ON THE REAL PART OF A CLASS OF ANALYTIC FUNCTIONS

B.A. Frasin ${ }^{\text {(I }}$

Abstract

Let $\mathcal{T}(\beta, b), \beta(\beta \geq 0)$ and $b \in \mathbb{C}$ denote the class of analytic functions $f(z)$ in the open unit disk which satisfy the condition $\operatorname{Re}\left\{f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>1-|b|$. Inclusion relations of functions in the class $\mathcal{T}(\beta, b)$ are given. Lower bounds are also obtained for the n-th partial sums $F_{n}(z)$ of the Libera integral operator $F(z)$ and the n-th partial sums of $f(z)$. Furthermore, some convolution properties of functions in $\mathcal{T}(\beta, b)$ are shown. AMS Mathematics Subject Classification (2010): 30C45 Key words and phrases: Analytic functions and univalent functions, starlike functions and convex functions, Strongly starlike and strongly convex functions

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z:|z|<1\}$. Let $\mathcal{T}(\beta, b)$ denote the class of functions $f(z) \in \mathcal{A}$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>1-|b| \tag{2}
\end{equation*}
$$

for some $\beta(\beta \geq 0)$ and $b \in \mathbb{C}$, and for all $z \in \mathcal{U}$. The class $\mathcal{T}(\beta, b)$ for the function f of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0\right) \tag{3}
\end{equation*}
$$

was introduced and studied by Altintas and Ertekin [2]. For $\beta=0$ and $b=$ $1-\alpha, 0 \leq \alpha<1$, the class $\mathcal{T}(0,1-\alpha)=\mathcal{R}(\alpha)$, where the functions in $\mathcal{R}(\alpha)$ are called functions of bounded turning (see [5]).

In order to derive our main results, we have to recall here the following lemmas.

[^0]Lemma 1.1 ([6]). Let M be the positive root of the equation

$$
\begin{aligned}
& \quad 9 t^{7}+55 t^{6}-14 t^{5}-948 t^{4}-3247 t^{3}-5013 t^{2}-3780 t-1134=0 . \\
& \text { If }-1<t \leq M \approx 4.5678018, \text { then } \\
& \quad \operatorname{Re} \sum_{k=2}^{n} \frac{z^{k-1}}{k(k+t-1)}>-\frac{1}{1+t}, \quad n=2,3, \ldots
\end{aligned}
$$

Lemma 1.2 ([]]). Let M be defined as in Lemma 1.1. If $-1<t \leq M \approx$ 4.5678018, then

$$
R e \sum_{k=2}^{n} \frac{z^{k-1}}{k+t-1}>-\frac{1}{1+t}, \quad n=2,3, \ldots
$$

A sequence $a_{0}, a_{1}, \ldots, a_{n}, \ldots$ of nonnegative numbers is called a convex null sequence if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ and

$$
a_{0}-a_{1} \geq a_{1}-a_{2} \geq \ldots \geq a_{n}-a_{(n+1)} \geq \ldots \geq 0
$$

Lemma 1.3 ([4]). Let $\left\{c_{k}\right\}_{k=0}^{\infty}$ be a convex null sequence. Then the function $p(z)=c_{0} / 2+\sum_{k=1}^{\infty} c_{k} z, z \in \mathcal{U}$, is analytic and $\operatorname{Rep}(z)>0$ in \mathcal{U}.

Lemma 1.4. Let $P(z)$ be analytic in $\mathcal{U}, P(0)=1$, and $\operatorname{Re} P(z)>1 / 2$ in \mathcal{U}, then for any function Q, analytic in \mathcal{U}, the function $P * Q$ takes values in the convex hull of the image of \mathcal{U} under Q.

The above Lemma $\mathbb{L . 4}$ can be derived from the Hergoltz representation for $P(z)$ in \mathcal{U}.(see ([5]).

The operator "*" stands for the Hadamard product or convolution of two power series $f(z)=\sum_{k=1}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=1}^{\infty} b_{k} z^{k}$ is defined as the power series $(f * g)(z)=\sum_{k=1}^{\infty} a_{k} b_{k} z^{k}$.

2. Inclusion relations

Now we prove the following theorem.
Theorem 2.1. Let $f(z) \in \mathcal{T}(\beta, b)$ and $b \neq 0$, then

$$
\begin{equation*}
\operatorname{Re}\left(f^{\prime}(z)\right)>1-|b| \tag{4}
\end{equation*}
$$

that is,

$$
\mathcal{T}(\beta, b) \subset \mathcal{T}(0, b)
$$

Proof. For $c_{0}=1$ and

$$
c_{k}=\frac{1}{1+\beta k}, \quad k \geq 1
$$

we see that $\left\{c_{k}\right\}_{k=0}^{\infty}$ is a convex null sequence. Therefore, by Lemma 1.3, we have

$$
\operatorname{Re}\left(1+2|b| \sum_{k=2}^{\infty} \frac{z^{k-1}}{1-\beta+\beta k}\right)>1-|b| \quad(z \in \mathcal{U})
$$

$$
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right)>1-|b| \quad(z \in \mathcal{U})
$$

or

$$
\operatorname{Re}\left(1+\frac{1}{2|b|} \sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right)>\frac{1}{2} \quad(z \in \mathcal{U})
$$

Now

$$
\begin{aligned}
f^{\prime}(z)= & 1+\sum_{k=2}^{\infty} k a_{k} z^{k-1} \\
= & \left(1+\frac{1}{2|b|} \sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right) \\
& *\left(1+2|b| \sum_{k=2}^{\infty} \frac{z^{k-1}}{1-\beta+\beta k}\right) \\
= & P(z) * Q(z)
\end{aligned}
$$

Now on the application of Lemma $\mathbb{L} .4$ to $f^{\prime}(z)$, we get the result.
Letting $\beta=1$ and $|b|=1, b \in \mathbb{C}$ in Theorem [.], we have the following result obtained by Chichra [3]

Corollary 2.2. If $\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>0$ then $\operatorname{Re}\left(f^{\prime}(z)\right)>0, z \in \mathcal{U}$, and hence f is univalent in \mathcal{U}.

Letting $b=1-\alpha, 0 \leq \alpha<1$ in Theorem [2.], we have
Corollary 2.3. If $\operatorname{Re}\left\{f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>\alpha$ then $f \in \mathcal{R}(\alpha)$.
We also have a better result than Theorem [2.].
Theorem 2.4. Let $f(z) \in \mathcal{T}(\beta, b)$, then

$$
\begin{equation*}
\operatorname{Re}\left(f^{\prime}(z)\right)>1-\frac{(3 \beta+1)|b|}{(1+\beta)(1+2 \beta)} \geq 1-|b| \tag{5}
\end{equation*}
$$

that is,

$$
\mathcal{T}(\beta, b) \subset \mathcal{T}(0, \delta)
$$

where

$$
\delta=\frac{(3 \beta+1)|b|}{(1+\beta)(1+2 \beta)}
$$

Proof. For $\beta \geq 0$ and

$$
g(z)=z+\sum_{k=2}^{\infty} \frac{z^{k}}{1-\beta+\beta k}
$$

Zhonghu and Owa [12] proved that

$$
\operatorname{Re} \frac{g(z)}{z}>\frac{4 \beta^{2}+3 \beta+1}{2(1+\beta)(1+2 \beta)}
$$

Hence

$$
\operatorname{Re}\left(1+2|b| \sum_{k=2}^{\infty} \frac{z^{k-1}}{1-\beta+\beta k}\right)>1-\frac{(3 \beta+1)|b|}{(1+\beta)(1+2 \beta)}
$$

The application of Lemma L. 4 to $f^{\prime}(z)$ in Theorem 2.4 completes the proof.

Letting $b=1-\alpha$ in Theorem [2.4, we have the following result obtained by Al-Oboudi [$\mathbb{Z}]$.
Corollary 2.5. Let $f \in \mathcal{A}$ and $0 \leq \alpha<1$. If

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>\alpha, \quad(z \in \mathcal{U}) \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(f^{\prime}(z)\right)>\frac{2 \beta^{2}+(1+3 \beta) \alpha}{(1+\beta)(1+2 \beta)} \tag{7}
\end{equation*}
$$

Letting $\beta=1$ and $b=1-\alpha$ in Theorem [.4, we have
Corollary 2.6. Let $f \in \mathcal{A}$ and $0 \leq \alpha<1$. If

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>\alpha, \quad(z \in \mathcal{U}) \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(f^{\prime}(z)\right)>\frac{1+2 \alpha}{3} \tag{9}
\end{equation*}
$$

Remark 2.7. It is shown by Saitoh [IIT] that for $\beta>0$ and $0 \leq \alpha<1$, $\operatorname{Re}\left\{f^{\prime}(z)+\beta z f^{\prime \prime}(z)\right\}>\alpha$ implies $\operatorname{Re}\left(f^{\prime}(z)\right)>(2 \alpha+\beta) /(2+\beta)$, so if we put $\beta=1$, we have Corollary [2.6].

Letting $\alpha=0$ in Corollary [2.6], we have
Corollary 2.8. Let $f \in \mathcal{A}$. If

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>0, \quad(z \in \mathcal{U}) \tag{10}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left(f^{\prime}(z)\right)>\frac{1}{3} \tag{11}
\end{equation*}
$$

Remark 2.9. The result in Corollary [2.8 is an improvement of the result of Singh and Singh [II], where they show that $\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>0$ implies $\operatorname{Re}\left(f^{\prime}(z)\right)>2 \log 2-1 \approx-0.39$.

3. Partial sum

For f of the form (\mathbb{I}), the Libera integral operator F is given by

$$
F(z)=\frac{2}{z} \int f(\zeta) d \zeta=z+\sum_{k=2}^{\infty} \frac{2}{k+1} a_{k} z^{k}
$$

then the n-th partial sums $F_{n}(z)$ of the Libera integral operator $F(z)$ are given by

$$
\begin{equation*}
F_{n}(z)=z+\sum_{k=2}^{n} \frac{2}{k+1} a_{k} z^{k} \tag{12}
\end{equation*}
$$

Furthermore, let $f_{n}(z)$ be the n-th partial sums of $f(z)$ defined by

$$
\begin{equation*}
f_{n}(z)=z+\sum_{k=2}^{n} a_{k} z^{k} \tag{13}
\end{equation*}
$$

In this section, we determine lower bounds for $\operatorname{Re}\left\{F_{n}(z) / z\right\}$ and $\operatorname{Re} F_{n}^{\prime}(z)$ when $F(z) \in \mathcal{T}(\beta, b)$ and for $\operatorname{Re}\left\{f_{n}(z) / z\right\}$ and $\operatorname{Re} f_{n}^{\prime}(z)$ when $f(z) \in \mathcal{T}(\beta, b)$.

Theorem 3.1. Let $0<1 / \beta \leq M$, where M is defined as in Lemma [.]. If $F(z) \in \mathcal{T}(\beta, b)$, then

$$
\begin{equation*}
R e\left(\frac{F_{n}(z)}{z}\right)>1-\frac{2|b|}{\beta+1} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(F_{n}^{\prime}(z)\right)>1-\frac{2|b|}{\beta+1} . \tag{15}
\end{equation*}
$$

Proof. Let $F(z) \in \mathcal{T}(\beta, b)$ be of the form (II). Then we have

$$
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} \frac{2 k}{k+1}(1-\beta+\beta k) a_{k} z^{k-1}\right)>1-|b| \quad(z \in \mathcal{U}) .
$$

or

$$
\operatorname{Re}\left(1+\frac{1}{2|b|} \sum_{k=2}^{\infty} \frac{2 k}{k+1}(1-\beta+\beta k) a_{k} z^{k-1}\right)>\frac{1}{2} \quad(z \in \mathcal{U}) .
$$

Now

$$
\begin{aligned}
\frac{F_{n}(z)}{z}= & 1+\sum_{k=2}^{n} \frac{2}{k+1} a_{k} z^{k-1} \\
= & \left(1+\frac{1}{2|b|} \sum_{k=2}^{\infty} \frac{2 k}{k+1}(1-\beta+\beta k) a_{k} z^{k-1}\right) \\
& *\left(1+2|b| \sum_{k=2}^{n} \frac{z^{k-1}}{k(1-\beta+\beta k)}\right) .
\end{aligned}
$$

From Lemma [ID, we see that, for $t=1 / \beta$

$$
\operatorname{Re}\left(1+2|b| \sum_{k=2}^{n} \frac{z^{k-1}}{k(1-\beta+\beta k)}\right)>1-\frac{2|b|}{\beta+1}
$$

and the result follows by application of Lemma [.4.
Using a similar argument and applying Lemma $\mathbb{L T}$ instead of Lemma [.], we can prove (프).

Theorem 3.2. Let $0<1 / \beta \leq M$, where M is defined as in Lemma $\square \square$. If $f(z) \in \mathcal{T}(\beta, b)$, then

$$
\begin{equation*}
\operatorname{Re}\left(\frac{f_{n}(z)}{z}\right)>1-\frac{2|b|}{\beta+1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left(f_{n}^{\prime}(z)\right)>1-\frac{2|b|}{\beta+1} \tag{17}
\end{equation*}
$$

Proof. Let $f \in \mathcal{T}(\beta, b)$ be of the form (■2). Then we have

$$
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right)>1-|b|
$$

or

$$
\operatorname{Re}\left(1+\frac{2}{\beta+1} \sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right)>1-\frac{2|b|}{\beta+1} .
$$

Now

$$
\begin{aligned}
\frac{f_{n}(z)}{z}= & 1+\sum_{k=2}^{n} a_{k} z^{k-1} \\
= & \left(1+\frac{2}{\beta+1} \sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right) \\
& *\left(1+\frac{\beta+1}{2} \sum_{k=2}^{n} \frac{z^{k-1}}{k(1-\beta+\beta k)}\right)
\end{aligned}
$$

From Lemma 【.】, we see that, for $t=1 / \beta$

$$
\operatorname{Re}\left(1+\frac{\beta+1}{2} \sum_{k=2}^{n} \frac{z^{k-1}}{k(1-\beta+\beta k)}\right)>\frac{1}{2}
$$

and the result follows by application of Lemma ㄴ.4.
Using a similar argument and applying Lemma $\mathbb{L} .2$ instead of Lemma \mathbb{L}, we can prove (따).

4. Convolution properties

Pólya and Schoenberg [7] conjectured that if $f \in \mathcal{C}$ and $g \in \mathcal{C}$, then $f * g \in \mathcal{C}$ and this conjecture was proved by Ruscheweyh and Sheil-Small [g]. Also, they proved that if $f \in \mathcal{C}$ and $g \in \mathcal{K}$, then $f * g \in \mathcal{K}$ and if $f \in \mathcal{S}^{\star}$ and $g \in \mathcal{S}^{\star}$, then $f * g \in \mathcal{S}^{\star}$, where \mathcal{C}, \mathcal{K} and \mathcal{S}^{\star} denote the classes of convex, close-to-convex and starlike functions, respectively.

In the next theorems, we prove the analogue of Pólya-Schoenberg conjecture for the classes $\mathcal{T}(\beta, b)$ and $\mathcal{R}(\alpha)$.

Theorem 4.1. Let $f \in \mathcal{T}(\beta, b)$ and $g \in \mathcal{C}$. Then $f * g \in \mathcal{T}(\beta, b)$.
Proof. Let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$, then it is sufficient to show that

$$
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} b_{k} z^{k-1}\right)>1-|b|
$$

It is known that if $g \in \mathcal{C}$ then

$$
\operatorname{Re}\left(\frac{g(z)}{z}\right)=\operatorname{Re}\left(1+\sum_{k=2}^{\infty} b_{k} z^{k-1}\right)>\frac{1}{2}
$$

Now

$$
\begin{aligned}
& 1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} b_{k} z^{k-1} \\
= & \left(1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) a_{k} z^{k-1}\right) *\left(1+\sum_{k=2}^{\infty} b_{k} z^{k-1}\right)
\end{aligned}
$$

Since $f \in \mathcal{T}(\beta, b)$ the result follows by application of Lemma ㄴ.4.
Letting $\beta=0$ and $b=1-\alpha, 0 \leq \alpha<1$, in Theorem 1.0 .1 , we have
Corollary 4.2. Let $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{C}$. Then $f * g \in \mathcal{R}(\alpha)$.
Theorem 4.3. Let $f \in \mathcal{T}(0, b)$ and $g \in \mathcal{T}(\beta, b)$. Then $f * g \in \mathcal{T}(0, \gamma)$ where

$$
\begin{equation*}
\gamma=\frac{|b|(2 \beta+3)-(\beta+1)}{2(\beta+1)} \tag{18}
\end{equation*}
$$

Proof. Let $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in \mathcal{T}(\beta, b)$, then

$$
\begin{equation*}
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} k(1-\beta+\beta k) b_{k} z^{k-1}\right)>1-|b| \tag{19}
\end{equation*}
$$

Let $c_{0}=1$ and

$$
c_{k}=\frac{\beta+1}{1+\beta k}, \quad k \geq 1
$$

we see that $\left\{c_{k}\right\}_{k=0}^{\infty}$ is a convex null sequence. Therefore, by Lemma 凹..3, we have

$$
\begin{equation*}
\operatorname{Re}\left(1+\sum_{k=2}^{\infty} \frac{\beta+1}{1-\beta+\beta k} z^{k-1}\right)>\frac{1}{2} \tag{20}
\end{equation*}
$$

Take the convolution of (WI) and (201) and apply Lemma $\mathbb{L} .4$ to obtain

$$
\operatorname{Re}\left(1+(\beta+1) \sum_{k=2}^{\infty} b_{k} z^{k-1}\right)>1-|b|
$$

or

$$
\operatorname{Re}\left(\frac{g(z)}{z}\right)=\operatorname{Re}\left(1+\sum_{k=2}^{\infty} b_{k} z^{k-1}\right)>\frac{\beta+1-|b|}{\beta+1}
$$

or

$$
\operatorname{Re}\left(\frac{g(z)}{z}-\frac{\beta+1-2|b|}{2(\beta+1)}\right)>\frac{1}{2}
$$

Since $f \in \mathcal{T}(0, b)$, by applying Lemma 【.4, we obtain

$$
\operatorname{Re}\left(f^{\prime}(z) *\left(\frac{g(z)}{z}-\frac{\beta+1-2|b|}{2(\beta+1)}\right)\right)>1-|b|
$$

or

$$
\begin{aligned}
\operatorname{Re}(f(z) * g(z))^{\prime} & =\operatorname{Re}\left(f^{\prime}(z) *\left(\frac{g(z)}{z}\right)\right) \\
& =1-\left(\frac{|b|(2 \beta+3)-(\beta+1)}{2(\beta+1)}\right)
\end{aligned}
$$

Letting $\beta=0$ and $b=1-\alpha$, in Theorem 4.33, we have
Corollary 4.4. Let f and g be in $\mathcal{R}(\alpha) ; 0 \leq \alpha<2 / 3$. Then $f * g \in \mathcal{R}(\mu)$ where

$$
\begin{equation*}
\mu=\frac{3 \alpha}{2} \tag{21}
\end{equation*}
$$

Acknowledgement. The author would like to thank the referee for his valuable comments and suggestions.

References

[1] Ahuja, O. P., Jahangiri, M., On the derivatives of a family of analytic functions. Math. Japonica 47 (1) (1998), 67-72.
[2] Altintas, O., Ertekin, Y., A new subclass of analytic functions with negative coefficients, in Current Topics in Analytic Functions Theory (H. Srivatava and S. Owa, Eds.), pp. 36-47. Singapore, New Jersey, London and Hong Kong: World Scientific Publishing Company, 1992.
[3] Chichra, P.N., New subclasses of the class of close-to-convex functions. Proc. Amer. Math. Soc. (1) 62 (1977), 37-43.
[4] Fejér, L., Über die positivität von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten. I, Acta Szeged 2 (1925), 75-86. (in German)
[5] Goodman, A.W., Univalent Functions, Vol. I. Washington: Polygonal, , 1983.
[6] Jahangiri, M., On the real part of partial sums of a class of analytic functions. Math. Japonica 39 (2) (1994), 233-235.
[7] Pólya, G., Schoenberg, I. J., Remarks of De la Valleé Poussion means and convex conformal maps of the circle. Pacific J. Math 8 (1958), 295-334.
[8] Al-Oboudi, F.M., On univalent functions defined by a generalized Sălăgean operator. IJMMS 47 (2004), 1429-1436.
[9] Ruscheweyh, St., Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture. Comment. Math. Helv. 48 (1973), 119-135.
[10] Saitoh, H., properties of certain analytic functions. Proc. Japan Acad., 65 (1989), 131-134.
[11] Singh, R., Singh, S., Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc. (1) 106 (1989), 145-152.
[12] Zhongzhu, Z., Owa, S., Convolution properties of a class of bounded analytic functions. Bull. Austral. Math. Soc. (1) 45 (1992), 9-23.

Received by the editors April 15, 2009

[^0]: ${ }^{1}$ Department of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan, e-mail: bafrasin@yahoo.com

