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RIESZ THEOREMS IN 2-INNER PRODUCT SPACES

P. K. Harikrishnan?, P. Riyas?, K. T. Ravindran®

Abstract. In this paper we describe the proof of 'Riesz Theorems’ in 2-
inner product spaces. The main result holds only for a b-linear functional
but not for a bilinear functional.
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1. Introduction

The concepts of 2-inner product and 2-inner product spaces have been inten-
sively studied by many authors in the last three decades. A systematic presen-
tation of the recent results related to the theory of 2-inner product spaces as
well as an extensive list of the related references can be found in the book [i].

2. Preliminaries

Definition 2.1. ([d]) Let X be a real linear space of dimension greater than 1
and |., .|| be a real valued function on XxX satisfying the properties,

Al : ||z, y||=0 iff vectors x and y are linearly dependent.

A2 |z, yll = [y, 2|

A3 |2,y = [al |2,y

Ad |z, y + 2| < |z, yll + |z, 2| for every z,y,z € X and o € R
then the function ||., .|| is called a 2-norm on X. The pair (X, ||, .||) called linear
2-normed space.

Every 2-normed space is a locally convex TVS. In fact, for a fixed b €
X, Py(z) = ||x,b|| ,x € X is a seminorm and the family {P,; b € X} of seminorms
generates a locally convex topology on X.

Definition 2.2. ([4]) Let (X,].,.]]) be a 2-normed space and z,y € X then
x is said to be b-orthogonal to y iff there exists b € X such that for every «,
[, bl # 0, ||z, bl| < [l + ay,b] and y # b.
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Definition 2.3. ([4]) Let X be a linear space of dimension greater than 1 over
the field K (either R or C'). The function (.,.;.) : X x X x X — K is called a
2-inner product if the following conditions holds,

Al (z,2z;2) > 0 and (x,x;z) = 0 iff x and 7z are linearly dependent.

A2 (z,z;2) = (2,2 2).

A3z, y32) = (Y, 23 2).

Ad (ax,y;z) = alx,y; z), for all scalars a € K.

A5 (1 + mo, y; 2) =(21,¥; 2) + (T2, y; 2).
Therefore, the pair (X, (.,.;.)) is called a 2-inner product space.

Let (X,(.,.;.)) be a 2-inner product space and z,y,b € X then z1%y iff
(z,y;0) =0 [5].
We define a 2-norm on X x X by,

|z, yl|* = (z,259) .

Definition 2.4. ([8]) Let (X,(.,.;.)) be a 2-inner product space over K. If
{ei},<i<,, are linearly independent vectors in the 2-inner product space X, then
{ei},<i<, is called a b-orthonormal set if for b € X, (e;,e;;b) = 0 if i # j and
(e;,ej;0) =1if i =j where 1 <i <n.

Definition 2.5. ([d]) Let (X, (., .;.)) be a 2-inner product space over K, b € X,
then

(a) A sequence {z,} in X is said to be a b-Cauchy sequence if for every e > 0
there exists N > 0 such that for every m,n > N, 0 < ||z, — Tm,b|| < €.

(b) X is said to be b-Hilbert if every b-Cauchy sequence is convergent in the
semi-normed space (X, ||.,b||).

Theorem 2.6. Let {a1,a9,as,...,a,} be a linearly independent subset of a
2-inner product space (X,{.,.;.)). For b € X there exists a b-orthonormal set
{e1,€2,e3,...,e} in X such that span {ay, as, as, ..., a, } = span{ey, ea, e3,...,en}.

Theorem 2.7 (Bessel’s Inequality in 2-inner product spaces ([2])). Let (X, (., .;.))
be a 2-inner product space over the scalar field K, then

Zi:1,2...n

which holds for any x € X whenever ey, es, es,...,en, b € X are the vectors such
that b € span{ei,es,e3,....,en} and (e;,e;;0) = 0 if i # j and (e;,e;;b) =1
ifi = j where 1 < i < n. Also, the equality holds iff x = u + b for some
u € span{ey, e, €3, ...,e,} and some v € K.

Theorem 2.8 (Cauchy Schwartz Inequality) [0, 2, B]). Let (X,{(.,.;.)) be a
2-inner product space over the scalar field K, then

(w, €)% < 1, b

(2,95 2)] < llz, 2| lly, 2
for every x,y,z € X

Theorem 2.9. Let {e,} be a b-orthonormal set in a 2-inner product space X
and x,b € X, then E, = {eq; (x,eq;b) = 0} is countable.
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3. Main Results

Throughout this section we assume that X is a vector space of dimension
greater than 1.

Definition 3.1. Let (X,||.,.||) be a 2-normed space. Let W be a subspace of
X, b e X be fixed, then a map T : W x (b) — K is called a b-linear functional
on W x (b) whenever for every z,y € W and k € K holds

L. T(etyb)= T(x, b) + T(y, b),
2. T(kx,b) =k T(x, b).

A b-linear functional T': W x (b) — K is said to be bounded if there exists
a real number M > 0 such that |T'(x,b)| < M ||z, .b|| for every z € W.
The norm of the b-linear functional T': W x (b) — K is defined by

|T|| = inf{M > 0;|T(x,b)| < M ||z,.b|| ,YVo € W}
It can be seen that,
1T = sup {|T(z,b)]; ||, bl] <1}
1T} = sup {|T(x,b)[; [|, .b]| = 1}

1T = sup {[T(z,0)[ / ||, .bll; ||, .b]| # O}

and |T'(x,b)| < T ||z, .0

For a 2-normed space (X, ||.,.||) and 0 # b € X, X; denote the Banach space
of all bounded b-linear functionals on X x (b), where (b) is the subspace of X
generated by ’b’.

Theorem 3.2. Let (X, (.,.;.) ) be a 2-inner product space and {e1,ea,e3,...}
be a b-orthonormal set in X and ky, ko, ks, ... € K then,

(i) If >, knen converges to some x in the semi-normed space (X,|.,bl]),
then (x,e;;b) = ky, for each n and ", kn|® < 0.

(it) If X is a b-Hilbert space and ) lkn|? < o0 then > knen converges to
some x in the semi-normed space (X, ||.,b] ).

Proof. (i) If )~ kye, converges to some x in X, then = ) kpe,. Since
{e1,€2,e3,...} is a b-orthonormal set in X, we get (x,e;;b) = k; for each i.
Therefore, by Theorem 28, > kn|® = ||z, 0] < 0.

(ii) For m =1,2,3,..., let @y = > 1" | kpen.

Therefore, m > j,z, —x; = Zf::jﬂ knén.

We have ||z, — z;, b = (2 — Tj, Ty — xj;b) = ZZL:J‘-H kn|? < 0.

Therefore, {z,,} is a b-Cauchy sequence in (X, |.,b]|). Since X is a b-Hilbert
space, {T,, } converges to some x in X. O

Theorem 3.3. Let {e,} be a b-orthonormal basis in a b-Hilbert space X, then
for every x in X, x =3 (x,en;b)ey.
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Proof. Since {e,} is a b-orthonormal basis in a 2-inner product space X, {e,}
is a countable set, say {ej, ez, €3, ...}.

By Theorem 8, we have, 3" [(z, e, 0)° < |z, .b]° < o0, = |(z,en;b)|?
converges to 0 as n — oo.

Therefore, by Theorem B2(ii), Y, (x,en;b) e, converges to some y in X.

That is, y = >, (z,en;b) ep.

AISO, <ya €n; b> = <Zn <£C7 €5 b> €is€n, s b> = <.’E, €n; b>

This implies (x —y,en;b) = 0. So, (z — y) L, for all n.

If y # 2 then let u = (v —y)/ ||z — y,b|| = |lu,b|| = 1. Since (x —y) Lbe, for
all n, (u,e,;b) = 0. Therefore, {e,}J{u} is a b-orthonormal set in X, which
contradicts the maximality of the b-orthonormal set {e,}. So, y = x. Hence,
r=> (T enb)en. O

Definition 3.4. Let X be a vector space over K. Let b € X and y1,y2 € X,
then g is said to be b-congruent to ys iff (y; —y2) € (b) is the subspace generated
by b.

Theorem 3.5. Let X be a b-Hilbert space and T € X; then there exists a
unique y € X up to b-congruence such that T'(x,b) = (x,y;b) and ||T|| = ||y, -b||.

Proof. Let {e1,eq,es,...} be a b-orthonormal set.
Form =1,2,3,...let y = > " T(en,b)ey,.
Since {eq, e, €3, ...} is a b-orthonormal set,

[Yoms bI* = S0 [T (en, b)* = Bun.

Also, T(ym,b) = Smy |T(en, b)* = Bin-

Since T is bounded, |T(epn, b)| < |ym, -b] = Bm < |IT|*-

Letting m — 0o, 3 [T(en,b)|* < ||T|° < 0.

Let {eq} be a b-orthonormal basis for X. Set Er = {{eo};T(eq,b) # 0} is
countable and let Ep = {e;,ez,e3,...}. Then ) IT(en,b)]* < oo. Therefore,
by Theorem B2(ii), ), T'(en,b)e, converges in X.

Lety = >, T(en,b)en.

Claim: T(x, b) = (x,y;b) for every x in X.

Let 2 € X, then {e,; (2, eq;b) # 0} is countable (see Theorem B19). Let it be
{s1,52,83,...}. Then & =" (,8,;0) sp, = T(x,0) = >, (T, 5m;0) T(Sm,b).
To prove the claim it is sufficient to show that T'(z,b) = (s;,,y;b) for m =
1,2,3,.... Fix m and let (s,,,y;0) = >, T(€n,b) (Sm,en:b). If 5, = e, for
some no, then (s,,,y;0) = T(e — no,b) = T(spm,b). If s, # e, for some n, then
(8m,y;b) = 0, implying T(8,,,b) = 0. Therefore, T(s,,,b) = (x,y;b) for all m.
Hence T'(z,b) = (x,y;b).

Let us prove the uniqueness of such y.

Let y1,y2 € X such that T'(z,b) = (x,y1;b) and T'(z,b) = (x,y2;b). This
gives (x,y1;b) = (x,yo;b), which implies (z,y; —y2;b) = 0 for all z in X.

In particular, (y; — ya,y1 — y2;b) = 0, so y1 — y2 = kb for some k € K,
implying y1 — y2 € (b)
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Therefore y is unique up to b-congruence.

It can be easily shown that || T|| = ||y, b||.

If T'=0, then T(x,b) = 0 for every z. Also = (z,y;b) = 0 for every z, so y
and b are linearly dependent = ||y, b|| = 0.

Therefore, ||ly,b]| =0 =10,b]| = ||T]-

If T # 0, then T'(x,b) # 0 for all z, which gives (x,y;b) # 0 for every x.

So, y # 0 or y and b are linearly independent.

’Srherefore, ly, 01> = (g, y;b) = T(y,b) < Tl |y, b]|-

o,

(1) [ly, oll < (1T

and, by Cauchy Schwartz Inequality, T'(z,b) = |(z, y;b)| < ||z, b|| ||y, b]|, which
gives

(2) [Tl = sup{[T(x,b)[; ||, .b]| = 1} = sup [z, y; b)| < [|y, 0| -

From (1) and (2) we get || T|| = ||y, b|l.
Hence the theorem. O
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