ON SOME GENERALIZED VALUATION MONOIDS

Tariq Shah¹, Waheed Ahmad Khan²

Abstract. The valuation monoids and pseudo-valuation monoids have been established through valuation domains and pseudo-valuation domains respectively. In this study we continue these lines to describe the almost valuation monoids, almost pseudo-valuation monoids and pseudoalmost valuation monoids. Further we also characterized the newly described monoids as the spirit of valuation monoids pseudo-valuation monoids.

AMS Mathematics Subject Classification (2010): 13A18, 12J20

 $Key\ words\ and\ phrases:$ Almost valuation monoid, pseudo almost valuation monoid, almost pseudo valuation monoid

1. Introduction and Preliminaries

Let R be an integral domain with quotient field K. A prime ideal P of R is called strongly prime if $xy \in P$, where $x, y \in K$, then $x \in P$ or $y \in P$ (alternatively P is strongly prime if and only if $x^{-1}P \subset P$ whenever $x \in K \setminus R$ [10, Definition, p.2]). A domain R is called a pseudo-valuation domain if every prime ideal of R is a strongly prime [10, Definition, p.2]. It was shown in Hedstrom and Houston [10, Theorem 1.5(3)], an integral domain R is a pseudovaluation domain if and only if for every nonzero $x \in K$, either $x \in R$ or $ax^{-1} \in R$ for every nonunit $a \in R$. Every valuation domain is a pseudovaluation domain [10, Proposition. 1.1] but converse is not true; for example, the valuation domain V of the form K + M, where K is a field and M is the maximal ideal of V. If F is a proper subfield of K, then R = F + M is a pseudo-valuation domain which is not a valuation domain. Further, R and Vhave the same quotient field L and M is the maximal ideal of R [9, Theorem A]. A quasi-local domain (R, M) is a pseudo-valuation domain if and only if $x^{-1}M \subset M$ whenever $x \in K \setminus R$ [10, Theorem. 1.4]. Also, a Noetherian pseudovaluation domain was discussed in [10]. A Noetherian domain R with quotient field K is a pseudo-valuation domain if and only if $x^{-1} \in R'$ whenever $x \in K \setminus R$, where R' is the integral closure of R in K [10, Theorem 3.1]. $\mathbb{Z}[\sqrt{5}]_{(2,1+\sqrt{5})}$ is a Noetherian pseudo-valuation domain which is not a valuation domain and is not in the form of D + M [10, Example 3.6].

It is already an established fact that there is a common structural behaviour between an integral domain R and the multiplicative monoid $R^* (= R - \{0\})$, for

 $^{^1 \}rm Department$ of Mathematics Quaid-i-Azam University, Islamabad-Pakistan, e-mail: stariqshah@gmail.com

 $^{^2 \}rm Department$ of Mathematics Quaid-i-Azam University, Islamabad-Pakistan, e-mail: sirwak2003@yahoo.com

example, an integral domain R is called a valuation domain if it is a valuation monoid [11, p.167]. By a valuation monoid H we mean that for all $a, b \in H$, either $a \mid_H b$ (a divides b in H) or $b \mid_H a$ (b divides a in H) (see [11, Definition 15.1]). Similarly, H is called a pseudo-valuation monoid if $x \in G \setminus H$ and $a \in$ $H \setminus H^{\times}$ (where H^{\times} is a set of invertible elements of H) implies $x^{-1}a \in H$ [11, Definition 16.7]. An integral domain R is called a pseudo valuation domain if it is pseudo-valuation monoid and vice visa. For the definitions and terminology one may consult [11].

At the present, there are numerious studies dealing with valuation domains, pseudo-valuation domains and their generalizations. For a complete survey on pseudo-valuation domain one can consult [3]. Ayman Badawi generalized pseudo-valuation domains in the perspective of arbitrary rings, for instance, a prime ideal P is strongly prime if aP and bP are compareable for all $a, b \in R$, and R is said to be a pseudo-valuation ring if each prime ideal of R is strongly prime [7]. One may consult [8], [4], [5] and [6] for studying the generalization of pseudo-valuation domain in the context of an arbitrary ring. However, a reasonably different type of monoids have been explored in [11].

In this study we introduced almost valuation monoids, almost pseudo-valuation monoids and pseudo-almost valuation monoids. We used different ideal systems to characterize these monoids on same lines as adopted for valuation monoids and pseudo valuation monids. We considered a (multiplicative) monoid, a cancellative commutative semigroup having identity and with adjoined zero. We represent the semigroup operation by ordinary multiplication. As in [11], a zero element 0 with the property that 0x = 0; yet xy = 0 implies x = 0 or y = 0. An excellent example of a multiplicative monoid is a multiplicative monoid of an integral domain.

2. Basic terminology

Here we give the already established terminology which will be helpful for understanding the work discussed in this note.

For a monoid H, H^* represents $H \setminus \{0\}$ and $a, b \in H$ are associates if $a \mid_H b$ and $b \mid_H a$. Associates of 1 in H are called units (invertible elements) and the set of units of H is denoted by H^{\times} . Furthermore, H is said to be reduced if $H^{\times} = \{1\}$. Thus H^{\times} is a subgroup of H and we can consider the quotient monoid H/H^{\times} which is obviously reduced and it is denoted by H_{red} . H is said to be a groupoid if H^* is a group (equivalently: every nonzero element of H is invertible, or $H^* = H^{\times}$). We have a quotient groupoid of a cancellative monoid H in the place of quotient field as in integral domain. By a quotient groupoid of H we mean a groupoid G(H) such that $H \subset G(H)$ is a submonoid and $G(H) = \{c^{-1}h : h \in H \text{ and } c \in H^*\}$.

As in the case of integral domains we can also define various ideal systems on a monoid H. This fact has been adequately discussed in [11]. We added definitions here for better understanding. For the properties of these ideal systems one may consult [11, Chapter 2]. An ideal system r of a monoid H is a map on P(H), the power set of H, defined as $X \mapsto X_r$ such that for all $X, Y \in P(H)$ and $c \in H$ the following conditions hold:

- (1) $X \cup \{0\} \subseteq X_r$,
- (2) $X \subseteq Y_r$ implies $X_r \subseteq Y_r$,
- (3) $cH \subseteq \{c\}_r$, and
- (4) $(cX)_r = cX_r$.

An ideal I is an r-ideal if $I = I_r$ and is r-finitely generated if $I = J_r$ for a finitely generated ideal J of H. From (1) we observe that for every r-system we have $H_r = H$ and from (3) we conclude that every principal ideal is an r-ideal. If I is an r-ideal and X is any subset of H, then the set $(I : X) = \{x \in H \mid xX \subseteq I\}$ is an r-ideal and $(I : X) = (I : X_r)$. An ideal system r on H is said to be finitary if for each $X \in P(H)$, $X_r = F_r$, where F ranges over the finite subsets of X. The s-ideal system is the map on P(H) such that for $X \subset H$, we define, $X_s = \{0\}$ when $X = \emptyset$ and XH when $X \neq \emptyset$. Also, a d-ideal system is given by $X \mapsto X_d = X$.

3. Almost Valuation Monoid

By [1], an integral domain D is said to be an almost valuation domain if for every $0 \neq x \in K$, there is a positive integer n such that either $x^n \in D$ or $x^{-n} \in D$. We first define an almost valuation monoid because it will be needed while discussing the pseudo-almost valuation monoid. After defining an almost valuation monoid we made its relation with pseudo-almost valuation monoid. By the motivation of definition of an almost pseudo-valuation domain we give the following definition.

Definition 1. A cancellative monoid H with quotient groupoid G(H) is said to be an almost valuation monoid if for any $x \in G(H)$ there exists a positive integer n such that either $x^n \in H$ or $x^{-n} \in H$. Equivalently, for each pair $a, b \in H$, there is a positive integer n = n(a, b) such that $a^n | b^n$ or $b^n | a^n$.

The following proposition characterizes the definition of an almost valuation monoid.

Proposition 1. For a monoid H, the following assertions are equivalent.

- (1) H is an almost valuation monoid.
- (2) For all $x \in G(H) \setminus \{0\}$, we have $x^n \in H$ or $x^{-n} \in H$.

Proof. (1) \Longrightarrow (2) Suppose that $x = a^{-1}b$, where $a, b \in H \setminus \{0\}$ and $\{a^n, b^n\}_s = a^n H \cup b^n H = d^n H$, $n \in \mathbb{Z}^+$ and $d \in H$. This implies that $d^n \mid a^n, d^n \mid b^n$ and either $a^n \mid d^n$ or $b^n \mid d^n$. Thus we have either $a^n \mid b^n$ that is $x^n \in H$ or $b^n \mid a^n$ that is $x^{-n} \in H$.

 $(2) \Longrightarrow (1)$ It follows from the definition of an almost valuation monoid. \Box

Proposition 2. A monoid H with quotient groupoid G(H) is an almost valuation monoid if and only if for each $x \in G(H)$, there exist $n \in \mathbb{Z}^+$ such that $x^n H \subset H$ or $H \subset x^n H$.

Proof. If H is an almost valuation monoid, then clearly for each $x \in G(H)$ either $x^n \in H$ or $x^{-n} \in H$ for $n \in \mathbb{Z}^+$. If $x^n \in H$, then $x^n H \subset H$ and if $x^{-n} \in H$, then $x^{-n} H \subset H$. Conversely, for any $x \in G(H)$, let $x^n H \subset H$, that is $x^n \in H$. If $H \subset x^n H$, then this implies $x^{-n} H \subset H$ and hence $x^{-n} \in H$. \Box

4. Almost pseudo-valuation monoid

We begin by defining an almost pseudo valuation monoid but pseudo-valuation monoid has already been established in [11, Definition 16.7]. First we recall [11, Definition 16.8] that "an r-ideal $P \in I_r(H)$ is primary or a primary r-ideal if $P \neq H$, and $a, b \in H$, $ab \in P$ implies $a \in P$ or $b \in rad(P)$ ".

Definition 2. (a) Let G(H) be a quotient monoid of H then r-ideal $P \in I_r(H)$ is strongly primary r-ideal if $a, b \in G(H)$ such that $ab \in P$ implies $a \in P$ or $b \in rad(P)$.

(b) If H is a monoid and G(H) its quotient groupoid, then H is an almost pseudo-valuation monoid if every r-prime ideal P of H is strongly r-primary, that is, P satisfies the property; $x, y \in G(H)$ such that $xy \in P$ and if $x \notin P$ implies some power of y belongs to P.

Recall that an r-ideal $M \in I_r(H)$ is called r-maximal if $M \neq H$ and there is no r-ideal J such that $M \subseteq J \subseteq H$ [11, Definition 6.4] and a monoid H is called r-local, if H possesses exactly one r-maximal r-ideal [11, Definition 6.5].

As an ad-hoc notation we say that a monoid H is r-quasi r-local if it is not r-Noetherian but possesses exactly one r-maximal r-ideal.

The following theorem extends [11, Theorem 16.7] for almost pseudo-valuation monoid.

Theorem 1. Let r be a finitary ideal system on H and $M = H \setminus H^{\times}$, then the following statements are equivalent:

(1) H is an almost pseudo-valuation monoid.

(2) If $P \in r - spec(H)$ and $x, y \in G(H)$, then $xy \in P$ implies $x \in P$ or $y^n \in P$.

(3) For all $P \in r - spec(H)$ and $x \in G(H) \setminus H$, we have $x^{-n} \in (P : P)$.

(4) H is r-local and or all $x \in G(H) \setminus H$, we have $x^{-n} \in (M:M)$.

(5) H is r-local and (M:M) is a valuation monoid with maximal primary s-ideal M.

(6) H is r-local and there exists a valuation monoid V for H such that \sqrt{M} is maximal s-ideal of V.

Proof. (1) \Rightarrow (2) Suppose $P \in r - spec(H)$, and $x, y \in G(H)$ and $xy \in P$. If both x and y lie in H, we are done since P is prime. We may assume that $y = x^{-n}(x^n y) \notin H$ and hence $x^n \notin H^{\times}$. Since $xy \notin H$ our assumption implies $x^{n-1} = y^{-1}(x^{n-1}y) \in H$, and since $x^{-(n-1)} \notin H$, it also implies that $y^{-1}x^{n-1} \in H$. Consequently, $x^n = (xy)(y^{-1}x^{n-1}) \in P$, and hence $x^n \in P$.

 $(2) \Rightarrow (3)$ Let $P \in r - spec(H)$ and $x \in G(H) \setminus H$ be given. If $p \in P$, then $p = (px^{-n})x^n \in P$ implies $px^{-n} \in P$. Consequently, $x^{-n}P \in P$, and therefore $x^{-n} \in (P : P)$.

On some generalized valuation monoids

(3) \Rightarrow (4) We must prove that $P \subset \sqrt{Q}$ for all $P \in r - spec(H)$ and $Q \in r - \max(H)$. Let $P \neq Q$ and fix some element $q \in Q \setminus P$, if $p \in P$ then $p^{-n}q \notin H$ implies $p^n q^{-1}Q \subset \sqrt{Q}$ and hence $p^n = (p^n q^{-1})q \in \sqrt{Q}$.

(4) \Rightarrow (5) If $x \in G(H) \setminus (M : M) \subset G \setminus H$, then $x^{-n} \in (M : M)$, and therefore (M : M) is a valuation monoid. Since $M(M : M) \subset M$, M is an s-ideal of (M : M). If $x \in (M : M) \setminus (M : M)^{\times}$ then $x^{-n} \notin (M : M)$ implies $x^n \in H$, and since $x \notin H^{\times}$, we obtain $x^n \in M$. Therefore M is the maximal primary s-ideal of (M : M).

 $(5) \Rightarrow (6)$ It is very clear.

(6) \Rightarrow (1) If $x \in G(H) \setminus H$ and $a^n \in H \setminus H^{\times} = M$, then $x^{-1} \in V$, and consequently $x^{-1}a^n \in M \subset H$.

5. Pseudo-almost valuation monoid

In this section we introduced some terminology, mainly as a part the motivations from a pseudo-almost valuation domain. Further, we also characterizes pseudo-almost valuation monoids.

Definition 3. (a) An r-prime ideal P of H is said to be a pseudo-strongly r-prime ideal if, whenever $x, y \in G$ (quotient groupoid of H) and $xyP \subseteq P$, then there is a positive integer $m \geq 1$ such that either $x^m \in H$ or $y^mP \subseteq P$.

(b) If each prime ideal of a monoid H is a pseudo-strongly r-prime ideal, then H is called a pseudo-almost valuation domain.

Like a pseudo-almost valuation domain as in [2, Theorem 2.8] we can also define a pseudo-almost valuation monoid as follows.

Definition 4. A monoid H is said to be pseudo-almost valuation monoid if and only if for every nonzero $x \in G(H)$, there is a positive integer $n \ge 1$ such that either $x^n \in H$ or $ax^{-n} \in H$ for every nonunit $a \in H$.

Proposition 3. If H is a pseudo-almost valuation monoid, then for every pseudo-strongly r-prime ideal P of H, H' = (P : P) is an almost valuation monoid for every r-prime ideal P of H.

Proof. Let H' = (P : P) and G(H') be the quotient monoid of H' and $x \in G(H') \setminus H'$ such that $x^n \notin H'$ Hence $x^n \notin H$. Since P is a pseudo-strongly r-prime ideal there is an $n \ge 1$ such that $x^{-n}P \subseteq P$. Hence $x^{-n} \in H'$. Thus H' is an almost valuation domain.

Proposition 4. Every almost valuation monoid is a pseudo-almost valuation monoid.

Proof. Let H be an almost valuation monoid and G(H) be a quotient groupoid of a monoid H then for all $x \in G$ either $x^n \in H$ or $x^{-n} \in H$. If $x^n \in H$ then we are done otherwise $x^{-n} \in H$, let $a \in H$ be a nonunit of H, then $ax^{-n} \in H$ as H is a monoid.

References

- Anderson, D. D., Zafrullah, M., Almost Bezout domains. J. Algebra 142 (1991), 285-309.
- [2] Badawi, A., On Pseudo-Almost Valuation Domains. Comm. Algebra, 35 (2007), 1167-1181.
- [3] Badawi, A., Pseudo-Valuation Domains: A Survey. Proceedings of the third Palestinian International Conference on Mathematics, pp. 38-59, New York/London: Word Scientific Publishing Co., 2002.
- [4] Badawi, A., On φ-pseudo-valuation rings. Advances in commutative ring theory. Lecture Notes on Pure Appl. Math. Vol. 205, pp.101-110, New York/Basel: Marcel Dekker, 2002.
- [5] Badawi, A., On φ-chained rings and pseudo-valuation rings. Houstan J. Math. 27(2001), 725-736.
- [6] Badawi, A., On φ-pseudo-valuation rings II. Houstan J. Math. 26(2000), 473-480.
- [7] Badawi, A., Anderson, D. F. and Dobbs, D. E., Pseudo-valuation rings. Lecture notes Pure Appl. Math. Vol. 185, pp. 57-67, New york/Basel: Marcel Dekker, 1997.
- [8] Badawi, A., Anderson, D. F., Dobbs, D. E., Pseudo-valuation rings II. Boll. Un. Mat. Ital. B(8) 3 (2000), 535-545.
- [9] Gilmer, R., Multiplicative Ideal Theory, Queens Papers on Pure and Applied Mathematics, No. 12, Kingston, Ontario: Queens University Press, 1968.
- [10] Hedstrom, J. R., Houston, E. G., Pseudo-valuation domains. Pacific journal of Mathematics, Vol. 75 No. 1 (1978).
- [11] Halter-Koch, Franz., Ideal Systems, An introduction to multiplicative ideal systems. Karl Franzens University Graz, Austria: Marcel Dekker, INC., 1998.

Received by the editors January 5, 2010

116