RIESZ THEOREMS IN 2-INNER PRODUCT SPACES

P. K. Harikrishnan ${ }^{\mathbb{D}}$, P. Riyas ${ }^{[\boxed{ }}$, K. T. Ravindran ${ }^{[1]}$

Abstract

In this paper we describe the proof of 'Riesz Theorems' in 2inner product spaces. The main result holds only for a b-linear functional but not for a bilinear functional.

AMS Mathematics Subject Classification (2010): 41A65, 41A15
Key words and phrases: Semi norm, Banach space, Topological vector space, locally convex topology

1. Introduction

The concepts of 2-inner product and 2-inner product spaces have been intensively studied by many authors in the last three decades. A systematic presentation of the recent results related to the theory of 2-inner product spaces as well as an extensive list of the related references can be found in the book [T].

2. Preliminaries

Definition 2.1. ([4]) Let X be a real linear space of dimension greater than 1 and $\|.,$.$\| be a real valued function on \mathrm{X} \times \mathrm{X}$ satisfying the properties,

A1: $\|x, y\|=0$ iff vectors x and y are linearly dependent.
A2: $\|x, y\|=\|y, x\|$
A3: $\|x, \alpha y\|=|\alpha|\|x, y\|$
A4: $\|x, y+z\| \leq\|x, y\|+\|x, z\|$ for every $x, y, z \in X$ and $\alpha \in R$
then the function $\|.,$.$\| is called a 2-norm on X$. The pair $(X,\|.,\|$.$) called linear$ 2-normed space.

Every 2-normed space is a locally convex TVS. In fact, for a fixed $b \in$ $X, P_{b}(x)=\|x, b\|, x \in X$ is a seminorm and the family $\left\{P_{b} ; b \in X\right\}$ of seminorms generates a locally convex topology on X.

Definition 2.2. ([4]) Let $(X,\|.\|$,$) be a 2-normed space and x, y \in X$ then x is said to be b-orthogonal to y iff there exists $b \in X$ such that for every α, $\|x, b\| \neq 0,\|x, b\| \leq\|x+\alpha y, b\|$ and $y \neq b$.

[^0]Definition 2.3. ([4]) Let X be a linear space of dimension greater than 1 over the field K (either R or C). The function $\langle., . ;\rangle:. X \times X \times X \rightarrow K$ is called a 2-inner product if the following conditions holds,

A1 : $\langle x, x ; z\rangle \geq 0$ and $\langle x, x ; z\rangle=0$ iff x and z are linearly dependent.
A2 : $\langle x, x ; z\rangle=\langle z, z ; x\rangle$.
A3 : $\langle x, y ; z\rangle=\langle y, x ; z\rangle$.
A4: $\langle\alpha x, y ; z\rangle=\alpha\langle x, y ; z\rangle$, for all scalars $\alpha \in K$.
A5 : $\left\langle x_{1}+x_{2}, y ; z\right\rangle=\left\langle x_{1}, y ; z\right\rangle+\left\langle x_{2}, y ; z\right\rangle$.
Therefore, the pair $(X,\langle., . ;\rangle$.$) is called a 2$-inner product space.
Let $(X,\langle., . ;\rangle$.$) be a 2$-inner product space and $x, y, b \in X$ then $x \perp^{b} y$ iff $\langle x, y ; b\rangle=0[5]$.

We define a 2-norm on $X \times X$ by,

$$
\|x, y\|^{2}=\langle x, x ; y\rangle
$$

Definition 2.4. ([3]) Let $(X,\langle., . ;\rangle$.$) be a 2$-inner product space over K. If $\left\{e_{i}\right\}_{1 \leq i \leq n}$ are linearly independent vectors in the 2 -inner product space X, then $\left\{e_{i}\right\}_{1 \leq i \leq n}$ is called a b-orthonormal set if for $b \in X,\left\langle e_{i}, e_{j} ; b\right\rangle=0$ if $i \neq j$ and $\left\langle e_{i}, e_{j} ; b\right\rangle=1$ if $\mathrm{i}=\mathrm{j}$ where $1 \leq i \leq n$.
Definition 2.5. ([4]) Let $(X,\langle., . ;\rangle$.$) be a 2$-inner product space over $K, b \in X$, then
(a) A sequence $\left\{x_{n}\right\}$ in X is said to be a b-Cauchy sequence if for every $\epsilon>0$ there exists $N>0$ such that for every $m, n \geq N, 0<\left\|x_{n}-x_{m}, b\right\|<\epsilon$.
(b) X is said to be b-Hilbert if every b-Cauchy sequence is convergent in the semi-normed space $(X,\|., b\|)$.

Theorem 2.6. Let $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}$ be a linearly independent subset of a 2-inner product space $(X,\langle., . ;\rangle$.$) . For b \in X$ there exists a b-orthonormal set $\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ in X such that $\operatorname{span}\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n}\right\}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$.
Theorem 2.7 (Bessel's Inequality in 2-inner product spaces ([2])). Let ($X,\langle., . ;$.$\rangle)$ be a 2-inner product space over the scalar field K, then

$$
\sum_{i=1,2 \ldots n}\left|\left\langle x, e_{i} ; b\right\rangle^{2}\right| \leq\|x, b\|^{2}
$$

which holds for any $x \in X$ whenever $e_{1}, e_{2}, e_{3}, \ldots, e_{n}, b \in X$ are the vectors such that $b \in \operatorname{span}\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ and $\left\langle e_{i}, e_{j} ; b\right\rangle=0$ if $i \neq j$ and $\left\langle e_{i}, e_{j} ; b\right\rangle=1$ if $i=j$ where $1 \leq i \leq n$. Also, the equality holds iff $x=u+\gamma b$ for some $u \in \operatorname{span}\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{n}\right\}$ and some $\gamma \in K$.
Theorem 2.8 (Cauchy Schwartz Inequality) [II, [《], B]). Let ($X,\langle., . ;$.$\rangle) be a$ 2-inner product space over the scalar field K, then

$$
|\langle x, y ; z\rangle| \leq\|x, z\|\|y, z\|
$$

for every $x, y, z \in X$
Theorem 2.9. Let $\left\{e_{\alpha}\right\}$ be a b-orthonormal set in a 2-inner product space X and $x, b \in X$, then $E_{x}=\left\{e_{\alpha} ;\left\langle x, e_{\alpha} ; b\right\rangle=0\right\}$ is countable.

3. Main Results

Throughout this section we assume that X is a vector space of dimension greater than 1.

Definition 3.1. Let $(X,\|.\|$,$) be a 2-normed space. Let W$ be a subspace of $X, b \in X$ be fixed, then a map $T: W \times\langle b\rangle \rightarrow K$ is called a b-linear functional on $W \times\langle b\rangle$ whenever for every $x, y \in W$ and $k \in K$ holds

1. $T(x+y, b)=T(x, b)+T(y, b)$,
2. $\mathrm{T}(\mathrm{kx}, \mathrm{b})=\mathrm{k} \mathrm{T}(\mathrm{x}, \mathrm{b})$.

A b-linear functional $T: W \times\langle b\rangle \rightarrow K$ is said to be bounded if there exists a real number $M>0$ such that $|T(x, b)| \leq M\|x, . b\|$ for every $x \in W$.

The norm of the b-linear functional $T: W \times\langle b\rangle \rightarrow K$ is defined by

$$
\|T\|=\inf \{M>0 ;|T(x, b)| \leq M\|x, . b\|, \forall x \in W\}
$$

It can be seen that,

$$
\begin{gathered}
\|T\|=\sup \{|T(x, b)| ;\|x, . b\| \leq 1\} \\
\|T\|=\sup \{|T(x, b)| ;\|x, . b\|=1\} \\
\|T\|=\sup \{|T(x, b)| /\|x, . b\| ;\|x, . b\| \neq 0\}
\end{gathered}
$$

and $|T(x, b)| \leq\|T\|\|x, . b\|$
For a 2 -normed space $(X,\|.,\|$.$) and 0 \neq b \in X, X_{b}^{*}$ denote the Banach space of all bounded b-linear functionals on $X \times\langle b\rangle$, where $\langle b\rangle$ is the subspace of X generated by ' b '.

Theorem 3.2. Let ($X,\langle., . ;$.$\rangle) be a 2-inner product space and \left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ be a b-orthonormal set in X and $k_{1}, k_{2}, k_{3}, \ldots \in K$ then,
(i) If $\sum_{n} k_{n} e_{n}$ converges to some x in the semi-normed space $(X,\|., b\|)$, then $\left\langle x, e_{i} ; b\right\rangle=k_{n}$ for each n and $\sum_{n}\left|k_{n}\right|^{2}<\infty$.
(ii) If X is a b-Hilbert space and $\sum_{n}\left|k_{n}\right|^{2}<\infty$ then $\sum_{n} k_{n} e_{n}$ converges to some x in the semi-normed space ($X,\|., b\|$).

Proof. (i) If $\sum_{n} k_{n} e_{n}$ converges to some x in X, then $x=\sum_{n} k_{n} e_{n}$. Since $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is a b-orthonormal set in X, we get $\left\langle x, e_{i} ; b\right\rangle=k_{i}$ for each i. Therefore, by Theorem [2.8, $\sum_{n}\left|k_{n}\right|^{2}=\|x, . b\|^{2}<\infty$.
(ii) For $m=1,2,3, \ldots$, let $x_{m}=\sum_{n=1}^{m} k_{n} e_{n}$.

Therefore, $m>j, x_{m}-x_{j}=\sum_{n=j+1}^{m} k_{n} e_{n}$.
We have $\left\|x_{m}-x_{j}, . b\right\|^{2}=\left\langle x_{m}-x_{j}, x_{m}-x_{j} ; b\right\rangle=\sum_{n=j+1}^{m}\left|k_{n}\right|^{2}<\infty$.
Therefore, $\left\{x_{m}\right\}$ is a b-Cauchy sequence in $(X,\|., b\|)$. Since X is a b-Hilbert space, $\left\{x_{m}\right\}$ converges to some x in X.

Theorem 3.3. Let $\left\{e_{\alpha}\right\}$ be a b-orthonormal basis in a b-Hilbert space X, then for every x in $X, x=\sum_{n}\left\langle x, e_{n} ; b\right\rangle e_{n}$.

Proof. Since $\left\{e_{\alpha}\right\}$ is a b-orthonormal basis in a 2 -inner product space $X,\left\{e_{\alpha}\right\}$ is a countable set, say $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$.

By Theorem [2.》, we have, $\sum\left|\left\langle x, e_{n} ; b\right\rangle\right|^{2} \leq\|x, . b\|^{2}<\infty, \Rightarrow\left|\left\langle x, e_{n} ; b\right\rangle\right|^{2}$ converges to 0 as $n \rightarrow \infty$.

Therefore, by Theorem $3.2(\mathrm{ii}), \sum_{n}\left\langle x, e_{n} ; b\right\rangle e_{n}$ converges to some y in X.
That is, $y=\sum_{n}\left\langle x, e_{n} ; b\right\rangle e_{n}$.
Also, $\left\langle y, e_{n} ; b\right\rangle=\left\langle\sum_{n}\left\langle x, e_{i} ; b\right\rangle e_{i}, e_{n}, ; b\right\rangle=\left\langle x, e_{n} ; b\right\rangle$.
This implies $\left\langle x-y, e_{n} ; b\right\rangle=0$. So, $(x-y) \perp^{b} e_{n}$ for all n .
If $y \neq x$ then let $u=(x-y) /\|x-y, b\| \Rightarrow\|u, b\|=1$. Since $(x-y) \perp^{b} e_{n}$ for all $n,\left\langle u, e_{n} ; b\right\rangle=0$. Therefore, $\left\{e_{n}\right\} \bigcup\{u\}$ is a b-orthonormal set in X, which contradicts the maximality of the b-orthonormal set $\left\{e_{\alpha}\right\}$. So, $y=x$. Hence, $x=\sum_{n}\left\langle x, e_{n} ; b\right\rangle e_{n}$.
Definition 3.4. Let X be a vector space over K. Let $b \in X$ and $y_{1}, y_{2} \in X$, then y_{1} is said to be b-congruent to $y_{2} \operatorname{iff}\left(y_{1}-y_{2}\right) \in\langle b\rangle$ is the subspace generated by b.

Theorem 3.5. Let X be a b-Hilbert space and $T \in X_{b}^{*}$ then there exists a unique $y \in X$ up to b-congruence such that $T(x, b)=\langle x, y ; b\rangle$ and $\|T\|=\|y, . b\|$.

Proof. Let $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ be a b-orthonormal set.
For $m=1,2,3, \ldots$ let $y_{m}=\sum_{n=1}^{m} T\left(e_{n}, b\right) e_{n}$.
Since $\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$ is a b-orthonormal set,

$$
\left\|y_{m}, . b\right\|^{2}=\sum_{n=1}^{m}\left|T\left(e_{n}, b\right)\right|^{2}=\beta_{m}
$$

Also, $T\left(y_{m}, b\right)=\sum_{n=1}^{m}\left|T\left(e_{n}, b\right)\right|^{2}=\beta_{m}$.
Since T is bounded, $\left|T\left(e_{n}, b\right)\right| \leq\left\|y_{m}, . b\right\| \Rightarrow \beta_{m} \leq\|T\|^{2}$.
Letting $m \rightarrow \infty, \sum_{n}\left|T\left(e_{n}, b\right)\right|^{2} \leq\|T\|^{2}<\infty$.
Let $\left\{e_{\alpha}\right\}$ be a b-orthonormal basis for X . Set $E_{T}=\left\{\left\{e_{\alpha}\right\} ; T\left(e_{\alpha}, b\right) \neq 0\right\}$ is countable and let $E_{T}=\left\{e_{1}, e_{2}, e_{3}, \ldots\right\}$. Then $\sum_{n}\left|T\left(e_{n}, b\right)\right|^{2}<\infty$. Therefore, by Theorem $3.2(\mathrm{ii}), \sum_{n} \overline{T\left(e_{n}, b\right)} e_{n}$ converges in X.

Let $\mathrm{y}=\sum_{n} \overline{T\left(e_{n}, b\right)} e_{n}$.
Claim: $\mathrm{T}(\mathrm{x}, \mathrm{b})=\langle x, y ; b\rangle$ for every x in X .
Let $x \in X$, then $\left\{e_{\alpha} ;\left\langle x, e_{\alpha} ; b\right\rangle \neq 0\right\}$ is countable (see Theorem [.प). Let it be $\left\{s_{1}, s_{2}, s_{3}, \ldots\right\}$. Then $x=\sum_{m}\left\langle x, s_{m} ; b\right\rangle s_{m} \Rightarrow T(x, b)=\sum_{m}\left\langle x, s_{m} ; b\right\rangle T\left(s_{m}, b\right)$. To prove the claim it is sufficient to show that $T(x, b)=\left\langle s_{m}, y ; b\right\rangle$ for $m=$ $1,2,3, \ldots$. Fix m and let $\left\langle s_{m}, y ; b\right\rangle=\sum_{n} T\left(e_{n}, b\right)\left\langle s_{m}, e_{n} ; b\right\rangle$. If $s_{m}=e_{n_{\circ}}$ for some n_{\circ}, then $\left\langle s_{m}, y ; b\right\rangle=T\left(e-n_{\circ}, b\right)=T\left(s_{m}, b\right)$. If $s_{m} \neq e_{n}$ for some n, then $\left\langle s_{m}, y ; b\right\rangle=0$, implying $T\left(s_{m}, b\right)=0$. Therefore, $T\left(s_{m}, b\right)=\langle x, y ; b\rangle$ for all m. Hence $T(x, b)=\langle x, y ; b\rangle$.

Let us prove the uniqueness of such y.
Let $y_{1}, y_{2} \in X$ such that $T(x, b)=\left\langle x, y_{1} ; b\right\rangle$ and $T(x, b)=\left\langle x, y_{2} ; b\right\rangle$. This gives $\left\langle x, y_{1} ; b\right\rangle=\left\langle x, y_{2} ; b\right\rangle$, which implies $\left\langle x, y_{1}-y_{2} ; b\right\rangle=0$ for all x in X.

In particular, $\left\langle y_{1}-y_{2}, y_{1}-y_{2} ; b\right\rangle=0$, so $y_{1}-y_{2}=k b$ for some $k \in K$, implying $y_{1}-y_{2} \in\langle b\rangle$

Therefore y is unique up to b-congruence.
It can be easily shown that $\|T\|=\|y, b\|$.
If $T=0$, then $T(x, b)=0$ for every x. Also $\Rightarrow\langle x, y ; b\rangle=0$ for every x, so y and b are linearly dependent $\Rightarrow\|y, b\|=0$.

Therefore, $\|y, b\|=0=\|0, b\|=\|T\|$.
If $T \neq 0$, then $T(x, b) \neq 0$ for all x, which gives $\langle x, y ; b\rangle \neq 0$ for every x.
So, $y \neq 0$ or y and b are linearly independent.
Therefore, $\|y, b\|^{2}=\langle y, y ; b\rangle=T(y, b) \leq\|T\|\|y, b\|$.
So,

$$
\begin{equation*}
\|y, b\| \leq\|T\| \tag{1}
\end{equation*}
$$

and, by Cauchy Schwartz Inequality, $T(x, b)=|\langle x, y ; b\rangle| \leq\|x, b\|\|y, b\|$, which gives

$$
\begin{equation*}
\|T\|=\sup \{|T(x, b)| ;\|x, . b\|=1\}=\sup |\langle x, y ; b\rangle| \leq\|y, b\| \tag{2}
\end{equation*}
$$

From (1) and (2) we get $\|T\|=\|y, b\|$.
Hence the theorem.

4. Acknowledgement

The authors are thankful to the referees for giving the suggestions for the improvement of this work.

References

[1] Cho, Y. J., Lin, P. C. S., Kim, S. S., Misiak. A., Theory of 2-inner product spaces. New York: Nova Science Publishes, Inc. 2001.
[2] Cho, Y. J., Matic, M., Pecaric, J. E., On Gram's determinant in 2-inner product spaces. J. Korean Math. Soc. 38 (6) (2001), 1125-1156.
[3] Dragomir, S. S., Cho, Y. J., Kim, S. S., Sofo, A., Some Boas - Bellman type Inequalities in 2-inner product spaces. J. Inequal. in Pure and Appl. Math. 6(2)55 (2005), 1-13.
[4] Kazemi, R., Mazaheri, H., Some results on 2-inner product spaces. Novi Sad J. Math. Vol. 37. No. 2, (2007), 35-40.
[5] Mazaheri. H., Golestani Nezhad, Some results on b-orthogonality in 2-normed spaces. Int. Journal of Math. Analysis, Vol. 1, No. 14. (2007), 681-687.

Received by the editors February 25, 2009

[^0]: ${ }^{1}$ Department of Mathematics, Manipal Institute of Technology, Manipal University, Maniapl, Karnataka, India, e-mail: pkharikrishnans@gmail.com
 ${ }^{2}$ Department of Mathematics, Sir Syed College, Taliparamba, Kannur, Kerala, India e-mail: riyasmankadavu@gmail.com
 ${ }^{3} \mathrm{P}$ G Department and Research Centre in Mathematics, Payyanur College, Payyanur, Kerala, India, e-mail: drktravindran@gmail.com

