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UNSTEADY MAGNETOHYDRODYNAMIC FLOW OF
A DUSTY FLUID BETWEEN TWO OSCILLATING

PLATES UNDER VARYING CONSTANT PRESSURE
GRADIENT
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Abstract. In this paper we have studied the unsteady flow of an
electrically conducting viscous, incompressible dusty fluid flowing between
two oscillating plates. The fluid is acted upon by a constant magnetic field
perpendicular to the plates. Exact velocities of fluid and dust particles are
derived by using differential geometry techniques and Laplace transforms.
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1. Introduction

The phenomenon of the flow of dusty fluids has been studied by a number
of researchers. The flow of a dusty and electrically conducting fluid through the
channels in the presence of a transverse magnetic field is encountered in a va-
riety of applications such as magnetohydrodynamic (MHD) generators, pumps,
accelators and flowmeters. In these devices the solid particles in the form of
ash or soot are suspended in the conducting fluid as a result of corrosion and
wear activities and or combustion process in the MHD generators and plasma
MHD accelators. The consequent effect of the presence of solid particles on the
performance of such devices has led to the studies of particulate suspensions in
a conducting fluid in the presence of externally applied magnetic field.

P.G Saffman [10] has discussed the stability of the laminar flow of a dusty
gas in which the dust particles are uniformly distributed. Liu. [7] has studied
the flow induced by an oscillating infinite flat plate in a dusty gas. Michael
and Miller [8] investigated the motion of dusty gas with uniform distribution of
the dust particles placed in the semi–infinite space above a rigid plane bound-
ary. Later, Samba Siva Rao [11] has obtained the analytical solutions for the
dusty fluid flow through a circular tube under the influence of constant pressure
gradient, using appropriate boundary conditions.

To investigate the kinematical properties of fluid flows in the field of fluid
mechanics some researchers like Kanwal [6], Truesdell [13], Indrasena [5], Pu-
rushotham [9]. Bagewadi, Shantharajappa and Gireesha [1, 2, 3] have applied
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differential geometry techniques. In this paper we study the flow of an unsteady
viscous, incompressible dusty fluid bounded by two oscillating plates. A uniform
magnetic field of small magnetic Reynolds number is applied perpendicular to
the plates, and a constant pressure gradient is applied to the fluid.

2. Equations of Motion

The equations of motion of an unsteady viscous incompressible fluid with
uniform distribution of dust particles are given as:

For fluid phase

∇.u⃗ = 0 (continuity)(1)

∂u⃗

∂t
+ (u⃗.∇) u⃗ = −ρ−1∇p+ ν∇2u⃗+

kN

ρ
(v⃗ − u⃗)− σB2

0

ρ
u⃗(2)

(Linear Momentum Equation)

For dust phase

∇.v⃗ = 0 (continuity)(3)

∂v⃗

∂t
+ (v⃗.∇) v⃗ =

k

m
(u⃗− v⃗) (Linear Momentum Equation)(4)

where u⃗, v⃗, ρ,N and ν are velocity of the fluid, velocity of the dust particle,
density of the gas, number of density of dust particles and kinematic viscosity,
k = 6πaµ is the Stoke’s resistance (drag coefficient), where a is a spherical
radius of dust particle and µ is the coefficient of viscosity of fluid particles,
σ and B0 respectively denote the electrical conductivity of the fluid and the
magnetic field, p is the pressure of the fluid and t is the time.

Let s⃗, n⃗, b⃗ be orthogonal triad of unit tangent, principal normal and bi-
normal vectors respectively for a space curve formed by the fluid phase velocity
and dust phase velocity lines respectively. By using the Frenet formulae [4]

(5)

(i)
∂s⃗

∂s
= ksn⃗,

∂n⃗

∂s
= τs⃗b− kss⃗,

∂b⃗

∂s
= −τsn⃗

(ii)
∂n⃗

∂n
= k′ns⃗,

∂b⃗

∂n
= −σ′

ns⃗,
∂s⃗

∂n
= σ′

nb⃗− k′nn⃗

(iii)
∂b⃗

∂b
= k′′b s⃗,

∂n⃗

∂b
= −σ′′

b s⃗,
∂s⃗

∂b
= σ′′

b n⃗− k′′b b⃗

(iv) ∇.s⃗ = θns + θbs : ∇.n⃗ = θbn − ks : ∇.⃗b = θnb

where ∂
∂s ,

∂
∂n and ∂

∂b are the intrinsic differential operators of fluid phase velocity
(or dust phase velocity) lines along tangential, principal normal and binormal,
respectively. The functions (ks, k′n, k′′b ) and (τs, σ

′
n, σ

′′
b ) are the curvatures

and torsions of the above curves and θns and θbs are normal deformations of
these spatial curves along their principal normal and binormal respectively.
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3. Formulation and Solution of the Problem

Let the viscous, incompressible, dusty fluid be bounded between two oscil-
lating plates. The flow is due to the influence of oscillation of the plates and
the constant pressure gradient. Both the fluid and dust particles are supposed
to be static at the beginning. The dust particles are assumed to be spherical
in shape and uniform in size. The number density of the dust particles is taken
as a constant throughout the flow. A uniform magnetic field is applied perpen-
dicular to the plates. The magnetic Reynolds number is assumed very small,
so that the induced magnetic field is neglected. Under these assumptions the
flow will be a parallel flow in which the streamlines are along the tangential
direction and the velocities vary along the binormal direction with time t, since
we have extended the fluid to infinity in the principal normal direction and we
have assumed a constant pressure gradient. We can write

−1

ρ

∂p

∂s
= a0

where a0 is a constant.
By virtue of the system of equations (5) the continuity and linear momentum

equations for the fluid phase and dust particle phase become,

(6)
∂us

∂t
= ν

[
∂2us

∂b2
− Crus

]
+

kN

ρ
(vs − us) + a0 −

σB 2
0

ρ
us

(7) 2u 2
sks = ν

[
2σ′′

b

∂us

∂b
− usk

2
s

]

(8) 0 = ν

[
usksτs − 2k′′b

∂us

∂b

]

(9)
∂vs
∂t

=
k

m
(us − vs)

(10) 2v 2
sks = 0

where
(
Cr = σ′

n
2
+ k′b

2
+ k′′b

2
+ σ′′

b
2
)
is called the curvature number [3].

From equation (10), we see that v 2
sks = 0, which implies either vs = 0 or

ks = 0. The choice vs = 0 is impossible, since if it happens then us= 0, which
shows that the flow does not exist. Hence ks = 0, it suggests that the curvature
of the streamline along the tangential direction is zero. Thus, no radial flow
exists.

Equations (6) and (9) are to be solved subject to the initial and boundary
conditions:

(11)

{
Initial condition: at t = 0 : us = 0, vs = 0
Boundary condition: for t > 0 : us = u0 sin t, at b = 0 and b = h

}
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We define the Laplace transformations of us and vs as

(12) U =

∫ ∞

0

e−st.us dt and V =

∫ ∞

0

e−st.vs dt

Applying the Laplace transform to equations (6), (9) and to the boundary
conditions, then by using the initial conditions, we have

(13) sU = ν

[
∂2U

∂b2
− CrU

]
+

l

τ
(V − U) +

a0
s

− σB 2
0

ρ
U

(14) sV =
1

τ
(U− V )

(15) U =
u0

(1 + s2)
at b = 0 and b = h

where l = mN
ρ and τ = m

k . Equation (14) implies

(16) V =
U

(1 + sτ)

Eliminating V from (13) and (16) we obtain the following equation

(17)
d2U

db2
−Q2U = −a0

sν

where Q2 =
(
Cr +

s
ν + sl

ν(1+sτ) +M
)
and M =

σB 2
0

µ .

The velocities of fluid and dust particles are obtained by solving the equation
(17) under the boundary conditions (15) as follows

U =
u0

(1 + s2)

{
sinh (Qb)− sinh (Q (b− h))

sinh (Qh)

}
+

a0
Q2νs

[
sinh (Q (b− h))− sinh (Qb)

sinh (Qh)
+ 1

]
using U in (16) we obtain V as

V =
u0

(1 + s2) (1 + sτ)

{
sinh (Qb)− sinh (Q (b− h))

sinh (Qh)

}
+

a0
Q2νs (1 + sτ)

[
sinh (Q (b− h))− sinh (Qb)

sinh (Qh)
+ 1

]
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By taking the inverse Laplace transform to U and V , one can obtain

us =
u0

E2 + F 2
((AE −BF ) sin t+ (BE +AF ) cos t)

+
a0

ν (M + Cr)

 sinh
(√

(M + Cr) (b− h)
)
− sinh

(√
(M + Cr) b

)
sinh

(√
(M + Cr)h

) + 1


+u0πν

2

h2

∞∑
n=0

(−1)
n
(2n+ 1) sin

(
2n+ 1

h
πb

)

×

 (1 + x1τ)
2
ex1t

(1 + x 2
1)

[
(1 + x1τ)

2
+ l

] +
(1 + x2τ)

2
ex2t

(1 + x 2
2)

[
(1 + x2τ)

2
+ l

]


−2a0
π

∞∑
n=0

(−1)
n

(2n+ 1)
. sin

(
2n+ 1

h
πb

)
(18)  (1 + x1τ)

2
ex1t

x1

[
(1 + x1τ)

2
+ l

] +
(1 + x2τ)

2
ex2t

x2

[
(1 + x2τ)

2
+ l

]


and

vs =
u0

(E2 + F 2) (1 + τ2)

((AE −BF ) (sin t− τ cos t) + (BE +AF ) (cos t+ τ sin t))

+
a0

ν (M + Cr)

Sinh
(√

(M + Cr) (b− h)
)
− sinh

(√
(M + Cr) b

)
sinh

(√
(M + Cr)h

) + 1


+u0πν

2

h2

∞∑
n=0

(−1)
n
(2n+ 1) sin

(
2n+ 1

h
πb

)

×

 (1 + x1τ) e
x1t

(1 + x 2
1)

[
(1 + x1τ)

2
+ l

] +
(1 + x2τ) e

x2t

(1 + x 2
2)

[
(1 + x2τ)

2
+ l

]


−2a0
π

∞∑
n=0

(−1)
n

(2n+ 1)
. sin

(
2n+ 1

h
πb

)
(19)  (1 + x1τ) e

x1t

x1

[
(1 + x1τ)

2
+ l

] +
(1 + x2τ) e

x2t

x2

[
(1 + x2τ)

2
+ l

]


where

x1 = − 1

2τ

(
1 + l + νCrτ + νMτ + ντ

n2π2

h2

)

+
1

2τ

√(
1 + l + νCrτ + νMτ + ντ

n2π2

h2

)2

− 4τν

(
Cr +M +

n2π2

h2

)
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x2 = − 1

2τ

(
1 + l + νCrτ + νMτ + ντ

n2π2

h2

)

− 1

2τ

√(
1 + l + νCrτ + νMτ + ντ

n2π2

h2

)2

− 4τν

(
Cr +M +

n2π2

h2

)
y1 = − 1

2τ
(1 + l + νCrτ +Mντ)

+
1

2τ

√
(1 + l + νCrτ +Mντ)

2 − 4ντ (M + Cr)

y2 = − 1

2τ
(1 + l + νCrτ +Mντ)

− 1

2τ

√
(1 + l + νCrτ +Mντ)

2 − 4ντ (M + Cr)

A = sinh (αb) . cos (βb)− sinh (α (b− h)) . cos (β (b− h))

B = cosh (α (b− h)) . sin (β (b− h))− cosh (αb) . sin (βb)

E = sinh (αh) . cos (βh) , F = sin (βh) . cosh (αh)

α =

√√√√ (y1y2 − 1) +

√
(y1y2 − 1)

2
+ (y1 + y2)

2

2

β =

√√√√ (1− y1y2) +

√
(y1y2 − 1)

2
+ (y1 + y2)

2

2

Fluid velocity and velocity of dust particle can be calculated by equations (18)
and (19).
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