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NOTE ON ⋆−CONNECTED IDEAL SPACES
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Abstract. In [1], Ekici and Noiri introduced and studied ⋆−connected
and ⋆s−connected ideal spaces. We further study the properties of
⋆−connected and ⋆s−connected ideal spaces.
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1. Introduction and preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski
[3] and Vaidyanathaswamy [4]. An ideal I on a set X is a nonempty collection
of subsets of X which satis�es (i) A ∈ I and B ⊂ A implies B ∈ I and
(ii) A ∈ I and B ∈ I implies A ∪ B ∈ I. Given a topological space (X, τ)
with an ideal I on X and if ℘(X) is the set of all subsets of X, a set operator
(.)⋆:℘(X) → ℘(X), called a localfunction [3] of A with respect to τ and I,
is de�ned as follows: for A ⊂ X,A⋆(I, τ)=

{
x ∈ X | U ∩ A ̸∈ I for every

U ∈ τ(x)
}
where τ(x) =

{
U ∈ τ | x ∈ U

}
. We will make use of the basic facts

about the local function [2, Theorem 2.3] without mentioning it explicitly. A
Kuratowski closure operator cl⋆() for a topology τ⋆(I, τ), called the ⋆−topology,
�ner than τ is de�ned by cl⋆(A) = A ∪ A⋆(I, τ) [4]. When there is no chance
for confusion, we will simply write A⋆ for A⋆(I, τ) and τ⋆ for τ⋆(I, τ). If I is
an ideal on X, then (X, τ, I) is called an ideal space. ⋆−connected ideal space
and ⋆s−connected sets are introduced and studied by Ekici and Noiri in [1]. In
section 2 of this paper, we further study the properties of these sets and give a
characterization of ⋆−connected ideal spaces.

By a space, we always mean a topological space (X, τ) with no separation
properties assumed. If A ⊂ X, cl(A) and int(A) will, respectively, denote the
closure and interior of A in (X, τ) and int⋆(A) will denote the interior of A in
(X, τ⋆). Subsets of X closed in (X, τ⋆) are called ⋆−closed sets. A subset A of X
in an ideal space (X, τ, I) is ⋆−closed if and only if A⋆ ⊂ A [2]. An ideal space
(X, τ, I) is called ⋆−connected [1] if X cannot be written as the disjoint union of
a nonempty open set and a nonempty ⋆−open set. Clearly, every ⋆−connected
space is connected but the converse is not true [1, Remark 5]. If I = {∅},
then τ = τ⋆ and so ⋆−connectedness coincides with connectedness. Nonempty
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subsets A and B of an ideal space (X, τ, I) are said to be ⋆ − separated [1] if
cl⋆(A)∩B = A∩cl(B) = ∅. Clearly, separated sets are ⋆−separated but one can
easily show that the converse is not true. A subset A of an ideal space (X, τ, I) is
called ⋆s−connected [1] if A is not the union of two ⋆−separated sets in (X, τ, I).
The ideal space (X, τ, I) is called ⋆s − connected if X is ⋆s − connected as a
subset. The following lemma will be useful in the sequel.

Lemma 1.1. [1, Theorem 14] Let (X, τ, I) be an ideal space. If A is a ⋆s−connected
set of X and H, G are ⋆−separated sets of X with A ⊂ H∪G, then either A ⊂ H
or A ⊂ G.

2. Main Results

In this section, we give the properties of ⋆−separated, ⋆−connected subsets.
The following Theorem 2.1 deals with ⋆−separated sets. If I = {∅}, in Theorem
2.1, we get Corollary 2.3.

Theorem 2.1. Let (X, τ, I) be an ideal space. If A and B are nonempty dis-
joint sets such that A is open and B is ⋆−open, then A and B are ⋆−separated.

Proof. A ∩ B = ∅ implies that A ⊂ X − B and so cl⋆(A) ⊂ cl⋆(X − B) =
X − B which implies that cl⋆(A) ∩ B = ∅. Again, B ⊂ X − A implies that
cl(B) ⊂ cl(X − A) = X − A and so cl(B) ∩ A = ∅. Therefore, A and B are
⋆−separated.

Corollary 2.2. Let (X, τ, I) be an ideal space. Then the disjoint nonempty
open sets of X are ⋆−separated.

Corollary 2.3. In any space (X, τ), the disjoint nonempty open sets are sepa-
rated.

Theorem 2.4. If every pair of distinct points of a subset E of an ideal space
(X, τ, I) are elements of some ⋆s−connected subset of E, then E is a ⋆s−connec-
ted subset of X.

Proof. Suppose E is not ⋆s−connected. Then there exist nonempty subsets A
and B of X such that cl⋆(A)∩B = ∅ = A∩ cl(B) and E = A∪B. Since A and
B are nonempty, there exists a point a ∈ A and a point b ∈ B. By hypothesis,
a and b must be elements of a ⋆s−connected subset C of E. Since C ⊂ A ∪B,
by Lemma 1.1, either C ⊂ A or C ⊂ B. Consequently, either a and b are both
in A or both in B. Let a, b ∈ A. Then, A ∩ B ̸= ∅, a contradiction to the fact
that A and B are disjoint. Therefore, E must be ⋆s−connected.

Theorem 2.5. [1] Let Y be an open subset of an ideal space (X, τ, I). Then,
the following are equivalent.

(a) Y is ⋆s−connected in X.
(b) Y is ⋆−connected in X.

Theorem 2.6. Let (X, τ, I) be an ideal space. Then X is ⋆−connected if and
only if X is ⋆s−connected.
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Proof. The proof follows from Theorem 2.5.

The following theorem gives a property of ⋆−separated sets. If I = {∅} in
Theorem 2.7, we get Corollary 2.8.

Theorem 2.7. Let A and B be two ⋆−separated sets in an ideal space (X, τ, I).
If C and D are nonempty subsets such that C ⊂ A and D ⊂ B, then C and D
are also ⋆−separated.

Proof. Since A and B are ⋆−separated, cl⋆(A) ∩ B = ∅ = A ∩ cl(B). Now,
cl⋆(C) ∩ D ⊂ cl⋆(A) ∩ B = ∅ and so cl⋆(C) ∩ D = ∅. Similarly, we can prove
that C ∩ cl(D) = ∅. Hence C and D are ⋆−separated.

Corollary 2.8. Let A and B be two separated sets in (X, τ). If C and D are
nonempty subsets such that C ⊂ A and D ⊂ B, then C and D are also separated.

The following theorem gives a property of ⋆s−connected subsets. If I = {∅}
in Theorem 2.9, we get Corollary 2.11.

Theorem 2.9. If A is a ⋆s−connected subset of a ⋆s−connected ideal topological
space (X, τ, I) such that X −A is the union of two ⋆−separated sets B and C,
then A ∪B and A ∪ C are ⋆s−connected.

Proof. Suppose A ∪ B is not ⋆s−connected. Then there exist two nonempty
⋆−separated sets G and H such that A∪B = G∪H. Since A is ⋆s−connected,
A ⊂ A ∪ B = G ∪ H, by Lemma 1.1, either A ⊂ G or A ⊂ H. Suppose
A ⊂ G. Since A ∪ B = G ∪ H, A ⊂ G implies that A ∪ B ⊂ G ∪ B and
so G ∪ H ⊂ G ∪ B. Hence H ⊂ B. Since B and C are ⋆−separated, H and
C are also ⋆−separated. Thus, H is ⋆−separated from G as well as C. Now,
cl⋆(H) ∩ (G ∪ C) = (cl⋆(H) ∩ G) ∪ (cl⋆(H) ∩ C) = ∅ and H ∩ cl(G ∪ C) =
H∩(cl(G)∪cl(C)) = (H∩cl(G))∪(H∩cl(C)) = ∅. Therefore, H is ⋆−separated
from G∪C. Since X−A = B∪C, X = A∪(B∪C) = (A∪B)∪C = (G∪H)∪C,
since A ∪ B = G ∪ H and so X = (G ∪ C) ∪ H. Thus, X is the union of two
nonempty ⋆−separated sets G ∪ C and H, which is a contradiction. Similar
contradiction will arise if A ⊂ H. Hence, A ∪B is ⋆s−connected. Similarly, we
can prove that A ∪ C is ⋆s−connected.

Corollary 2.10. If A is a connected subset of a connected space (X, τ) such
that X −A is the union of two separated sets B and C, then A ∪B and A ∪ C
are connected.

The following example shows that the union of two ⋆s−connected sets is not
a ⋆s−connected set. Theorem 2.12 shows that the union of two ⋆s−connected
sets is a ⋆s−connected set, if none of them is ⋆−separated.

Example 2.11. Consider the ideal space (X, τ, I) where X = {a, b, c, d}, τ =
{∅, {b}, {b, c}, {a, b, d}, X} and I = {∅, {b}}. If A = {a, b} and B = {a, d},
then A and B are ⋆s−connected. But A ∪ B = {a, b, d} = {b} ∪ {a, d}. Here
cl⋆({b}) ∩ {a, d} = {b} ∩ {a, d} = ∅ and {b} ∩ cl({a, d}) = {b} ∩ {a, d} = ∅ and
so {b} and {a, d} are ⋆−separated sets. Hence, A ∪B is not ⋆s−connected.
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Theorem 2.12. If A and B are ⋆s−connected sets of an ideal space (X, τ, I)
such that none of them is ⋆−separated, then A ∪B is ⋆s−connected.

Proof. Let A and B be ⋆s−connected in X. Suppose A∪B is not ⋆s−connected.
Then, there exist two nonempty disjoint ⋆−seperated sets G and H such that
A∪B = G∪H. Since A and B are ⋆s−connected, by Lemma 1.1, either A ⊂ G
and B ⊂ H or B ⊂ G and A ⊂ H. Now if A ⊂ G and B ⊂ H, then A ∩H =
B∩G = ∅. Therefore, (A∪B)∩G = (A∩G)∪(B∩G) = (A∩G)∪∅ = A∩G = A.
Also, (A∪B)∩H = (A∩H)∪ (B ∩H) = B ∩H = B. Similarly, if A ⊂ H and
B ⊂ G, then (A ∪ B) ∩ G = A and (A ∪ B) ∩ H = B. Now, ((A ∪ B) ∩ H) ∩
cl((A ∪B) ∩G) ⊂ (A ∪B) ∩H ∩ cl(A ∪B) ∩ cl(G) = (A ∪B) ∩H ∩ cl(G) = ∅
and cl⋆((A ∪ B) ∩H) ∩ ((A ∪ B) ∩G) ⊂ cl⋆(A ∪ B) ∩ cl⋆(H) ∩ (A ∪ B) ∩G =
(A∪B)∩cl⋆(H)∩G = ∅. Therefore, (A∪B)∩G and (A∪B)∩H are ⋆−seperated
sets. Thus, A and B are ⋆−seperated, which is a contradiction. Hence, A ∪ B
is ⋆s−connected.

Theorem 2.13. Let (X, τ, I) be an ideal space and {Aα} be a family of ⋆s−co-
nnected subspaces of X, and A be a ⋆s−connected subspace of X. If A∩Aα ̸= ∅
for every α, then A ∪ (

∪
Aα) is ⋆s−connected.

Proof. Let Y = A ∪ (
∪
Aα). Suppose that Y is not ⋆s−connected. Then there

exist ⋆−separated sets H and G such that Y = G∪H. Since A is ⋆s−connected,
by Lemma 1.1, either A ⊂ G or A ⊂ H. Suppose A ⊂ H. For each α, since
A ∩Aα ̸= ∅, there exists xα ∈ A ∩Aα which implies that xα ∈ A and xα ∈ Aα.
Since A ⊂ H, xα ∈ H and so xα ̸∈ cl(G), which implies that xα ̸∈ G. Since each
Aα is ⋆s−connected, either Aα ⊂ G or Aα ⊂ H. Now, xα ∈ Aα and xα ̸∈ G
implies that Aα ⊂ H, which in turn implies that Y = A ∪ (

∪
Aα) ⊂ H and so

G = ∅, a contradiction. Thus, Y is ⋆s−connected.

If I = {∅} in the above Theorem 2.13, we have the following corollary.

Corollary 2.14. Let (X, τ) be a space, {Aα} be a family of connected subsets of
X, and A be a connected subset of X. If A∩Aα ̸= ∅ for every α, then A∪(

∪
Aα)

is connected.

Theorem 2.15. Let (X, τ, I) be an ideal space and A ⊂ X. If C is ⋆s−connected
subspace of X that intersects both A and X − A, then C intersects Bd(A), the
boundary of A.

Proof. Suppose C ∩ Bd(A) = ∅. Then C ∩ cl(A) ∩ cl(X − A) = ∅. Now, C =
C ∩X = C ∩ (A∪ (X −A)) = (C ∩A)∪ (C ∩ (X −A)). Also, cl⋆(C ∩A)∩ (C ∩
(X − A)) ⊂ cl⋆(C) ∩ cl⋆(A) ∩ C ∩ (X − A) = C ∩ cl⋆(A) ∩ (X − A) = ∅ and
(C ∩A)∩ cl(C ∩ (X−A)) ⊂ C ∩A∩ cl(C)∩ cl(X−A) = C ∩ cl(X−A)∩A = ∅.
Thus, C∩A and C∩(X−A) form a ⋆−separation for C, which is a contradiction.
Hence, C ∩Bd(A) ̸= ∅.

Corollary 2.16. Let (X, τ, I) be a ⋆−connected ideal space. Then every non-
empty proper subset has a nonempty boundary.
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Theorem 2.17. Let (X, τ, I) be an ideal space. If the union of two ⋆−separated
sets is a closed set, then one set is closed and the other is ⋆−closed.

Proof. Let A and B be two ⋆−separated sets such that A ∪ B is closed. Then
A∩ cl⋆(B) = ∅ = cl(A)∩B. Since A∪B is closed, A∪B = cl(A)∪ cl(B). Now,
cl(A) = cl(A)∩ (cl(A)∪ cl(B)) = cl(A)∩ (A∪B) = (cl(A)∩A)∪ (cl(A)∩B) =
A∪∅ = A and so A is closed. Also, B ⊂ A∪B implies that cl⋆(B) ⊂ cl⋆(A∪B) ⊂
cl(A∪B) = A∪B and so cl⋆(B) = cl⋆(B)∩(A∪B) = (cl⋆(B)∩A)∪(cl⋆(B)∩B) =
∅ ∪B = B. Hence B is ⋆−closed.

Theorem 2.18. An ideal space (X, τ, I) is ⋆−connected if and only if no
nonempty proper subset of X is both open and ⋆−closed.

Proof. The proof follows from the de�nition of ⋆−connected ideal spaces.

If I = {∅} in the above Theorem 2.18, we have the following corollary.

Corollary 2.19. A space (X, τ) is connected if and only if no nonempty proper
subset of X is both open and closed.

The union of all ⋆s−connected subset of X in an ideal space (X, τ, I) con-
taining a point x ∈ X is said to be the ⋆−component [1] of X containing
x. Moreover, in [1], it is established that every ⋆−component is a maximal
⋆s−connected ⋆−closed subset of X. The following theorem gives a property of
⋆s−connected subset of X.

Theorem 2.20. Let (X, τ, I) be an ideal space. Then, each ⋆s−connected subset
of X which is both open and ⋆−closed is a ⋆−component of X.

Proof. Let A be a ⋆s−connected subset of X such that A is both open and
⋆−closed. Let x ∈ A. Since A is a ⋆s−connected subset of X containing x, if C
is the ⋆−component containing x, then A ⊂ C. Let A be a proper subset of C.
Then C is nonempty and C∩(X−A) ̸= ∅. Since A is open and ⋆−closed, X−A
is closed and ⋆−open. (A∩C)∩((X−A)∩C) = ∅. Also, (A∩C)∪((X−A)∩C) =
(A∪(X−A))∩C = C. Again, A and X−A are two nonempty disjoint open and
⋆−open sets respectively such that A∩ cl(X−A) = ∅ and cl⋆(A)∩ (X−A) = ∅.
Thus, A and X −A form a ⋆−separation for C. Hence, C is not ⋆s−connected,
a contradiction. Hence, A is not a proper subset of C and so A = C. This
completes the proof.

If I = {∅} in the above Theorem 2.20, we have the following Corollary 2.21.

Corollary 2.21. Let (X, τ) be a space. Then, each connected subset of X which
is both open and closed is a component of X.
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