Novi Sad J. Math. Vol. 41, No. 2, 2011, 63-72

ON THE REAL PART OF A CLASS OF ANALYTIC FUNCTIONS

B.A. $Frasin^1$

Abstract. Let $\mathcal{T}(\beta, b)$, $\beta(\beta \geq 0)$ and $b \in \mathbb{C}$ denote the class of analytic functions f(z) in the open unit disk which satisfy the condition Re $\{f'(z) + \beta z f''(z)\} > 1 - |b|$. Inclusion relations of functions in the class $\mathcal{T}(\beta, b)$ are given. Lower bounds are also obtained for the *n*-th partial sums $F_n(z)$ of the Libera integral operator F(z) and the *n*-th partial sums of f(z). Furthermore, some convolution properties of functions in $\mathcal{T}(\beta, b)$ are shown.

AMS Mathematics Subject Classification (2010): 30C45

Key words and phrases: Analytic functions and univalent functions, starlike functions and convex functions, Strongly starlike and strongly convex functions

1. Introduction and definitions

Let ${\mathcal A}$ denote the class of functions of the form :

(1)
$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Let $\mathcal{T}(\beta, b)$ denote the class of functions $f(z) \in \mathcal{A}$ which satisfy the condition

(2)
$$\operatorname{Re} \left\{ f'(z) + \beta z f''(z) \right\} > 1 - |b|$$

for some $\beta(\beta \ge 0)$ and $b \in \mathbb{C}$, and for all $z \in \mathcal{U}$. The class $\mathcal{T}(\beta, b)$ for the function f of the form

(3)
$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \qquad (a_k \ge 0)$$

was introduced and studied by Altintas and Ertekin [2]. For $\beta = 0$ and $b = 1 - \alpha$, $0 \le \alpha < 1$, the class $\mathcal{T}(0, 1 - \alpha) = \mathcal{R}(\alpha)$, where the functions in $\mathcal{R}(\alpha)$ are called functions of bounded turning (see [5]).

In order to derive our main results, we have to recall here the following lemmas.

 $^{^1\}mathrm{Department}$ of Mathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan, e-mail: bafrasin@yahoo.com

Lemma 1.1 ([6]). Let M be the positive root of the equation

$$9t^7 + 55t^6 - 14t^5 - 948t^4 - 3247t^3 - 5013t^2 - 3780t - 1134 = 0.$$

If $-1 < t \le M \approx 4.5678018$, then

$$Re\sum_{k=2}^{n} \frac{z^{k-1}}{k(k+t-1)} > -\frac{1}{1+t}, \quad n=2,3,\dots$$

Lemma 1.2 ([1]). Let M be defined as in Lemma 1.1. If $-1 < t \le M \approx 4.5678018$, then

$$Re\sum_{k=2}^{n} \frac{z^{k-1}}{k+t-1} > -\frac{1}{1+t}, \quad n = 2, 3, \dots$$

A sequence $a_0, a_1, \ldots, a_n, \ldots$ of nonnegative numbers is called a convex null sequence if $a_n \to 0$ as $n \to \infty$ and

$$a_0 - a_1 \ge a_1 - a_2 \ge \ldots \ge a_n - a_{(n+1)} \ge \ldots \ge 0.$$

Lemma 1.3 ([4]). Let $\{c_k\}_{k=0}^{\infty}$ be a convex null sequence. Then the function $p(z) = c_0/2 + \sum_{k=1}^{\infty} c_k z, \ z \in \mathcal{U}$, is analytic and Rep(z) > 0 in \mathcal{U} .

Lemma 1.4. Let P(z) be analytic in \mathcal{U} , P(0) = 1, and ReP(z) > 1/2 in \mathcal{U} , then for any function Q, analytic in \mathcal{U} , the function P * Q takes values in the convex hull of the image of \mathcal{U} under Q.

The above Lemma 1.4 can be derived from the Hergoltz representation for P(z) in \mathcal{U} .(see ([5]).

The operator "*" stands for the Hadamard product or convolution of two power series $f(z) = \sum_{k=1}^{\infty} a_k z^k$ and $g(z) = \sum_{k=1}^{\infty} b_k z^k$ is defined as the power series $(f * g)(z) = \sum_{k=1}^{\infty} a_k b_k z^k.$

2. Inclusion relations

Now we prove the following theorem.

Theorem 2.1. Let $f(z) \in \mathcal{T}(\beta, b)$ and $b \neq 0$, then

(4) $\operatorname{Re}(f'(z)) > 1 - |b|.$

that is,

$$\mathcal{T}(\beta, b) \subset \mathcal{T}(0, b)$$

Proof. For $c_0 = 1$ and

$$c_k = \frac{1}{1 + \beta k}, \qquad k \ge 1,$$

we see that $\{c_k\}_{k=0}^{\infty}$ is a convex null sequence. Therefore, by Lemma 1.3, we have

$$\operatorname{Re}\left(1+2\left|b\right|\sum_{k=2}^{\infty}\frac{z^{k-1}}{1-\beta+\beta k}\right) > 1-\left|b\right| \qquad (z \in \mathcal{U}).$$

Let $f(z) \in \mathcal{T}(\beta, b)$ be of the form (1). Then from (2), we have

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}k(1-\beta+\beta k)a_{k}z^{k-1}\right)>1-|b|\qquad(z\in\mathcal{U}),$$

or

$$\operatorname{Re}\left(1+\frac{1}{2|b|}\sum_{k=2}^{\infty}k(1-\beta+\beta k)a_{k}z^{k-1}\right) > \frac{1}{2} \qquad (z \in \mathcal{U}).$$

Now

$$f'(z) = 1 + \sum_{k=2}^{\infty} k a_k z^{k-1}$$

= $\left(1 + \frac{1}{2|b|} \sum_{k=2}^{\infty} k(1 - \beta + \beta k) a_k z^{k-1}\right)$
 $* \left(1 + 2|b| \sum_{k=2}^{\infty} \frac{z^{k-1}}{1 - \beta + \beta k}\right)$
= $P(z) * Q(z).$

Now on the application of Lemma 1.4 to f'(z), we get the result.

Letting $\beta = 1$ and |b| = 1, $b \in \mathbb{C}$ in Theorem 2.1, we have the following result obtained by Chichra [3]

Corollary 2.2. If $Re\{f'(z) + zf''(z)\} > 0$ then $Re(f'(z)) > 0, z \in \mathcal{U}$, and hence f is univalent in \mathcal{U} .

Letting $b = 1 - \alpha$, $0 \le \alpha < 1$ in Theorem 2.1, we have

Corollary 2.3. If $Re\{f'(z) + \beta z f''(z)\} > \alpha$ then $f \in \mathcal{R}(\alpha)$.

We also have a better result than Theorem 2.1.

Theorem 2.4. Let $f(z) \in \mathcal{T}(\beta, b)$, then

(5)
$$\operatorname{Re}(f'(z)) > 1 - \frac{(3\beta + 1)|b|}{(1+\beta)(1+2\beta)} \ge 1 - |b|,$$

that is,

$$\mathcal{T}(\beta, b) \subset \mathcal{T}(0, \delta)$$

where

$$\delta = \frac{(3\beta + 1)|b|}{(1+\beta)(1+2\beta)}$$

Proof. For $\beta \ge 0$ and

$$g(z) = z + \sum_{k=2}^{\infty} \frac{z^k}{1 - \beta + \beta k}$$

Zhonghu and Owa [12] proved that

$$\operatorname{Re} \frac{g(z)}{z} > \frac{4\beta^2 + 3\beta + 1}{2(1+\beta)(1+2\beta)}.$$

Hence

$$\operatorname{Re}\left(1+2|b|\sum_{k=2}^{\infty}\frac{z^{k-1}}{1-\beta+\beta k}\right) > 1-\frac{(3\beta+1)|b|}{(1+\beta)(1+2\beta)}.$$

The application of Lemma 1.4 to f'(z) in Theorem 2.4 completes the proof. $\hfill \Box$

Letting $b = 1 - \alpha$ in Theorem 2.4, we have the following result obtained by Al-Oboudi [8].

Corollary 2.5. Let $f \in A$ and $0 \le \alpha < 1$. If

(6)
$$\operatorname{Re}\left\{f'(z) + \beta z f''(z)\right\} > \alpha, \qquad (z \in \mathcal{U})$$

then

(7)
$$\operatorname{Re}(f'(z)) > \frac{2\beta^2 + (1+3\beta)\alpha}{(1+\beta)(1+2\beta)}.$$

Letting $\beta = 1$ and $b = 1 - \alpha$ in Theorem 2.4, we have

Corollary 2.6. Let $f \in A$ and $0 \le \alpha < 1$. If

(8)
$$Re\left\{f'(z) + zf''(z)\right\} > \alpha, \qquad (z \in \mathcal{U})$$

then

(9)
$$Re(f'(z)) > \frac{1+2\alpha}{3}.$$

Remark 2.7. It is shown by Saitoh [10] that for $\beta > 0$ and $0 \le \alpha < 1$, Re $\{f'(z) + \beta z f''(z)\} > \alpha$ implies Re $(f'(z)) > (2\alpha + \beta)/(2 + \beta)$, so if we put $\beta = 1$, we have Corollary 2.6.

Letting $\alpha = 0$ in Corollary 2.6, we have

Corollary 2.8. Let $f \in A$. If

(10)
$$\operatorname{Re}\left\{f'(z) + zf''(z)\right\} > 0, \qquad (z \in \mathcal{U})$$

then

(11)
$$\operatorname{Re}(f'(z)) > \frac{1}{3}.$$

Remark 2.9. The result in Corollary 2.8 is an improvement of the result of Singh and Singh [11], where they show that $\operatorname{Re} \{f'(z) + zf''(z)\} > 0$ implies $\operatorname{Re}(f'(z)) > 2\log 2 - 1 \approx -0.39$.

3. Partial sum

For f of the form (1), the Libera integral operator F is given by

$$F(z) = \frac{2}{z} \int f(\zeta) d\zeta = z + \sum_{k=2}^{\infty} \frac{2}{k+1} a_k z^k$$

then the *n*-th partial sums $F_n(z)$ of the Libera integral operator F(z) are given by

(12)
$$F_n(z) = z + \sum_{k=2}^n \frac{2}{k+1} a_k z^k.$$

Furthermore, let $f_n(z)$ be the *n*-th partial sums of f(z) defined by

(13)
$$f_n(z) = z + \sum_{k=2}^n a_k z^k.$$

In this section, we determine lower bounds for $\operatorname{Re}\{F_n(z)/z\}$ and $\operatorname{Re}F'_n(z)$ when $F(z) \in \mathcal{T}(\beta, b)$ and for $\operatorname{Re}\{f_n(z)/z\}$ and $\operatorname{Re}f'_n(z)$ when $f(z) \in \mathcal{T}(\beta, b)$.

Theorem 3.1. Let $0 < 1/\beta \leq M$, where M is defined as in Lemma 1.1. If $F(z) \in \mathcal{T}(\beta, b)$, then

(14)
$$Re\left(\frac{F_n(z)}{z}\right) > 1 - \frac{2|b|}{\beta+1}$$

B.A. Frasin

and

(15)
$$Re(F'_n(z)) > 1 - \frac{2|b|}{\beta+1}.$$

Proof. Let $F(z) \in \mathcal{T}(\beta, b)$ be of the form (1). Then we have

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}\frac{2k}{k+1}(1-\beta+\beta k)a_{k}z^{k-1}\right)>1-|b|\quad(z\in\mathcal{U})$$

or

$$\operatorname{Re}\left(1 + \frac{1}{2|b|}\sum_{k=2}^{\infty} \frac{2k}{k+1}(1 - \beta + \beta k)a_k z^{k-1}\right) > \frac{1}{2} \quad (z \in \mathcal{U}).$$

Now

$$\frac{F_n(z)}{z} = 1 + \sum_{k=2}^n \frac{2}{k+1} a_k z^{k-1}$$
$$= \left(1 + \frac{1}{2|b|} \sum_{k=2}^\infty \frac{2k}{k+1} (1 - \beta + \beta k) a_k z^{k-1} \right)$$
$$* \left(1 + 2|b| \sum_{k=2}^n \frac{z^{k-1}}{k(1 - \beta + \beta k)} \right).$$

From Lemma 1.1, we see that, for $t = 1/\beta$

$$\operatorname{Re}\left(1+2|b|\sum_{k=2}^{n}\frac{z^{k-1}}{k(1-\beta+\beta k)}\right) > 1-\frac{2|b|}{\beta+1}$$

and the result follows by application of Lemma 1.4.

Using a similar argument and applying Lemma 1.2 instead of Lemma 1.1, we can prove (15). $\hfill \Box$

Theorem 3.2. Let $0 < 1/\beta \leq M$, where M is defined as in Lemma 1.1. If $f(z) \in \mathcal{T}(\beta, b)$, then

(16)
$$Re\left(\frac{f_n(z)}{z}\right) > 1 - \frac{2|b|}{\beta+1}$$

and

(17)
$$Re(f'_n(z)) > 1 - \frac{2|b|}{\beta + 1}$$

68

Proof. Let $f \in \mathcal{T}(\beta, b)$ be of the form (12). Then we have

$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}k(1-\beta+\beta k)a_{k}z^{k-1}\right) > 1-|b|$$

or

$$\operatorname{Re}\left(1 + \frac{2}{\beta+1}\sum_{k=2}^{\infty}k(1-\beta+\beta k)a_{k}z^{k-1}\right) > 1 - \frac{2|b|}{\beta+1}$$

Now

$$\frac{f_n(z)}{z} = 1 + \sum_{k=2}^n a_k z^{k-1}$$
$$= \left(1 + \frac{2}{\beta+1} \sum_{k=2}^\infty k(1-\beta+\beta k) a_k z^{k-1} \right)$$
$$* \left(1 + \frac{\beta+1}{2} \sum_{k=2}^n \frac{z^{k-1}}{k(1-\beta+\beta k)} \right)$$

From Lemma 1.1, we see that, for $t = 1/\beta$

$$\operatorname{Re}\left(1 + \frac{\beta+1}{2}\sum_{k=2}^{n} \frac{z^{k-1}}{k(1-\beta+\beta k)}\right) > \frac{1}{2}$$

and the result follows by application of Lemma 1.4.

Using a similar argument and applying Lemma 1.2 instead of Lemma 1.1, we can prove (17). $\hfill \Box$

4. Convolution properties

Pólya and Schoenberg [7] conjectured that if $f \in C$ and $g \in C$, then $f * g \in C$ and this conjecture was proved by Ruscheweyh and Sheil-Small [9]. Also, they proved that if $f \in C$ and $g \in K$, then $f * g \in K$ and if $f \in S^*$ and $g \in S^*$, then $f * g \in S^*$, where C, K and S^* denote the classes of convex, close-to-convex and starlike functions, respectively.

In the next theorems, we prove the analogue of Pólya-Schoenberg conjecture for the classes $\mathcal{T}(\beta, b)$ and $\mathcal{R}(\alpha)$.

Theorem 4.1. Let $f \in \mathcal{T}(\beta, b)$ and $g \in \mathcal{C}$. Then $f * g \in \mathcal{T}(\beta, b)$.

Proof. Let
$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k$$
, then it is sufficient to show that

$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} k(1 - \beta + \beta k)a_k b_k z^{k-1}\right) > 1 - |b|.$$

It is known that if $g \in \mathcal{C}$ then

B.A. Frasin

$$\operatorname{Re}\left(\frac{g(z)}{z}\right) = \operatorname{Re}\left(1 + \sum_{k=2}^{\infty} b_k z^{k-1}\right) > \frac{1}{2}$$

Now

$$1 + \sum_{k=2}^{\infty} k(1 - \beta + \beta k) a_k b_k z^{k-1}$$

= $\left(1 + \sum_{k=2}^{\infty} k(1 - \beta + \beta k) a_k z^{k-1}\right) * \left(1 + \sum_{k=2}^{\infty} b_k z^{k-1}\right).$

Since $f \in \mathcal{T}(\beta, b)$ the result follows by application of Lemma 1.4.

Letting $\beta = 0$ and $b = 1 - \alpha, 0 \le \alpha < 1$, in Theorem 4.1, we have

Corollary 4.2. Let $f \in \mathcal{R}(\alpha)$ and $g \in \mathcal{C}$. Then $f * g \in \mathcal{R}(\alpha)$.

Theorem 4.3. Let $f \in \mathcal{T}(0,b)$ and $g \in \mathcal{T}(\beta,b)$. Then $f * g \in \mathcal{T}(0,\gamma)$ where

(18)
$$\gamma = \frac{|b|(2\beta+3) - (\beta+1)}{2(\beta+1)}$$

Proof. Let $g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in \mathcal{T}(\beta, b)$, then

(19)
$$\operatorname{Re}\left(1 + \sum_{k=2}^{\infty} k(1 - \beta + \beta k)b_k z^{k-1}\right) > 1 - |b|.$$

Let $c_0 = 1$ and

$$c_k = \frac{\beta + 1}{1 + \beta k}, \qquad k \ge 1,$$

we see that $\{c_k\}_{k=0}^{\infty}$ is a convex null sequence. Therefore, by Lemma 1.3, we have

(20)
$$\operatorname{Re}\left(1+\sum_{k=2}^{\infty}\frac{\beta+1}{1-\beta+\beta k}z^{k-1}\right) > \frac{1}{2}.$$

Take the convolution of (19) and (20) and apply Lemma 1.4 to obtain

$$\operatorname{Re}\left(1 + (\beta + 1)\sum_{k=2}^{\infty} b_k z^{k-1}\right) > 1 - |b|$$

or

$$\operatorname{Re}\left(\frac{g(z)}{z}\right) = \operatorname{Re}\left(1 + \sum_{k=2}^{\infty} b_k z^{k-1}\right) > \frac{\beta + 1 - |b|}{\beta + 1}$$

or

$$\operatorname{Re}\left(\frac{g(z)}{z} - \frac{\beta + 1 - 2|b|}{2(\beta + 1)}\right) > \frac{1}{2}.$$

Since $f \in \mathcal{T}(0, b)$, by applying Lemma 1.4, we obtain

$$\operatorname{Re}\left(f'(z) * \left(\frac{g(z)}{z} - \frac{\beta + 1 - 2|b|}{2(\beta + 1)}\right)\right) > 1 - |b|$$

or

$$\operatorname{Re}(f(z) * g(z))' = \operatorname{Re}\left(f'(z) * \left(\frac{g(z)}{z}\right)\right)$$
$$= 1 - \left(\frac{|b|(2\beta+3) - (\beta+1)}{2(\beta+1)}\right).$$

Letting $\beta = 0$ and $b = 1 - \alpha$, in Theorem 4.3, we have

Corollary 4.4. Let f and g be in $\mathcal{R}(\alpha)$; $0 \leq \alpha < 2/3$. Then $f * g \in \mathcal{R}(\mu)$ where

(21)
$$\mu = \frac{3\alpha}{2}$$

Acknowledgement. The author would like to thank the referee for his valuable comments and suggestions.

References

- Ahuja, O. P., Jahangiri, M., On the derivatives of a family of analytic functions. Math. Japonica 47 (1) (1998), 67-72.
- [2] Altintas, O., Ertekin, Y., A new subclass of analytic functions with negative coefficients, in Current Topics in Analytic Functions Theory (H. Srivatava and S. Owa, Eds.), pp. 36-47. Singapore, New Jersey, London and Hong Kong: World Scientific Publishing Company, 1992.
- [3] Chichra, P.N., New subclasses of the class of close-to-convex functions. Proc. Amer. Math. Soc. (1) 62 (1977), 37-43.
- [4] Fejér, L., Über die positivität von summen, die nach trigonometrischen oder Legendreschen funktionen fortschreiten. I, Acta Szeged 2 (1925), 75-86. (in German)
- [5] Goodman, A.W., Univalent Functions, Vol. I. Washington: Polygonal, , 1983.
- [6] Jahangiri, M., On the real part of partial sums of a class of analytic functions. Math. Japonica 39 (2) (1994), 233-235.

- [7] Pólya, G., Schoenberg, I. J., Remarks of De la Valleé Poussion means and convex conformal maps of the circle. Pacific J. Math 8 (1958), 295-334.
- [8] Al-Oboudi, F.M., On univalent functions defined by a generalized Sălăgean operator. IJMMS 47 (2004), 1429-1436.
- [9] Ruscheweyh, St., Sheil-Small, T., Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture. Comment. Math. Helv. 48 (1973), 119-135.
- [10] Saitoh, H., properties of certain analytic functions. Proc. Japan Acad., 65 (1989), 131-134.
- [11] Singh, R., Singh, S., Convolution properties of a class of starlike functions. Proc. Amer. Math. Soc. (1) 106 (1989), 145-152.
- [12] Zhongzhu, Z., Owa, S., Convolution properties of a class of bounded analytic functions. Bull. Austral. Math. Soc. (1) 45 (1992), 9-23.

Received by the editors April 15, 2009