ON THE NUMBER OF EVEN BLOCKS IN WORDS

Mirko Budinčević ${ }^{\square l}$ and Ratko Tošić ${ }^{\text {D }}$

Abstract

In an earlier article the authors proved that any sequence of eight digits has at least four successive 'even blocks', where the even block is any even digit or a sequence which starts and ends with an odd digits, with even digits between them. The proof was done by brute force - by direct checking. The aim of this note is to generalize such a statement.

AMS Mathematics Subject Classification (2010): 68R15
Key words and phrases: finite word, block.

We are concerned with $A=\{0,1\}^{*}$, the set of all finite words with letters from the set $\{0,1\}$. Such a word with m letters we denote by

$$
\alpha=a_{1} a_{2} \ldots a_{m}
$$

where m is its length. We define subwords in the usual way, i.e. α^{\prime} is a subword of α if

$$
\alpha^{\prime}=a_{i} a_{i+1} \ldots a_{r}, \quad 1 \leq i \leq r \leq m
$$

Some words are of special interest to us. Those are the word 0 and all the words which start and end with the letter 1 and have only letters 0 in between. The set of all such words we denote by B and call its elements blocks. Also we introduce the set C consisting of all words with starting letter 1 and all other letters (if any) 0 .

Now we are ready to state our theorem.
Theorem. Let $\alpha=a_{1} a_{2} \ldots a_{2 n}$ be any word from the set A with length $2 n$. Then there exists its subword α^{\prime} consisting only of k blocks such that $k \geq n$.

Proof. The proof is obvious if all the letters are zeros. Suppose that at least one letter is 1 and that the first such letter is a_{i}. We can represent α in a unique way as

$$
\begin{equation*}
\alpha=\beta_{1} \beta_{2} \ldots \beta_{p} \tag{1}
\end{equation*}
$$

or
(2)

$$
\alpha=\beta_{1} \beta_{2} \ldots \beta_{p} \gamma
$$

[^0]where $\beta_{l}, l=1,2, \ldots, p$, are blocks and $\gamma \in C$. The first $i-1$ are 0 -blocks, β_{i} (if it exists) is a block with letter 1 at the beginning and end and so on. Consider now the word
$$
\alpha^{\prime}=a_{i+1} a_{i+2} \ldots a_{2 n}
$$
a subword of α. Then
\[

$$
\begin{equation*}
\alpha^{\prime}=\beta_{1}^{\prime} \beta_{2}^{\prime} \ldots \beta_{q}^{\prime} \gamma^{\prime} \tag{3}
\end{equation*}
$$

\]

if α is of the form (1) or

$$
\begin{equation*}
\alpha^{\prime}=\beta_{1}^{\prime} \beta_{2}^{\prime} \ldots \beta_{q}^{\prime} \tag{4}
\end{equation*}
$$

if α is of the form (2). Again, every $\beta_{l}^{\prime}, l=1,2, \ldots, q$, is a block, while $\gamma^{\prime} \in C$.
Every block which starts with 1 has the next letter 1 at its end, while every letter 0 in α is exactly one of the blocks $\beta_{1}, \beta_{2}, \ldots, \beta_{p}, \beta_{1}^{\prime}, \ldots, \beta_{q}^{\prime}$. So, we can conclude that every letter of α, with the exception of a_{i} is the last letter of some block among $\beta_{1}, \beta_{2}, \ldots, \beta_{p}, \beta_{1}^{\prime}, \ldots, \beta_{q}^{\prime}$. This implies that $p+q=2 n-1$, and so $\max (p, q) \geq n$.
Remark. The authors tried to give a proof by induction but have not succeeded. Does such a proof exists?

Received by the editors December 6, 2010

[^0]: ${ }^{1}$ Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: mirkob@dmi.uns.ac.rs
 ${ }^{2}$ e-mail: ratosic@dmi.uns.ac.rs

