NOVI SAD J. MATH. VOL. 42, NO. 1, 2012, 9-14

GENERALIZED SEMI-IDEALS IN TERNARY SEMIRINGS

V. R. Daddi¹ and Y.S. Pawar²

Abstract. We introduce the notion of a generalized semi-ideal in a ternary semiring. Various examples to establish relationships between ideals, bi-ideals, quasi-ideals and generalized semi-ideals are furnished. A criterion for a commutative ternary semiring without any divisor of zero to a ternary division semiring is given.

AMS Mathematics Subject Classification (2010): 16Y60, 16Y99

Key words and phrases: Ternary semiring, generalized semi-ideals and ideals in ternary semirings, ternary division semiring

1. Introduction

Ternary rings and their structures were investigated by Lister [4] in 1971. In fact, Lister characterized those additive subgroups of rings which are closed under the triple product. In 2003, T. K. Dutta and S. Kar [3] introduced the notion of a ternary semiring as a generalization of a ternary ring. Ternary semiring arises naturally as follows- consider the subset \mathbb{Z}^- of all negative integers of \mathbb{Z} . Then, \mathbb{Z}^- is an additive semigroup which is closed under the triple product. \mathbb{Z}^- is a ternary semiring. Note that \mathbb{Z}^- does not form a semiring. In [3], T. K. Dutta and S. Kar introduced the notions of left, right lateral ideals of ternary semirings and also characterized regular ternary semirings. In 2005, S. Kar [1] introduced the notions of quasi-ideals and bi-ideals in a ternary semiring. The notion of a generalized semi-ideal in a ring has been introduced and studied by T. K. Dutta in [2]. In this paper we introduce the notion of generalized semiideals in a ternary semiring and study them. Also, we establish the relationship between generalized semi-ideals, ideals, bi-ideals, etc. in a ternary semiring and study some properties of generalized semi-ideals in ternary semirings.

2. Preliminaries

For preliminaries we refer to ([1] and [3]).

Definition 2.1. An additive commutative semigroup S, together with a ternary multiplication denoted by [] is said to be a ternary semiring if

¹Department of Mathematics, D. Y. Patil College of Engineering and Technology, Kolhapur, India, e-mail: vanita_daddi@rediffmail.com

²Department of Mathematics, Shivaji University, Kolhapur, India, e-mail: pawar_y_s@yahoo.com

i) [[abc]de] = [a[bcd]e] = [ab[cde]],

- ii) [(a+b)cd] = [acd] + [bcd],
- iii) [a(b+c)d] = [abd] + [acd],
- iv) [ab(c+d)] = [abc] + [abd] for all $a, b, c, d, e \in S$.

Throughout S will denote a ternary semiring unless otherwise stated.

Definition 2.2. If there exists an element $0 \in S$ such that 0 + x = x and [0xy] = [xy0] = [x0y] = 0 for all $x, y \in S$, then 0 is called the zero element of S. In this case we say that S is a ternary semiring with zero.

Definition 2.3. S is called a commutative ternary semiring if [abc] = [bac] = [bca], for all $a, b, c \in S$.

Definition 2.4. An additive subsemigroup T of S is called a ternary subsemiring of S if $[t_1t_2t_3] \in T$ for all $t_1, t_2, t_3 \in T$.

Definition 2.5. An element a in a ternary semiring S is called regular if there exists an element $x \in S$ such that [axa] = a. A ternary semiring S is called regular if all of its elements are regular.

Definition 2.6. A ternary semiring S is said to be zero divisor free (ZDF) if for $a, b, c \in S$, [abc] = 0 implies that a = 0 or b = 0 or c = 0.

Definition 2.7. A ternary semiring S with $|S| \ge 2$ is called a ternary division semiring if for any non-zero element a of S, there exists a nonzero element $b \in S$ such that [abx] = [bax] = [xab] = [xba] = x, for all $x \in S$.

Definition 2.8. A left (right/lateral) ideal I of S is an additive subsemigroup of S such that $[s_1s_2i] \in I$ ($[is_1s_2] \in I/[s_1is_2] \in I$) for all $i \in I$, for all $s_1, s_2 \in S$. If I is a left, a right and a lateral ideal of S, then I is called an ideal of S.

Definition 2.9. An additive subsemigroup Q of a ternary semiring S is called a quasi-ideal of S if $[QSS] \cap ([SQS] + [SSQSS]) \cap [SSQ] \subseteq Q$.

Definition 2.10. A ternary subsemiring *B* of a ternary semiring *S* is called a bi-ideal of *S* if $[BSBSB] \subseteq B$.

3. Generalized semi-ideals in ternary semirings

Generalized semi-ideals in semirings are introduced and studied by T. K. Dutta in [1]. As a generalization, we define generalized semi-ideals in ternary semirings.

Definition 3.1. Let S be a ternary semiring. A non-empty subset A of S satisfying the condition $a + b \in A$, for all $a, b \in A$ is called

i) generalized left semi-ideal of S if $[[xxx]xa] \in A$ for all $a \in A$ for all $x \in S$,

ii) generalized right semi-ideal of S if $[axx]xx \in A$ for all $a \in A$, for all $x \in S$,

iii) generalized lateral semi-ideal of S if $[xxa]xx \in A$ for all $a \in A$, for all $x \in S$,

iv) generalized semi-ideal of S if it is a generalized left semi-ideal, a generalized right semi-ideal and a generalized lateral semi-ideal of S.

10

Example 3.2. Consider a ternary semiring \mathbb{Z} of all integers. The subset A of \mathbb{Z} containing all non-negative integers and the set B of all non-positive integers are generalized semi-ideals of \mathbb{Z} .

Remark 3.3. The concepts of generalized semi-ideal and ternary subsemiring are independent in a ternary semiring. That is, every ternary subsemiring of ternary semiring need not be a generalized semi-ideal of ternary semiring and every generalized semi-ideal of ternary semiring need not be a ternary subsemiring of ternary semiring. For this consider the following examples.

Example 3.4. Let $S = M_2(\mathbb{Z}_0^-)$ be the ternary semiring of the set of all 2x2 square matrices over \mathbb{Z}_0^- , the set of all non-positive integers.

Let $T = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} / a \in \mathbb{Z}_0^- \}$. *T* is a ternary subsemiring of *S*, but *T* is not a generalized semi-ideal of *S*.

Example 3.5. Let $S = \{\ldots, -2i, -i, 0, i, 2i, \ldots\}$ be a ternary semiring with respect to addition and complex triple multiplication. Let $A = \{0, i, 2i, \ldots\}$. A is a generalized semi-ideal of S, but not a ternary subsemiring of S.

Every ideal is a generalized semi-ideal of S but converse need not be true.

Remark 3.6. Every quasi-ideal need not be a generalized semi-ideal and every generalized semi-ideal i need not be quasi-ideal in S. (in Example 3.4), T is a quasi-ideal of S, but T is not a generalized semi-ideal of S. (in Example 3.5), A is generalized semi-ideal of S, but not a quasi-ideal of S.

Every quasi-ideal is a bi-ideal in S [2]. Hence, bi-ideals and generalized semi-ideals in S are independent concepts.

The flow chart of the relationship between ideals, bi-ideals, quasi-ideals, ternary subsemiring and generalized semi-ideals in a ternary semiring is given below.

4. Properties of generalized semi-ideals

The intersection of an arbitrary collection of generalized semi-ideals of a ternary semiring is a generalized semi-ideal of a ternary semiring. But, the union of two generalized semi-ideals of a ternary semiring may not be a generalized semi-ideal of a ternary semiring. This we establish in the following example.

Let $S = \{\ldots, -2i, -i, 0, i, 2i, \ldots\}$ be a ternary semiring with respect to addition and complex triple multiplication. Then $I = \{\ldots, -4i, -2i, 0, 2i, \ldots\}$ and $J = \{\ldots, -10i, -5i, 0, 5i, 10i, \ldots\}$ are two generalized semi-ideals of S, but $I \bigcup J$ is not a generalized semi-ideal of S.

Theorem 4.1. Let A be a generalized semi-ideal of a ternary semiring S and let T be a ternary subsemiring of S. If $A \cap T \neq \emptyset$, then $A \cap T$ is a generalized semi-ideal of T.

Proof. Let $a, b \in A \cap T$. Then $a + b \in A \cap T$. For $x \in T$ and $a \in A \cap T$ we have $[[xxx]xa] \in A \cap T$, $[[axx]xx] \in A \cap T$, $[[xxa]xx] \in A \cap T$. Hence, $A \cap T$ is generalized semi-ideal of S.

Theorem 4.2. If A and B are generalized semi-ideals of a ternary semiring S, then $A + B = \{a + b/a \in A, b \in B\}$ is a generalized semi-ideal of S.

Proof. Let $x, y \in A + B$. Hence x = a + b, y = c + d, for $a, c \in A$ and $b, d \in B$. Then $x + y = (a + b) + (c + d) = (a + c) + (b + d) \in A + B$. Let $t \in S$ and $x \in A + B$, hence x = a + b for some $a \in A$ and $b \in B$. Therefore, $[[ttt]tx] = [[ttt]t(a + b)] = [[ttt](ta)] + [[ttt]tb] \in A + B$. Similarly, we have $[[ttx]tt] = [[tt(a + b)]tt] = [([tta] + [ttb])tt] = [[tta]tt] + [[ttb]tt] \in A + B$ and $[[xtt]tt] = [[(a + b)tt]tt] = [([att] + [btt])tt] = [[att]tt] + [[btt]tt] \in A + B$. Thus, A + B is a generalized semi -ideal of S. □

Theorem 4.3. Let S be a ternary semiring with zero. Let A and B be two generalized semi-ideals with zero. Then A + B is the smallest generalized semi-ideal of S containing both A and B.

Proof. From Theorem 4.2 A + B is a generalized semi-ideal of S. Since $0 \in A$, $0 \in B$ we get $0 \in A + B$ and for $a \in A, a = a + 0 \in A + B$. Hence, $A \subseteq A + B$. Similarly, $B \subseteq A + B$. Let I be any other generalized semi-ideal containing both A and B. Let $x \in A + B$. Then x = a + b, for some $a \in A$ and $b \in B$. Hence $x = a + b \in I$. Therefore $A + B \subseteq I$. Thus, A + B is the smallest generalized semi-ideal containing both A and B.

If A, B, C are subsets of S, then by [ABC] we mean the set of all finite sums of the form $\sum [a_i b_i c_i]$ where $a_i \in A, b_i \in B, c_i \in C$ ([2]).

Theorem 4.4. Let A be a generalized left semi-ideal of a ternary semiring S. Then [ABC] is a generalized left semi-ideal, for any non-empty subsets B and C of S.

Proof. For $x, y \in [ABC]$, let $x = \sum_{i=1}^{n} [a_i b_i c_i]$ and $y = \sum_{j=1}^{m} [a_i b_i c_i]$. Obviously, x + y is a finite sum of the form $\sum [a_i b_i c_i]$. Hence $x + y \in [ABC]$. For $t \in S$, we have $[[ttt]tx] = [[ttt]t \sum_{i=1}^{n} [a_i b_i c_i]] = \sum_{i=1}^{n} [[ttt]t [a_i b_i c_i]] = \sum_{i=1}^{n} [[[ttt]ta_i]b_i c_i] \in [ABC]$. Since A is generalized left semi-ideal. Therefore, [ABC] is a generalized left semi-ideal of S.

Generalized semi-ideals in ternary semirings

Theorem 4.5. Let A be a generalized left (right) semi-ideal and B be a biideal of a ternary semiring S. Then [ABB] ([BBA]) is a generalized left (right) semi-ideal as well as bi-ideal of S.

Proof. Let $x, y, z \in [ABB]$. Hence $x = \sum_{i=1}^{n} [a_i b_i c_i], y = \sum_{i=n+1}^{m} [a_i b_i c_i], z = \sum_{i=m+1}^{p} [a_i b_i c_i]$ for all $a_i \in A$ and $b_i, c_i \in B$. Thus x + y is the finite sum of the form $\sum [a_i b_i c_i]$. Hence $x + y \in [ABB]$. Let $t \in S$ and $x = \sum_{i=1}^{n} [a_i b_i c_i] \in [ABB]$. Then $[[ttt]tx] = [[ttt]t \sum_{i=1}^{n} [a_i b_i c_i]] = \sum_{i=1}^{n} [[[ttt]ta_i]b_i c_i] \in [ABB]$. Hence [ABB] is generalized left semi-ideal of S. Now $[[ABB][ABB][ABB]] = [A[[B[BAB]B]AB]B] \subseteq [A[BSBSB]B] \subseteq [ABB]$. (Since $[BAB] \subseteq S$ and B is a bi-ideal). This shows that [ABB] is ternary subsemiring of S. Again, $[[ABB]S[ABB]S[ABB]] = [A[B[BSA]B[BSA]B]B] \subseteq [A[BSBSB]B] \subseteq [ABB]$. \Box [ABB](Since B is a bi-ideal). Hence [ABB] is bi ideal of S. \Box

Theorem 4.6. Let A and B be ternary subsemirings of a ternary semiring S such that $A^3 = A$ and A be a left ideal of B and B be a generalized left semi-ideal of S. Then A is a generalized left semi-ideal of S.

Proof. Let $a \in A$, therefore $a = [a_1a_2a_3]$, where $a_1, a_2, a_3 \in A$. Now for any $x \in S, [xxx]xa] = [[xxx]x[a_1a_2a_3]] = [[[xxx]xa_1]a_2a_3] \in [Ba_2a_3] \subseteq A$ (Since A is a left ideal of $B, a_1 \in A \subset B, B$ is a generalized left semi-ideal of S). Therefore, A is a generalized left semi-ideal of S. \Box

Theorem 4.7. If G is a generalized left (right) semi-ideal of S and T_1, T_2 are two ternary subsemirings of S, then $[GT_1T_2]$ ($[T_1T_2G]$) is a generalized left (right) semi-ideal of S.

Proof. For any $a, b \in [GT_1T_2], a = \sum_{i=1}^n [g_it_it_i']$ and $b = \sum_{i=n+1}^m [g_it_it_i']$, for $g_i \in G, t_i \in T_1, t_i' \in T_2$. Therefore a + b is the finite sum of the form $\sum [g_it_it_i']$ will imply $a + b \in [GT_1T_2]$. Let $a = \sum_{i=1}^n [g_it_it_i'] \in [GT_1T_2]$ and let $x \in S$. Then $[[xxx]xa] = [[xxx]x\sum_{i=1}^n [g_it_it_i']] = \sum_{i=1}^n [[[xxx]xg_i]t_it_i'] \in [GT_1T_2]$. Hence, $[GT_1T_2]$ is a generalized left semi-ideal of S.

A necessary and sufficient condition for a commutative ternary semiring S without any divisors of zero to be ternary division semiring is given in the following theorem.

Theorem 4.8. A commutative ternary semiring S without any divisors of zero will be ternary division semiring iff for any generalized semi-ideal A, $a \in S \setminus A$ (the complement of A in S) and $x(\neq 0) \in S$ implies $[[xxx]xa] \in S \setminus A$.

Proof. Suppose a commutative ternary semiring S without any divisor of zero will be ternary division semiring. Let A be a generalized semi-ideal of S. Select $a \in S \setminus A$ and $x \neq 0 \in S$. Hence, $\exists y \neq 0 \in S$ such that

[xyz] = [yxz] = [zxy] = [zxy] = z, for all $z \in S$. Therefore, [xya] = [yxa] = [axy] = [ayx] = a. This proves that $[[xxx]xa] \in S \setminus A$. Assume that $[[xxx]xa] = x^4a \in A$. Therefore, $a = [[yxy]^4ax^4] \in A$. (Since S is commutative, A is generalized semi-ideal), which is a contradiction. Hence, $[[xxx]xa] \in S \setminus A$.

Conversely, suppose that for any generalized semi-ideal $A, a \in S \setminus A$ and $x \neq 0 \in S$ implies $[xxx]xa] \in S \setminus A$. To prove that S is a ternary division semiring, that is to prove that for $a(\neq 0) \in S \exists b(\neq 0) \in S$ such that [abS] = S. If possible, let $[abS] \neq S$ and $y \in S \setminus [abS]$, then $[[aaa]ay] = [a^3ay] = [aa^3y] = [aby] \in [abS]$, where $b = a^3(\neq 0) \in S$ which is contradiction because $[a^3ay] \in S \setminus [abS]$. Hence, [abS] = S. Therefore, S is a ternary division semiring.

Suppose A is a generalized semi-ideal of a commutative ternary semiring S. Let $\beta(A)$ denote the set of all those elements a for which there exists a nonzero element $x \in S$ such that $[[xxx]xa] \in A$. It is then clear that $A \subseteq \beta(A)$. Further we have the following theorem.

Theorem 4.9. Let S be a commutative ternary semiring without any divisor of zero. If A is a generalized semi-ideal of S, then $\beta(A)$ is also a generalized semi-ideal of S.

Proof. Let $a, b \in \beta(A)$. So, there exist non-zero elements $x, y \in S$ such that $p = [[xxx]xa] \in A, q = [[yyy]yb] \in A$. Now

$$\begin{split} \varepsilon &= & [[xxx]x[yyy]y(a+b)] \\ &= & [[xxx]x[yyy]ya] + [[xxx]x[yyy]yb] \\ &= & [[yyy]y[[xxx]xa]] + [[xxx]x[[yyy]yb]] \\ &= & [[yyy]yp] + [[xxx]xq] \in A. \end{split}$$

For $z(\neq 0) \in S$, $[[z \ z \ z] \ z\varepsilon] \in A$ (Since A is a generalized semi-ideal of S)

Therefore, $[[[x \ y \ z][x \ y \ z]][x \ y \ z]][x \ y \ z](a+b)] \in A$. Hence $(a+b) \in \beta(A)$. For $a \in \beta(A)$, $[[xxx]xa] \in A$. Let $z \in S$, hence

$$[[xxx]x[[zzz]za]] = [[zzz]z[[xxx]xa]] \in A.$$

Therefore, $[[zzz]za] \in \beta(A)$ for all $z \in S$. Therefore, $\beta(A)$ is a generalized semi-ideal of S.

References

- Kar, S., On Quasi-ideals and Bi-ideals in Ternary semirings. Inter. Jour. of Mathe. and Mathe. Sci. 2005:18 (2005), 3015-3023.
- [2] Dutta, T. K., On Generalised Semi ideals Of Rings. Bull. State place Cal. Math. Soc. 74 (1982), 135-141
- [3] Dutta, T. K., Kar, S., On regular ternary semirings. Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific, New Jersey, 2003, pp. 343–355.
- [4] Lister, W. G., Ternary Rings. Trans. Amer. Math. Soc. 154 (1971), 37-55.

Received by the editors May 18, 2009