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ENTIRE FUNCTIONS THAT SHARE RATIONAL
FUNCTIONS WITH THEIR DERIVATIVES1

Ang Chen2, Guowei Zhang3

Abstract. In this paper, we use the idea of normal family to deal with
the uniqueness problems of entire functions that share a rational function
with its derivative and get a uniqueness theorem. The conclusions in this
paper can be used to improve several known results. Some examples are
provided to show that the results presented in this paper are possible.
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1. Introduction and main results

In this article, by meromorphic functions we shall always mean the mero-
morphic functions in the complex plane. We are going to mainly use the basic
notation of Nevanlinna Theory (see [7], [18], [19]), such as T (r, f), N(r, f),
m(r, f), N(r, f) and S(r, f) = o(T (r, f)), as r → ∞, possibly outside a set of
finite measure. Let f and g denote two non-constant meromorphic functions,
and let R be a rational function. If f −R and g −R have the same zeros with
the same multiplicities (ignoring multiplicities), then we say that f and g share
R CM (IM), and denote it by f = R 
 g = R (f = R⇔ g = R). In this paper,
we also need the following two definitions.

Definition 1.1. Let f be a non-constant entire function, the order of f , denoted
σ(f), being defined by

σ(f) = lim sup
r→∞

log T (r, f)

log r
= lim sup

r→∞

log logM(r, f)

log r
,

where, and in the sequel, M(r, f) = max|z|=r{|f(z)|}.

Definition 1.2. Let f be a nonconstant meromorphic function, the hyper order
of f , denoted σ2(f), is defined by

σ2(f) = lim sup
r→∞

log log T (r, f)

log r
.
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In 1977, Rubel and Yang [15] proved the well-known theorem.

Theorem A. Let a and b be two complex numbers such that b ̸= a, and let f be
a nonconstant entire function. If f and f ′ share values a and b CM, then f ≡ f ′.

This result has undergone various extensions and improvements. Mues and
Steinmetz [12] proved the following theorem.

Theorem B. Let a and b be two complex numbers such that b ̸= a, and let f be
a non-constant entire function. If f and f ′ share values a and b IM, then f ≡ f ′.

Ang Chen, et al [2] got the following theorem, in which the second relation-
ship between f and f ′ is f = R2 ⇒ f ′ = R2, here for the definition of R2 see
Theorem C.

Theorem C. Let R1 = P1(z)e
Q(z), R2 = P2(z)e

Q(z), where Q(z) is a polyno-
mial and P1(z), P2(z) are rational functions, be two functions and R2(̸≡ R1, 0).
Let f be a nonconstant meromorphic function with finitely many poles. If
f = R1 
 f ′ = R1, f = R2 ⇒ f ′ = R2. If f,R1 have no common poles
and the order of R1 is less than the order of f , then one of the following cases
must occur:
(1) f ≡ f ′.
(2) f = R2 + Ceλz and (λ − 1)R1 = λR2 − R′

2, where C, λ are two nonzero
constants. In fact, R1, R2 are two polynomials.

On the other hand, there were also many improvements of Theorem B by
assuming the second relationship between f and f ′ is f ′ = R2 ⇒ f = R2, here
R2 can be a constant(see Theorem D), or be a polynomial(see Theorem F). In
2006, Li and Yi [9] gave an example to show the condition that f and f ′ have
two shared values in Theorems B is necessary. They also thought about whether
the condition can be changed to some extent and gave an affirmative answer as
follows.

Theorem D. Let a and b be two complex numbers such that b ̸= a, 0, and let
f be a non-constant entire function. If f = a 
 f ′ = a and f ′ = b ⇒ f = b,
then f ≡ f ′.

Remark 1.1. In the same paper, authors [9] gave an example to show that b ̸= 0
cannot be omitted in Theorem D.

In 2007, Li and Yi [10] proved the following result.

Theorem E. Let f be a non-constant entire function of hyper-order σ2(f) <
1
2

and let Q be a non-constant polynomial. If f = Q 
 f ′ = Q, then

f ′ −Q

f −Q
≡ c
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for some constant c ̸= 0.

In 2009, Qi, Lü and Chen [14] improved Theorem D and got the following
result.

Theorem F. Let Q1(z) = a1z
p + a1,p−1z

p−1 + · · · + a1,0 and Q2(z) = a2z
p +

a2,p−1z
p−1+ · · ·+a2,0 be two polynomials such that degQ1 = degQ2 = p (where

p is a non-negative integer) and a1, a2(a2 ̸= 0) are two distinct complex num-
bers. Let f be a transcendental entire function. If f = Q1 
 f ′ = Q1 and
f ′ = Q2 ⇒ f = Q2, then f ≡ f ′.

Naturally, we ask what will happen if the polynomials Q1, Q2 are replaced
by the rational functions R1, R2? In this paper, we consider the above question
and use the idea of normal families to obtain a uniqueness theorem.

We set R(z) = P1(z)/P2(z), where P1, P2 are relatively prime polynomials.
In this paper, deviating from the usual definition of the degree of a rational
function, deg(P1)−deg(P2) is called the degree of R(z) and denoted by deg(R).

Theorem 1.1. Let R1(z) and R2(z) be two non-zero rational functions such

that limz→∞
R2(z)
R1(z)

̸= 1 and deg(R1) = deg(R2), and let f be a transcendental entire function. If
f = R1 
 f ′ = R1 and f ′ = R2 ⇒ f = R2, then one of the following cases
must occur:
(i) f ≡ f ′;
(ii) f ′ = R2 + Cλeλz and (λ − 1)R′

1 = λR2 − R′
2, where C, λ ̸= 1 are two

non-zero constants. In fact, R1, R2 are two polynomials.

Remark 1.2. The following shows the hypothesis that f is transcendental cannot
be omitted in Theorem 1.1.

Example 1. Let f(z) = z4, R1(z) = 2z4 − 4z3 and R2(z) = z4. Then

f ′(z)−R1(z)

f(z)−R1(z)
= 2 and f ′(z) = R2(z)⇒ f(z) = R2(z).

Whereas it does not satisfy the result of Theorem 1.1.

Remark 1.3. We add an example to point out that the case (ii) in Theorem 1.1
cannot be deleted.

Example 2. Let f = 2e
z
2 + 1

2z
2, R1 = 2z − 1

2z
2 and R2 = z. Then

f ′ −R1

f −R1
=

1

2
and f ′ ̸= R2.

Thus, it satisfies the assumption of Theorem 1.1.

Remark 1.4. Obviously, when R1, R2 can be two polynomials defined as in
Theorem F, it is easy to see Theorem 1.1 improves Theorem F and Theorem D.
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In order to prove Theorem 1.1, we need the following result which is of
independent interest.

Theorem 1.2. Let R1(z) and R2(z) be two non-zero rational functions such

that limz→∞
R2(z)
R1(z)

̸= 1 and deg(R1) = deg(R2), and let f be a non-constant

entire function. If f = R1 ⇒ f ′ = R1 and f ′ = R2 ⇒ f = R2, then f is of
order at most one.

2. Some Lemmas

In order to prove our theorems, we need the following lemmas. Let h be
a meromorphic function in C. h is called a normal function if there exists a
positive M such that h♯(z) ≤M for all z ∈ C, where

h♯(z) =
|h′(z)|

1 + |h(z)|2

denotes the spherical derivative of h.
Let F be a family of meromorphic functions in a domain D ⊂ C. We say

that F is normal in D if every sequence {fn}n ⊆ F contains a subsequence
which converges spherically and uniformly on the compact subsets of D, see
[16]. Normal families, in particular, of entire functions often appear in operator
theory on spaces of analytic functions, for instance, see, Lemma 3 in [8] and
Lemma 4 in [17].

The following lemma is the famous Marty’s criterion.

Lemma 2.1. [16] A family F of meromorphic functions on a domain D is
normal if and only if for each compact subset K ⊆ D, there exists a constant
M such that f ♯(z) ≤M for each f ∈ F and z ∈ K.

The well-known Zalcman’s lemma is a very important tool in the study of
normal families. It has also undergone various extensions and improvements.
The following is one up-to-date local version, which is due to Pang and Zalcman
[13](cf. [3], [4], [20], [21]).

Lemma 2.2. Let F be a family of analytic functions in the unit disc △ with the
property that for each f ∈ F , all zeros of f have multiplicity at least k. Suppose
that there exists a number A ≥ 1 such that |f (k)(z)| ≤ A whenever f ∈ F and
f(z) = 0. If F is not normal in ∆, then for 0 ≤ α ≤ k, there exists

1. a number r ∈ (0, 1);
2. a sequence of complex numbers zn, |zn| < r;
3. a sequence of functions fn ∈ F ;
4. a sequence of positive numbers ρn → 0,

such that gn(ζ) = ρ−α
n fn(zn + ρnζ) converges locally uniformly (with respect to

the spherical metric) to a non-constant entire function g(ζ) on C. Moreover,
the zeros of g(ζ) are of multiplicities at least k, g♯(ζ) ≤ g♯(0) = kA+ 1.
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The next result is due to Clunie and Hayman [5].

Lemma 2.3. A normal meromorphic function has order at most two. A normal
holomorphic function is of exponential type, and thus has order at most one.

Lemma 2.4. [11] Let R(z)( ̸≡ 0) and H(z)( ̸≡ 0) be two rational functions; let
Q(z) be a polynomial; and let F (z) be a transcendental meromorphic function
with finite order. If F (z) is a solution of the following differential equation

(2.1) F ′(z)−R(z)eQ(z)F (z) = H(z),

then Q(z) is a constant. In particular, if R(z) = 1
P (z) , where P (z) is a polyno-

mial, then R(z) is also a constant.

Lemma 2.5. [1] Let f be a meromorphic funtion on C with finitely many poles.
If f has bounded spherical derivative on C, then f is of order at most one.

Lemma 2.6. [7], [19] Let f(z) be a meromorphic function, and let a1(z), a2(z),
a3(z) be three distinct meromorphic functions satisfying T (r, ai) = S(r, f), (i =
1, 2, 3). Then

T (r, f) ≤ N

(
r,

1

f − a1

)
+N

(
r,

1

f − a2

)
+N

(
r,

1

f − a3

)
+ S(r, f).

3. Proof of Theorem 1.2

We assume R1 = Q1

Q2
, R2 = Q3

Q4
, here Qi(i = 1, 2, 3, 4) are polynomials. Let

P1 = Q1Q4, P2 = Q2Q3.
Since R1 ̸≡ 0 and deg(R1) = deg(R2), it is easy to see deg(P1) = deg(P2).

Now we consider the function F = f
R1
− 1. In the following, we will distinguish

two cases for discussion.

Case 1. F has a bounded spherical derivative.
Then by Lemma 2.5, F is of order at most one. Hence f = (F + 1)R1 is of

order at most one as well. Thus, the conclusion of Theorem 1.2 is revealed.

Case 2. F has unbounded spherical derivative.
Then there exists a sequence (wn)n such that lim

n→∞
F ♯(wn) =∞. Since F ♯ is

continuous, hence bounded in every compact set, we have wn →∞ as n→∞.
Since R1 is a rational function, there exists an r1 such that for all z ∈ C

satisfying |z| ≥ r1, we have

(3.1) 0←
∣∣∣∣R′

1(z)

R1(z)

∣∣∣∣ ≤ M1

|z|
< 1, R1(z) ̸= 0.

Let r > r1, and D = {z : |z| ≥ r}, then F is analytic in D. Without loss of
generality, we may assume |wn| ≥ r+ 1 for all n. We define D1 = {z : |z| < 1}
and

(3.2) Fn(z) = F (wn + z) =
f(wn + z)

R1(wn + z)
− 1.
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From (3.2), if F (wn + z) = 0, thus f(wn + z) = R1(wn + z). Noting that
f = R1 ⇒ f ′ = R1, then by (3.1), we obtain the following: if Fn(z) = 0 and n
is large enough, then
(3.3)

|F ′
n| =

∣∣∣∣∣
(

f(wn + z)

R1(wn + z)

)′
∣∣∣∣∣ ≤

∣∣∣∣ f ′(wn + z)

R1(wn + z)

∣∣∣∣+ ∣∣∣∣ f(wn + z)

R1(wn + z)

∣∣∣∣ ∣∣∣∣R′
1(wn + z)

R1(wn + z)

∣∣∣∣ ≤ 2.

Obviously, Fn(z) are analytic in D1 and F#
n (0) = F#(wn) → ∞ as n → ∞.

It follows from Marty’s criterion that (Fn)n is not normal at z = 0. In the
following we will obtain a contradiction by proving that (Fn)n is normal at
z = 0.

In view of (3.3), we can apply Lemma 2.2 with (α = k = 1 and A = 2).
Choosing an appropriate subsequence of (Fn)n if necessary, we may assume that
there exist sequences (zn)n and (ρn)n such that zn → 0 and ρn → 0, and that
the sequence (gn)n defined by

(3.4) gn(ζ) = ρ−1
n Fn(zn + ρnζ) = ρ−1

n

{
f(wn + zn + ρnζ)

R1(wn + zn + ρnζ)
− 1

}
→ g(ζ)

converges locally and uniformly in C, where g(ζ) is a nonconstant entire function
and g#(ζ) ≤ g#(0) = 3. By Lemma 2.3, the order of g(ζ) is at most 1.

Firstly, we claim that
g = 0⇒ g′ = 1.

Set Gn(ζ) =
f ′(wn+zn+ρnζ)
R1(wn+zn+ρnζ)

, then from (3.4) and R′(wn+zn+ρnζ)
R(wn+zn+ρnζ)

→ 0, we get

(3.5)

Gn(ζ) =
f ′(wn + zn + ρnζ)

R1(wn + zn + ρnζ)
= g′n(ζ)+

(ρngn(ζ) + 1)R′
1(wn + zn + ρnζ)

R1(wn + zn + ρnζ)
→ g′(ζ)

locally and uniformly in C.
Suppose that there exists a point ζ0 such that g(ζ0) = 0. Then by Hurwitz’s

Theorem, there exists ζn, ζn → ζ0 as n→∞, such that (for n sufficiently large)

gn(ζn) = ρ−1
n (Fn(zn + ρnζn)) = 0.

Thus Fn(zn + ρnζn) = 0 and f(wn + zn + ρnζn) = R1(wn + zn + ρnζn), by the
assumption we have

f ′(wn + zn + ρnζn)

R1(wn + zn + ρnζn)
= 1.

Then, by (3.5) we derive that

g′(ζ0) = lim
n→∞

f ′(wn + zn + ρnζn)

R1(wn + zn + ρnζn)
= 1.

Thus g(ζ) = 0⇒ g′(ζ) = 1. Then our claim holds.
Since deg(P1) = deg(P2), we assume P1 = a1z

n+a1,n−1z
n−1+ · · ·+a1,0 and

P2 = a2z
n + a2,n−1z

n−1 + · · ·+ a2,0. In the following, we will prove g′(ζ) ̸= a2

a1

on C.
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Suppose that there exists a point ζ0 such that g′(ζ0) = a2

a1
. If g′(ζ) ≡ a2

a1
,

then g(ζ) = a2

a1
ζ + c0, where c0 is a constant, which together with the fact g =

0→ g′ = 1 gives a2 = a1. This contradicts to the assumption limz→∞
R2(z)
R1(z)

̸= 1.

Thus g′(ζ) ̸≡ a2

a1
.

Since Gn(ζ) − R2(wn+zn+ρnζ)
R1(wn+zn+ρnζ)

→ g′(ζ) − a2

a1
as n → ∞ and g′(ζ0) = a2

a1
,

by Hurwitz’s theorem, there exists ζn, ζn → ζ0 as n → ∞, such that (for n
sufficiently large)
(3.6)

Gn(ζn)−
R2(wn + zn + ρnζn)

R1(wn + zn + ρnζn)
= 0⇒ f ′(wn+zn+ρnζn) = R2(wn+zn+ρnζn).

Since a1 ̸= a2 and ρn → 0, noting f ′ = R2 ⇒ f = R2, from (3.4), (3.6) we get

g(ζ0) = lim
n→∞

gn(ζn) = ρ−1
n

(
R2(wn + zn + ρnζn)

R1(wn + zn + ρnζn)
− 1

)
=∞,

which contradicts to g′(ζ0) =
a2

a1
. This shows that g′(ζ) ̸= a2

a1
on C.

Since g is of the order at most one, and so is g′, hence it follows that

(3.7) g′(ζ) =
a2
a1

+ ec1+c2ζ ,

where c1, c2 are finite constants. We divide it into two subcases as follows.

Subcase 2.1. If c2 = 0, from (3.7) we have

(3.8) g(ζ) =

(
a2
a1

+ ec1
)
ζ + c0,

where c0 is a constant. Since g = 0→ g′ = 1, from (3.8) we have a2

a1
+ ec1 = 1.

By a simple calculation we get g♯(0) ≤ 1
1+|c0|2 < 3, which is a contradiction.

Subcase 2.2. If c2 ̸= 0, by (3.7) we obtain

(3.9) g(ζ) =
a2
a1

ζ +
1

c2
ec1+c2ζ +B,

where B is a constant. Obviously, g(ζ) = 0 has infinitely many solutions.
Suppose that there exists a point ζ0 such that g(ζ0) = 0. Then by (3.7)(3.9)
and g = 0⇒ g′ = 1, we can get ζ0 = a2−a1−c2Ba1

c2a2
. This is also a contradiction.

These contradictions show that Case 2 cannot occur and hence the proof of
Theorem 1.2 is complete.

4. Proof of Theorem 1.1

By Theorem 1.2, we get f is of the order at most 1. Since f = R1 

f ′ = R1, we deduce that

(4.1) eα =
f ′ −R1

f −R1
.
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where α is an entire function. Noting σ(f) ≤ 1, from (4.1), we have σ(eα) ≤
σ(f) ≤ 1. Therefore we can set eα = C1e

C2z, where C1, C2 are two constants.
Let F = f −R1 and A = R1−R′

1, we see that A( ̸≡ 0) is a rational function and

F ′ −A = C1e
C2zF.

By Lemma 2.4, we deduce C2 = 0. Thus eα = λ, here λ is a constant. From
(4.1), we have

(4.2) f ′ = λf + (1− λ)R1.

If λ = 1, we have that f ≡ f ′, which is (i).
In the following, we assume that λ ̸= 1. Since f is an entire function, R1

is a rational function, from (4.2) it is easy to see that f and R1 are two entire
functions. So, R1 is a polynomial. From the integral of (4.2), we have

(4.3) f = Ceλz + h(z),

where C is a non-zero constant and h(z) is a polynomial. Thus, we have

(4.4) f ′ = Cλeλz + h′(z).

Substituting (4.3) and (4.4) into (4.2), we deduce that

(4.5) (λ− 1)R1 − (λh− h′) ≡ 0.

Next, we will prove that h′(z) ≡ R2(z). Suppose that h′(z) ̸≡ R2(z), then

(4.6) N

(
r,

1

f ′ −R2

)
= N

(
r,

1

Cλeλz + h′(z)−R2

)
.

Since f(z) is a transcendental entire function and h′(z) − R2(z) is a rational
function, we deduce T (r, h′(z) − R2(z)) = S(r, f). Moreover, it is well known
that 0 and ∞ are Picard values of eλz. Then by Lemma 2.6, we obtain

(4.7) T (r, Cλeλz) ≤ N

(
r,

1

Cλeλz + h′(z)−R2

)
+ S(r, f).

By the Nevanlinna First Fundamental Theorem, we immediately obtain

(4.8) N

(
r,

1

Cλeλz + h′(z)−R2

)
≤ T (r, Cλeλz) + S(r, f).

Combining with (4.7) and (4.8), we obtain

(4.9) N

(
r,

1

Cλeλz + h′(z)−R2

)
= T (r, Cλeλz) + S(r, f) ̸= S(r, f).

Suppose that z0 is a zero of f ′−R2, by the assumption we have f(z0) = R2(z0).
By putting z0 into (4.3) and (4.4) we have

(λ− 1)R2(z0) = λh(z0)− h′(z0).
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If (λ− 1)R2 − (λh− h′) ̸≡ 0, we have

N

(
r,

1

f ′ −R2

)
≤ N

(
r,

1

(λ− 1)R2 − (λh− h′)

)
= O(log r) = S(r, f),

which contradicts with (4.9). Hence,

(λ− 1)R2 − (λh− h′) ≡ 0.

Comparing it to (4.5), we have R1 = R2, which is a contradiction. Thus, we
obtain h′(z) = R2(z). Then, from (4.4) and (4.5), we have

f ′ = Cλeλz +R2(z),

and
(λ− 1)R′

1 = λR2 −R′
2,

which is (ii). Thus Theorem 1.1 is completely proved.
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