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ON THE REAL PART OF A CLASS OF ANALYTIC
FUNCTIONS

B.A. Frasin1

Abstract. Let T (β, b), β(β ≥ 0) and b ∈ C denote the class of an-
alytic functions f(z) in the open unit disk which satisfy the condition
Re {f ′(z) + βzf ′′(z)} > 1 − |b| . Inclusion relations of functions in the
class T (β, b) are given. Lower bounds are also obtained for the n-th par-
tial sums Fn(z) of the Libera integral operator F (z) and the n-th partial
sums of f(z). Furthermore, some convolution properties of functions in
T (β, b) are shown.
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1. Introduction and definitions

Let A denote the class of functions of the form :

(1) f(z) = z +
∞∑
k=2

akz
k,

which are analytic in the open unit disk U = {z : |z| < 1}. Let T (β, b) denote
the class of functions f(z) ∈ A which satisfy the condition

(2) Re {f ′(z) + βzf ′′(z)} > 1− |b|

for some β(β ≥ 0) and b ∈ C, and for all z ∈ U . The class T (β, b) for the
function f of the form

(3) f(z) = z −
∞∑
k=2

akz
k, (ak ≥ 0)

was introduced and studied by Altintas and Ertekin [2]. For β = 0 and b =
1−α, 0 ≤ α < 1, the class T (0, 1−α) = R(α), where the functions in R(α) are
called functions of bounded turning (see [5]).

In order to derive our main results, we have to recall here the following
lemmas.
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Lemma 1.1 ([6]). Let M be the positive root of the equation

9t7 + 55t6 − 14t5 − 948t4 − 3247t3 − 5013t2 − 3780t− 1134 = 0.

If −1 < t ≤ M ≈ 4.5678018, then

Re

n∑
k=2

zk−1

k(k + t− 1)
> − 1

1 + t
, n = 2, 3, . . . .

Lemma 1.2 ([1]). Let M be defined as in Lemma 1.1. If −1 < t ≤ M ≈
4.5678018, then

Re
n∑

k=2

zk−1

k + t− 1
> − 1

1 + t
, n = 2, 3, . . . .

A sequence a0, a1, . . . , an, . . . of nonnegative numbers is called a convex null
sequence if an → 0 as n → ∞ and

a0 − a1 ≥ a1 − a2 ≥ . . . ≥ an − a(n+1) ≥ . . . ≥ 0.

Lemma 1.3 ([4]). Let {ck}∞k=0 be a convex null sequence. Then the function

p(z) = c0/2 +
∞∑
k=1

ckz, z ∈ U , is analytic and Rep(z) > 0 in U .

Lemma 1.4. Let P (z) be analytic in U , P (0) = 1, and ReP (z) > 1/2 in U ,
then for any function Q, analytic in U , the function P ∗ Q takes values in the
convex hull of the image of U under Q.

The above Lemma 1.4 can be derived from the Hergoltz representation for
P (z) in U .(see ([5]).

The operator “ ∗ ” stands for the Hadamard product or convolution of two

power series f(z) =
∞∑
k=1

akz
k and g(z) =

∞∑
k=1

bkz
k is defined as the power series

(f ∗ g)(z) =
∞∑
k=1

akbkz
k.

2. Inclusion relations

Now we prove the following theorem.

Theorem 2.1. Let f(z) ∈ T (β, b) and b ̸= 0, then

(4) Re(f ′(z)) > 1− |b| .

that is,
T (β, b) ⊂ T (0, b)



On the real part of a class of analytic functions 65

Proof. For c0 = 1 and

ck =
1

1 + βk
, k ≥ 1,

we see that {ck}∞k=0 is a convex null sequence. Therefore, by Lemma 1.3, we
have

Re

(
1 + 2 |b|

∞∑
k=2

zk−1

1− β + βk

)
> 1− |b| (z ∈ U).

Let f(z) ∈ T (β, b) be of the form (1). Then from (2), we have

Re

(
1 +

∞∑
k=2

k(1− β + βk)akz
k−1

)
> 1− |b| (z ∈ U),

or

Re

(
1 +

1

2 |b|

∞∑
k=2

k(1− β + βk)akz
k−1

)
>

1

2
(z ∈ U).

Now

f ′(z) = 1 +

∞∑
k=2

kakz
k−1

=

(
1 +

1

2 |b|

∞∑
k=2

k(1− β + βk)akz
k−1

)

∗

(
1 + 2 |b|

∞∑
k=2

zk−1

1− β + βk

)
= P (z) ∗Q(z).

Now on the application of Lemma 1.4 to f ′(z), we get the result.

Letting β = 1 and |b| = 1, b ∈ C in Theorem 2.1, we have the following
result obtained by Chichra [3]

Corollary 2.2. If Re {f ′(z) + zf ′′(z)} > 0 then Re(f ′(z)) > 0, z ∈ U , and
hence f is univalent in U .

Letting b = 1− α, 0 ≤ α < 1 in Theorem 2.1, we have

Corollary 2.3. If Re {f ′(z) + βzf ′′(z)} > α then f ∈ R(α).

We also have a better result than Theorem 2.1.

Theorem 2.4. Let f(z) ∈ T (β, b), then
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(5) Re(f ′(z)) > 1− (3β + 1) |b|
(1 + β)(1 + 2β)

≥ 1− |b| ,

that is,
T (β, b) ⊂ T (0, δ)

where

δ =
(3β + 1) |b|

(1 + β)(1 + 2β)

Proof. For β ≥ 0 and

g(z) = z +
∞∑
k=2

zk

1− β + βk
,

Zhonghu and Owa [12] proved that

Re
g(z)

z
>

4β2 + 3β + 1

2(1 + β)(1 + 2β)
.

Hence

Re

(
1 + 2 |b|

∞∑
k=2

zk−1

1− β + βk

)
> 1− (3β + 1) |b|

(1 + β)(1 + 2β)
.

The application of Lemma 1.4 to f ′(z) in Theorem 2.4 completes the proof.

Letting b = 1− α in Theorem 2.4, we have the following result obtained by
Al-Oboudi [8].

Corollary 2.5. Let f ∈ A and 0 ≤ α < 1. If

(6) Re {f ′(z) + βzf ′′(z)} > α, (z ∈ U)

then

(7) Re(f ′(z)) >
2β2 + (1 + 3β)α

(1 + β)(1 + 2β)
.

Letting β = 1 and b = 1− α in Theorem 2.4, we have

Corollary 2.6. Let f ∈ A and 0 ≤ α < 1. If

(8) Re {f ′(z) + zf ′′(z)} > α, (z ∈ U)

then

(9) Re(f ′(z)) >
1 + 2α

3
.
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Remark 2.7. It is shown by Saitoh [10] that for β > 0 and 0 ≤ α < 1,
Re {f ′(z) + βzf ′′(z)} > α implies Re(f ′(z)) > (2α + β)/(2 + β), so if we put
β = 1, we have Corollary 2.6.

Letting α = 0 in Corollary 2.6, we have

Corollary 2.8. Let f ∈ A. If

(10) Re {f ′(z) + zf ′′(z)} > 0, (z ∈ U)

then

(11) Re(f ′(z)) >
1

3
.

Remark 2.9. The result in Corollary 2.8 is an improvement of the result of
Singh and Singh [11], where they show that Re {f ′(z) + zf ′′(z)} > 0 implies
Re(f ′(z)) > 2 log 2− 1 ≈ −0.39.

3. Partial sum

For f of the form (1), the Libera integral operator F is given by

F (z) =
2

z

∫
f(ζ)dζ = z +

∞∑
k=2

2

k + 1
akz

k

then the n-th partial sums Fn(z) of the Libera integral operator F (z) are
given by

(12) Fn(z) = z +
n∑

k=2

2

k + 1
akz

k.

Furthermore, let fn(z) be the n-th partial sums of f(z) defined by

(13) fn(z) = z +
n∑

k=2

akz
k.

In this section, we determine lower bounds for Re{Fn(z)/z} and ReF ′
n(z)

when F (z) ∈ T (β, b) and for Re{fn(z)/z} and Ref ′
n(z) when f(z) ∈ T (β, b).

Theorem 3.1. Let 0 < 1/β ≤ M, where M is defined as in Lemma 1.1. If
F (z) ∈ T (β, b), then

(14) Re

(
Fn(z)

z

)
> 1− 2 |b|

β + 1
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and

(15) Re(F ′
n(z)) > 1− 2 |b|

β + 1
.

Proof. Let F (z) ∈ T (β, b) be of the form (1). Then we have

Re

(
1 +

∞∑
k=2

2k

k + 1
(1− β + βk)akz

k−1

)
> 1− |b| (z ∈ U).

or

Re

(
1 +

1

2 |b|

∞∑
k=2

2k

k + 1
(1− β + βk)akz

k−1

)
>

1

2
(z ∈ U).

Now

Fn(z)

z
= 1 +

n∑
k=2

2

k + 1
akz

k−1

=

(
1 +

1

2 |b|

∞∑
k=2

2k

k + 1
(1− β + βk)akz

k−1

)

∗

(
1 + 2 |b|

n∑
k=2

zk−1

k(1− β + βk)

)
.

From Lemma 1.1, we see that, for t = 1/β

Re

(
1 + 2 |b|

n∑
k=2

zk−1

k(1− β + βk)

)
> 1− 2 |b|

β + 1

and the result follows by application of Lemma 1.4.
Using a similar argument and applying Lemma 1.2 instead of Lemma 1.1,

we can prove (15).

Theorem 3.2. Let 0 < 1/β ≤ M, where M is defined as in Lemma 1.1. If
f(z) ∈ T (β, b), then

(16) Re

(
fn(z)

z

)
> 1− 2 |b|

β + 1

and

(17) Re(f ′
n(z)) > 1− 2 |b|

β + 1
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Proof. Let f ∈ T (β, b) be of the form (12). Then we have

Re

(
1 +

∞∑
k=2

k(1− β + βk)akz
k−1

)
> 1− |b|

or

Re

(
1 +

2

β + 1

∞∑
k=2

k(1− β + βk)akz
k−1

)
> 1− 2 |b|

β + 1
.

Now

fn(z)

z
= 1 +

n∑
k=2

akz
k−1

=

(
1 +

2

β + 1

∞∑
k=2

k(1− β + βk)akz
k−1

)

∗

(
1 +

β + 1

2

n∑
k=2

zk−1

k(1− β + βk)

)

From Lemma 1.1, we see that, for t = 1/β

Re

(
1 +

β + 1

2

n∑
k=2

zk−1

k(1− β + βk)

)
>

1

2

and the result follows by application of Lemma 1.4.
Using a similar argument and applying Lemma 1.2 instead of Lemma 1.1,

we can prove (17).

4. Convolution properties

Pólya and Schoenberg [7] conjectured that if f ∈ C and g ∈ C, then f ∗g ∈ C
and this conjecture was proved by Ruscheweyh and Sheil-Small [9]. Also, they
proved that if f ∈ C and g ∈ K, then f ∗ g ∈ K and if f ∈ S⋆ and g ∈ S⋆, then
f ∗ g ∈ S⋆, where C, K and S⋆ denote the classes of convex, close-to-convex and
starlike functions, respectively.

In the next theorems, we prove the analogue of Pólya-Schoenberg conjecture
for the classes T (β, b) and R(α).

Theorem 4.1. Let f ∈ T (β, b) and g ∈ C. Then f ∗ g ∈ T (β, b).

Proof. Let g(z) = z +
∞∑
k=2

bkz
k , then it is sufficient to show that

Re

(
1 +

∞∑
k=2

k(1− β + βk)akbkz
k−1

)
> 1− |b| .

It is known that if g ∈ C then
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Re

(
g(z)

z

)
= Re

(
1 +

∞∑
k=2

bkz
k−1

)
>

1

2
.

Now

1 +

∞∑
k=2

k(1− β + βk)akbkz
k−1

=

(
1 +

∞∑
k=2

k(1− β + βk)akz
k−1

)
∗

(
1 +

∞∑
k=2

bkz
k−1

)
.

Since f ∈ T (β, b) the result follows by application of Lemma 1.4.

Letting β = 0 and b = 1− α, 0 ≤ α < 1, in Theorem 4.1, we have

Corollary 4.2. Let f ∈ R(α) and g ∈ C. Then f ∗ g ∈ R(α).

Theorem 4.3. Let f ∈ T (0, b) and g ∈ T (β, b). Then f ∗ g ∈ T (0, γ) where

(18) γ =
|b| (2β + 3)− (β + 1)

2(β + 1)

Proof. Let g(z) = z +
∞∑
k=2

bkz
k ∈ T (β, b) , then

(19) Re

(
1 +

∞∑
k=2

k(1− β + βk)bkz
k−1

)
> 1− |b| .

Let c0 = 1 and

ck =
β + 1

1 + βk
, k ≥ 1,

we see that {ck}∞k=0 is a convex null sequence. Therefore, by Lemma 1.3, we
have

(20) Re

(
1 +

∞∑
k=2

β + 1

1− β + βk
zk−1

)
>

1

2
.

Take the convolution of (19) and (20) and apply Lemma 1.4 to obtain

Re

(
1 + (β + 1)

∞∑
k=2

bkz
k−1

)
> 1− |b|

or
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Re

(
g(z)

z

)
= Re

(
1 +

∞∑
k=2

bkz
k−1

)
>

β + 1− |b|
β + 1

or

Re

(
g(z)

z
− β + 1− 2 |b|

2(β + 1)

)
>

1

2
.

Since f ∈ T (0, b), by applying Lemma 1.4, we obtain

Re

(
f ′(z) ∗

(
g(z)

z
− β + 1− 2 |b|

2(β + 1)

))
> 1− |b|

or

Re(f(z) ∗ g(z))′ = Re

(
f ′(z) ∗

(
g(z)

z

))
= 1−

(
|b| (2β + 3)− (β + 1)

2(β + 1)

)
.

Letting β = 0 and b = 1− α, in Theorem 4.3, we have

Corollary 4.4. Let f and g be in R(α); 0 ≤ α < 2/3. Then f ∗g ∈ R(µ) where

(21) µ =
3α

2
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erator. IJMMS 47 (2004), 1429-1436.

[9] Ruscheweyh, St., Sheil-Small, T., Hadamard products of Schlicht functions and
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