MULTIPLICATION AND COMULTIPLICATION MODULES

H. Ansari-Toroghy ${ }^{1}$, F. Farshadifar ${ }^{2}$

Abstract

This paper deals with some results concerning multiplication and comultiplication modules over a commutative ring.

AMS Mathematics Subject Classification (2010): 13C13, 13C99
Key words and phrases: Multiplication and comultiplication modules

1. Introduction

Throughout this paper, R denotes a commutative ring with identity.
Let M be an R-module. M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$. Equivalently, M is a multiplication module if and only if for each submodule N of M, we have $N=\left(N:_{R} M\right) M[8]$.

The dual notion of multiplication modules was introduced by H. AnsariToroghy and F. Farshadifar in [1] and some properties of this class of modules have been considered. M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)$. Also, it is shown $[1,3.7]$ that M is a comultiplication module if and only if for each submodule N of M, we have $N=\left(0:_{M} A n n_{R}(N)\right)$. More information about this class of modules can be found in [2], [3], [4], and [5].

A proper submodule N of M is said to be prime if for each $a \in R$, the homomorphism $M / N \xrightarrow{a} M / N$ is either injective or zero. M is said to be a prime module if the zero submodule of M is prime [7].

A non-zero submodule N of M is said to be second if for each $a \in R$, the homomorphism $N \xrightarrow{a} N$ is either surjective or zero [11].

A submodule N of M is said to be copure if $\left(N:_{M} I\right)=N+\left(0:_{M} I\right)$ for every ideal I of $R[6]$.
M is said to be co-Hopfian if every injective endomorphism f of M is an isomorphism [10].
M is said to be a domain if $Z d(M)=0$, where $Z d(M)$ is the set of all zero divisors of $M[3]$.

[^0]
2. Main results

Theorem 2.1. Let M be an R-module. Then we have the following.
(a) If M is a multiplication module, then for each endomorphism f of M, we have $\operatorname{Ker}(f)=\left(0:_{M} \operatorname{Ann}_{R}(M / \operatorname{Im}(f))\right)$.
(b) If M is a comultiplication module, then for each endomorphism f of M, we have $\operatorname{Im}(f)=A n n_{R}(\operatorname{Ker}(f)) M$.
(c) If M is a multiplication module such that $A n n_{R}(M)$ is a prime ideal of R, then M is a prime module.
(d) If M is a comultiplication module such that $A n n_{R}(M)$ is a prime ideal of R, then M is a second module.
(e) If M is a comultiplication module, N is a minimal submodule of M and X and Y are submodules of M with $X \cap N=Y \cap N=0$, then $N \cap(X+Y)=0$.

Proof. (a) Since M is a multiplication module, $\operatorname{Im}(f)=\left(\operatorname{Im}(f):_{R} M\right) M$. Thus $M /(\operatorname{Ker}(f)) \cong\left(\operatorname{Im}(f):_{R} M\right) M$. Now since

$$
A n n_{R}\left(\left(\operatorname{Im}(f):_{R} M\right) M\right)=A n n_{R}\left(M /\left(0:_{M}\left(\operatorname{Im}(f):_{R} M\right)\right)\right)
$$

we have

$$
\operatorname{Ann}_{R}(M / \operatorname{Ker}(f))=\operatorname{Ann}_{R}\left(M /\left(0:_{M}\left(\operatorname{Im}(f):_{R} M\right)\right)\right)
$$

Hence $\operatorname{Ker}(f)=\left(0:_{M} A n n_{R}(M / \operatorname{Im}(f))\right.$ because M is a multiplication module.
(b) Since M is a comultiplication module, $\operatorname{Ker}(f)=\left(0:_{M} A n n_{R}(\operatorname{Ker}(f))\right.$. Thus $M /\left(0:_{M} A n n_{R}(\operatorname{Ker}(f)) \cong \operatorname{Im}(f)\right.$. Now since

$$
A n n_{R}\left(M /\left(0:_{M} A n n_{R}(\operatorname{Ker}(f))\right)=A n n_{R}\left(A n n_{R}(\operatorname{Ker}(f)) M\right)\right.
$$

we have

$$
A n n_{R}(\operatorname{Im}(f))=A n n_{R}\left(A n n_{R}(\operatorname{Ker}(f)) M\right)
$$

Hence $\operatorname{Im}(f)=A n n_{R}(\operatorname{Ker}(f)) M$ because M is a comultiplication module.
(c) Let $r \in R$. Consider the homomorphism $f_{r}: M \rightarrow M$ given by $f_{r}(m)=$ $r m$ for all $m \in M$. Since M is a multiplication module, there exists an ideal I of R such that $\operatorname{Ker}(f)=I M$. Thus $M / I M \cong r M$. Hence $r I \subseteq A n n_{R}(M)$. Since $A n n_{R}(M)$ is prime, $r M=0$ or $I M=0$ as required.
(d) Let $r \in R$. Consider the homomorphism $f_{r}: M \rightarrow M$ given by $f_{r}(m)=$ $r m$ for all $m \in M$. Since M is a comultiplication module, there exists an ideal I of R such that $r M=\left(0:_{M} I\right)$. Thus $r I \subseteq A n n_{R}(M)$. Since $A n n_{R}(M)$ is prime, $r M=0$ or $M=\left(0:_{M} I\right)$ as desired.
(e) Let N be a minimal submodule of M and let X, Y be two submodules of M such that $N \cap Y=N \cap X=0$. Since M is a comultiplication module, $X=$ $\left(0:_{M} A n n_{R}(X)\right)$ and $Y=\left(0:_{M} A n n_{R}(Y)\right)$. Now $\left(0:_{M} A n n_{R}(X) A n n_{R}(Y)\right) \cap$
$N=N$ or $\left(0:_{M} A n n_{R}(X) A n n_{R}(Y)\right) \cap N=0$ because N is a minimal submodule of M. In the first case, we have

$$
N=\left(0:_{N} A n n_{R}(X) A n n_{R}(Y)\right)=\left(N \cap X:_{N} A n n_{R}(Y)\right)=N \cap Y=0
$$

which is a contradiction. In the second case, $N \cap\left(0:_{M} A n n_{R}(X) A n n_{R}(Y)\right)=0$ implies that $N \cap(X+Y)=0$ because

$$
\left(0:_{M} A n n_{R}(X) A n n_{R}(Y)\right) \supseteq\left(0:_{M} A n n_{R}(X) \cap A n n_{R}(Y)\right)=X+Y .
$$

Proposition 2.2. Let M be an R-module. Then the following hold.
(a) If for every non-zero submodule N of M, we have that M / N is a multiplication module and $\left(N:_{R} M\right) \neq A n n_{R}(M)$, then M is a multiplication module.
(b) If every proper submodule N of M is a comultiplication module and $A n n_{R}(N) \neq A n n_{R}(M)$, then M is a comultiplication module.
(c) If R is a principal ideal ring and M is a domain such that every submodule of M is a multiplication R-module, then every homomorphic image Q of $M(Q \neq M)$ is a comultiplication $R / A n n_{R}(Q)$-module.

Proof. (a) Let N be a non-zero submodule of M. Set $I=\left(N:_{R} M\right)$. If $I M=0$, then $I=A n n_{R}(M)$, which is a contradiction. Hence $I M \neq 0$. Thus, by the assumption,

$$
N / I M=\left(N / I M:_{R} M / I M\right)(M / I M)=0
$$

as required.
(b) Let N be a proper submodule of M. If $\left(0:_{M} A n n_{R}(N)\right)=M$, then $A n n_{R}(N)=A n n_{R}(M)$, which is a contradiction. Hence $\left(0:_{M} A n n_{R}(N)\right) \neq M$. Thus by assumption,

$$
N=\left(0:_{\left(0:_{M} A n n_{R}(N)\right)} A n n_{R}(N)\right)=\left(0:_{M} A n n_{R}(N)\right)
$$

as desired.
(c) Let K be a submodule of M and let N / K be a submodule of M / K. Suppose that $(x+K) A n n_{R}(N / K)=0$. Then $x A n n_{R}(N / K) \subseteq K$. By assumption, N is a multiplication R-module. Thus $x A n n_{R}(N / K) \subseteq A n n_{R}(N / K) N$. It follows that $x \in N$ because $A n n_{R}(N / K)$ is a principal ideal and M is a domain. Therefore, $\left(0:_{M / K} A n n_{R}(N / K)\right) \subseteq N / K$. Clearly, $N / K \subseteq\left(0:_{M / K}\right.$ $\left.A n n_{R}(N / K)\right)$ and the proof is completed.

Example 2.3. Let R be a principal ideal domain and I a non-zero ideal of R. Then by Proposition 2.2 (c), R / I is a quasi-Frobenius ring [9, Exercise. 24.1].

Remark 2.4. It is well known that if M is a finitely generated multiplication R-module and I, J are ideals of R such that $I M \subseteq J M$, then $I \subseteq J+A n n_{R}(M)$. But the dual of this fact is not true in general. For example, the \mathbb{Z}-module (here \mathbb{Z} denotes the ring of integers) $\mathbb{Z}_{p^{\infty}}$ is a faithful Artinian comultiplication \mathbb{Z} module such that $\left(0: \mathbb{Z}_{p} \infty q \mathbb{Z}\right)=\left(0: \mathbb{Z}_{p} \infty \mathbb{Z}\right)$ for each prime number $q \neq p$, while $q \mathbb{Z} \neq \mathbb{Z}$. Next proposition shows that this is true for comultiplication modules under some restrictive conditions.

Proposition 2.5. Let M be a comultiplication R-module and $\left(0:_{M} I\right) \subseteq\left(0:_{M}\right.$ $J)$ for some ideals I and J of R. Then we have the following.
(a) $J \subseteq I$ if there exists a finitely generated multiplication submodule N of M such that $A n n_{R}(N) \subseteq I$.
(b) $J \subseteq I$ if $I \in \operatorname{Supp}_{R}(M)$.

Proof. (a) Let N be a finitely generated multiplication submodule of M. We have $\left(0:_{M} I\right) \subseteq\left(0:_{M} J\right)$ implying that $\left(0:_{N} I\right) \subseteq\left(0:_{N} J\right)$. By [1, 3.17], N is a comultiplication R-module. Therefore, $J N \subseteq I N$. Since N is a finitely generated multiplication module, $J \subseteq I+A n n_{R}(N)=I$ by [8, Theorem 9].
(b) Let $I \in \operatorname{Supp}_{R}(M)$. Then there exists $m \in M$ such that $A n n_{R}(R m) \subseteq I$. Now the result follows from part (a) and the proof is completed.

Recall that an ideal I of R is a pure ideal if $I J=I \cap J$ for each ideal J of R.

Proposition 2.6. Let M be an R-module. Then we have the following.
(a) If R is a Noetherian ring, I is a pure ideal of R, and N is a copure submodule of M, then $\left(N:_{M} I\right)$ is a copure submodule of M.
(b) If M is a multiplication R-module such that for each endomorphism f of M we have $\operatorname{Im}(f)$ is a copure submodule of M, then M is co-Hopfian.

Proof. (a) Let J be an ideal of R. We show that

$$
\left(\left(N:_{M} I\right):_{M} J\right)=\left(N:_{M} I\right)+\left(0:_{M} J\right) .
$$

Since R is a Noetherian ring, it is enough to show this locally. Thus we may assume that R is a local ring. Since I is a pure ideal of R, we have $I=0$ or $I=R$. If $I=0$, then both sides of the equality is M. If $I=R$, then the copurity of N implies that

$$
\left(\left(N:_{M} I\right):_{M} J\right)=\left(N:_{M} J\right)=N+\left(0:_{M} J\right)=\left(N:_{M} I\right)+\left(0:_{M} J\right) .
$$

(b) Let f be an endomorphism of M. Then $\operatorname{Im}(f)$ is a copure submodule of M. Set $I=A n n_{R}(M / \operatorname{Im}(f))$. Then by Theorem $2.1(\mathrm{a}), \operatorname{Ker}(f)=\left(0:_{M} I\right)$. Thus

$$
\begin{gathered}
M / \operatorname{Im}(f)=\left(0:_{M / \operatorname{Im}(f)} I\right)=\left(\operatorname{Im}(f):_{M} I\right) / \operatorname{Im}(f)= \\
\left(\operatorname{Im}(f)+\left(0:_{M} I\right)\right) / \operatorname{Im}(f)=(\operatorname{Im}(f)+\operatorname{Ker}(f)) / \operatorname{Im}(f) .
\end{gathered}
$$

It follows that M is co-Hopfian.

Theorem 2.7. Let M be a comultiplication R-module. Then the following hold.
(a) If M is a finitely generated faithful R-module and N is a direct summand of M, then $A n n_{R}(N)$ is a direct summand of R.
(b) If N is a copure submodule of M such that M / N is a finitely generated R-module, then N is a direct summand of M.

Proof. (a) Let K be a submodule of M such that $M=N \oplus K$. This implies that $A n n_{R}(N) \cap A n n_{R}(K)=0$. Since $N \cap K=0$,

$$
\left(0:_{M} A n n_{R}(N)+A n n_{R}(K)\right)=0 .
$$

Thus by [4, 3.4], $A n n_{R}(N)+A n n_{R}(K)=R$, as required.
(b) Since $A n n_{R}(N) A n n_{R}(M / N) \subseteq A n n_{R}(M)$ and M is comultiplication,

$$
M=\left(0:_{M} A n n_{R}(N) A n n_{R}(M / N)\right)=\left(N:_{M} A n n_{R}(M / N)\right) .
$$

As N is copure, it follows that

$$
M=N+\left(0:_{M} A n n_{R}(M / N)\right)
$$

Now we show that this sum is direct. Since M is a comultiplication module and N is a copure submodule of M,

$$
\begin{gathered}
M=\left(A n n_{R}(N) M:_{M} A n n_{R}(N)\right)=\left(\left(0:_{M} A n n_{R}\left(A n n_{R}(N) M\right)\right):_{M} A n n_{R}(N)\right) \\
=\left(N:_{M} A n n_{R}\left(A n n_{R}(N) M\right)\right)=N+\left(0:_{M} A n n_{R}\left(A n n_{R}(N) M\right)\right. \\
=N+A n n_{R}(N) M .
\end{gathered}
$$

Hence $A n n_{R}(N)(M / N)=M / N$. Since M / N is finitely generated,

$$
A n n_{R}(N)+A n n_{R}(M / N)=R
$$

by Nakayama Lemma. Therefore, $N \cap\left(0:_{M} A n n_{R}(M / N)\right)=0$, as desired.

References

[1] Ansari-Toroghy, H., Farshadifar, F., The dual notion of multiplication modules. Taiwanese J. Math. 11 (4) (2007), 1189-1201.
[2] Ansari-Toroghy, H., Farshadifar, F., On endomorphisms of multiplication and comultiplication modules. Arch. Math. (Brno) 44 (2008), 9-15.
[3] Ansari-Toroghy, H., Farshadifar, F., Comultiplication modules and related results. Honam Math. J. 30 (1) (2008), 91-99.
[4] Ansari-Toroghy, H., Farshadifar, F., On comultiplication modules. Korean Ann. Math. 25 (2) (2008), 57-66.
[5] Ansari-Toroghy, H., Farshadifar, F., On multiplication and comultiplication modules. Acta Math. Sci. 31B (2) (2011), 694-700.
[6] Ansari-Toroghy, H., Farshadifar, F., Strong comultiplication modules. CMU. J. Nat. Sci. 8 (1) (2009), 105-113.
[7] Dauns, J., Prime submodules. J. Reine Angew. Math. 298 (1978), 156-181.
[8] El-Bast, Z.A., Smith, P.F., Multiplication modules. Comm. Algebra 16 (1988), 755-779.
[9] Faith, C., Algebra II: Ring theory. New York-Heidelberg-Berlin: Springer-Verlag, 1976.
[10] Lam, T.Y., Lectures on Modules and Rings, Graduate texts in Math. New York-Heidelberg-Berlin: Springer-Verlag, 1999.
[11] Yassemi, S., The dual notion of prime submodules, Arch. Math (Brno) 37 (2001), 273-278.

Received by the editors February 22, 2010

[^0]: ${ }^{1}$ Department of Mathematics, Faculty of Science, University of Guilan, P. O. Box 1914, Rasht, Iran e-mail: ansari@guilan.ac.ir
 ${ }^{2}$ Department of Mathematics, Faculty of Science, University of Guilan, P. O. Box 1914, Rasht, Iran, e-mail: farshadifar@guilan.ac.ir

