(k x , b) = k T(x , b).

A b-linear functional T : W × ⟨b⟩ → K is said to be bounded if there exists
a real number M > 0 such that |T (x, b)| ≤ M ∥x, .b∥ for every x ∈ W .

The norm of the b-linear functional T : W × ⟨b⟩ → K is defined by

∥T∥ = inf {M > 0; |T (x, b)| ≤ M ∥x, .b∥ ,∀x ∈ W}

It can be seen that,

∥T∥ = sup {|T (x, b)| ; ∥x, .b∥ ≤ 1}

∥T∥ = sup {|T (x, b)| ; ∥x, .b∥ = 1}

∥T∥ = sup {|T (x, b)| / ∥x, .b∥ ; ∥x, .b∥ ≠ 0}

and |T (x, b)| ≤ ∥T∥ ∥x, .b∥
For a 2-normed space (X, ∥., .∥) and 0 ̸= b ∈ X, X∗

b denote the Banach space
of all bounded b-linear functionals on X ×⟨b⟩, where ⟨b⟩ is the subspace of X
generated by ’b’.

Theorem 3.2. Let (X, ⟨., .; .⟩ ) be a 2-inner product space and {e1, e2, e3, ...}
be a b-orthonormal set in X and k1, k2, k3, ... ∈ K then,

(i) If
∑

n knen converges to some x in the semi-normed space (X, ∥., b∥),
then ⟨x, ei; b⟩ = kn for each n and

∑
n |kn|

2
< ∞.

(ii) If X is a b-Hilbert space and
∑

n |kn|
2
< ∞ then

∑
n knen converges to

some x in the semi-normed space (X, ∥., b∥ ).

Proof. (i) If
∑

n knen converges to some x in X, then x =
∑

n knen. Since
{e1, e2, e3, . . .} is a b-orthonormal set in X, we get ⟨x, ei; b⟩ = ki for each i.

Therefore, by Theorem 2.8,
∑

n |kn|
2
= ∥x, .b∥2 < ∞.

(ii) For m = 1, 2, 3, . . ., let xm =
∑m

n=1 knen.
Therefore, m > j, xm − xj =

∑m
n=j+1 knen.

We have ∥xm − xj , .b∥2 = ⟨xm − xj , xm − xj ; b⟩ =
∑m

n=j+1 |kn|
2
< ∞.

Therefore, {xm} is a b-Cauchy sequence in (X, ∥., b∥). Since X is a b-Hilbert
space, {xm} converges to some x in X.

Theorem 3.3. Let {eα} be a b-orthonormal basis in a b-Hilbert space X, then
for every x in X, x =

∑
n ⟨x, en; b⟩ en.
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Proof. Since {eα} is a b-orthonormal basis in a 2-inner product space X, {eα}
is a countable set, say {e1, e2, e3, ...}.

By Theorem 2.8, we have,
∑

|⟨x, en; b⟩|2 ≤ ∥x, .b∥2 < ∞, ⇒ |⟨x, en; b⟩|2
converges to 0 as n → ∞.

Therefore, by Theorem 3.2(ii),
∑

n ⟨x, en; b⟩ en converges to some y in X.
That is, y =

∑
n ⟨x, en; b⟩ en.

Also, ⟨y, en; b⟩ = ⟨
∑

n ⟨x, ei; b⟩ ei, en, ; b⟩ = ⟨x, en; b⟩.
This implies ⟨x− y, en; b⟩ = 0. So, (x− y)⊥ben for all n.
If y ̸= x then let u = (x− y)/ ∥x− y, b∥ ⇒ ∥u, b∥ = 1. Since (x− y)⊥ben for

all n, ⟨u, en; b⟩ = 0. Therefore, {en}
∪

{u} is a b-orthonormal set in X, which
contradicts the maximality of the b-orthonormal set {eα}. So, y = x. Hence,
x =

∑
n ⟨x, en; b⟩ en.

Definition 3.4. Let X be a vector space over K. Let b ∈ X and y1, y2 ∈ X,
then y1 is said to be b-congruent to y2 iff (y1−y2) ∈ ⟨b⟩ is the subspace generated
by b.

Theorem 3.5. Let X be a b-Hilbert space and T ∈ X∗
b then there exists a

unique y ∈ X up to b-congruence such that T (x, b) = ⟨x, y; b⟩ and ∥T∥ = ∥y, .b∥.

Proof. Let {e1, e2, e3, . . .} be a b-orthonormal set.
For m = 1, 2, 3, . . . let ym =

∑m
n=1 T (en, b)en.

Since {e1, e2, e3, ...} is a b-orthonormal set,

∥ym, .b∥2 =
∑m

n=1 |T (en, b)|
2
= βm.

Also, T (ym, b) =
∑m

n=1 |T (en, b)|
2
= βm.

Since T is bounded, |T (en, b)| ≤ ∥ym, .b∥ ⇒ βm ≤ ∥T∥2.
Letting m → ∞,

∑
n |T (en, b)|

2 ≤ ∥T∥2 < ∞.
Let {eα} be a b-orthonormal basis for X. Set ET = {{eα} ;T (eα, b) ̸= 0} is

countable and let ET = {e1, e2, e3, ...}. Then
∑

n |T (en, b)|
2
< ∞. Therefore,

by Theorem 3.2(ii),
∑

n T (en, b)en converges in X.

Let y =
∑

n T (en, b)en.
Claim: T(x, b) = ⟨x, y; b⟩ for every x in X.
Let x ∈ X, then {eα; ⟨x, eα; b⟩ ̸= 0} is countable (see Theorem 2.9). Let it be

{s1, s2, s3, ...}. Then x =
∑

m ⟨x, sm; b⟩ sm ⇒ T (x, b) =
∑

m ⟨x, sm; b⟩T (sm, b).
To prove the claim it is sufficient to show that T (x, b) = ⟨sm, y; b⟩ for m =
1, 2, 3, . . .. Fix m and let ⟨sm, y; b⟩ =

∑
n T (en, b) ⟨sm, en; b⟩. If sm = en◦ for

some n◦, then ⟨sm, y; b⟩ = T (e− n◦, b) = T (sm, b). If sm ̸= en for some n, then
⟨sm, y; b⟩ = 0, implying T (sm, b) = 0. Therefore, T (sm, b) = ⟨x, y; b⟩ for all m.
Hence T (x, b) = ⟨x, y; b⟩.

Let us prove the uniqueness of such y.
Let y1, y2 ∈ X such that T (x, b) = ⟨x, y1; b⟩ and T (x, b) = ⟨x, y2; b⟩. This

gives ⟨x, y1; b⟩ = ⟨x, y2; b⟩, which implies ⟨x, y1 − y2; b⟩ = 0 for all x in X.
In particular, ⟨y1 − y2, y1 − y2; b⟩ = 0, so y1 − y2 = kb for some k ∈ K,

implying y1 − y2 ∈ ⟨b⟩
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Therefore y is unique up to b-congruence.
It can be easily shown that ∥T∥ = ∥y, b∥.
If T = 0, then T (x, b) = 0 for every x. Also ⇒ ⟨x, y; b⟩ = 0 for every x, so y

and b are linearly dependent ⇒ ∥y, b∥ = 0.
Therefore, ∥y, b∥ = 0 = ∥0, b∥ = ∥T∥.
If T ̸= 0, then T (x, b) ̸= 0 for all x, which gives ⟨x, y; b⟩ ̸= 0 for every x.
So, y ̸= 0 or y and b are linearly independent.
Therefore, ∥y, b∥2 = ⟨y, y; b⟩ = T (y, b) ≤ ∥T∥ ∥y, b∥.
So,

(1) ∥y, b∥ ≤ ∥T∥

and, by Cauchy Schwartz Inequality, T (x, b) = |⟨x, y; b⟩| ≤ ∥x, b∥ ∥y, b∥, which
gives

(2) ∥T∥ = sup {|T (x, b)| ; ∥x, .b∥ = 1} = sup |⟨x, y; b⟩| ≤ ∥y, b∥ .

From (1) and (2) we get ∥T∥ = ∥y, b∥.
Hence the theorem.
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