NOVI SAD J. MATH. VOL. 42, NO. 1, 2012, 15-20

NOTE ON *****-CONNECTED IDEAL SPACES

N. Sathiyasundari¹ and V. Renukadevi²

Abstract. In [1], Ekici and Noiri introduced and studied \star -connected and \star_s -connected ideal spaces. We further study the properties of \star -connected and \star_s -connected ideal spaces.

AMS Mathematics Subject Classification (2010): 54A05, 54A10

Key words and phrases: \star -connected ideal space, \star_s -connected set, \star -separated set

1. Introduction and preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski [3] and Vaidyanathaswamy [4]. An *ideal* \mathcal{I} on a set X is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\wp(X)$ is the set of all subsets of X, a set operator $(.)^*: \wp(X) \to \wp(X)$, called a *local function* [3] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X, A^*(\mathcal{I}, \tau) = \{x \in X \mid U \cap A \notin \mathcal{I} \text{ for every}\}$ $U \in \tau(x)$ where $\tau(x) = \{U \in \tau \mid x \in U\}$. We will make use of the basic facts about the local function [2, Theorem 2.3] without mentioning it explicitly. A Kuratowski closure operator $cl^{\star}()$ for a topology $\tau^{\star}(\mathcal{I}, \tau)$, called the \star -topology, finer than τ is defined by $d^*(A) = A \cup A^*(\mathcal{I}, \tau)$ [4]. When there is no chance for confusion, we will simply write A^* for $A^*(\mathcal{I},\tau)$ and τ^* for $\tau^*(\mathcal{I},\tau)$. If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an *ideal space*. \star -connected ideal space and \star_s -connected sets are introduced and studied by Ekici and Noiri in [1]. In section 2 of this paper, we further study the properties of these sets and give a characterization of \star -connected ideal spaces.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X$, cl(A) and int(A) will, respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*) . Subsets of X closed in (X, τ^*) are called \star -closed sets. A subset A of Xin an ideal space (X, τ, \mathcal{I}) is \star -closed if and only if $A^* \subset A$ [2]. An ideal space (X, τ, \mathcal{I}) is called \star -connected [1] if X cannot be written as the disjoint union of a nonempty open set and a nonempty \star -open set. Clearly, every \star -connected space is connected but the converse is not true [1, Remark 5]. If $\mathcal{I} = \{\emptyset\}$, then $\tau = \tau^*$ and so \star -connectedness coincides with connectedness. Nonempty

¹Department of Mathematics, ANJA College, Sivakasi-626 124, Tamil Nadu, India, e-mail: sathyamat03@yahoo.co.in

²Department of Mathematics, ANJA College, Sivakasi-626 124, Tamil Nadu, India, e-mail: renu_siva2003@yahoo.com

subsets A and B of an ideal space (X, τ, \mathcal{I}) are said to be \star – separated [1] if $cl^{\star}(A) \cap B = A \cap cl(B) = \emptyset$. Clearly, separated sets are \star – separated but one can easily show that the converse is not true. A subset A of an ideal space (X, τ, \mathcal{I}) is called \star_s – connected [1] if A is not the union of two \star – separated sets in (X, τ, \mathcal{I}) . The ideal space (X, τ, \mathcal{I}) is called \star_s – connected if X is \star_s – connected as a subset. The following lemma will be useful in the sequel.

Lemma 1.1. [1, Theorem 14] Let (X, τ, \mathcal{I}) be an ideal space. If A is a \star_s -connected set of X and H, G are \star -separated sets of X with $A \subset H \cup G$, then either $A \subset H$ or $A \subset G$.

2. Main Results

In this section, we give the properties of \star -separated, \star -connected subsets. The following Theorem 2.1 deals with \star -separated sets. If $\mathcal{I} = \{\emptyset\}$, in Theorem 2.1, we get Corollary 2.3.

Theorem 2.1. Let (X, τ, \mathcal{I}) be an ideal space. If A and B are nonempty disjoint sets such that A is open and B is \star -open, then A and B are \star -separated.

Proof. $A \cap B = \emptyset$ implies that $A \subset X - B$ and so $cl^{\star}(A) \subset cl^{\star}(X - B) = X - B$ which implies that $cl^{\star}(A) \cap B = \emptyset$. Again, $B \subset X - A$ implies that $cl(B) \subset cl(X - A) = X - A$ and so $cl(B) \cap A = \emptyset$. Therefore, A and B are \star -separated.

Corollary 2.2. Let (X, τ, \mathcal{I}) be an ideal space. Then the disjoint nonempty open sets of X are \star -separated.

Corollary 2.3. In any space (X, τ) , the disjoint nonempty open sets are separated.

Theorem 2.4. If every pair of distinct points of a subset E of an ideal space (X, τ, \mathcal{I}) are elements of some \star_s -connected subset of E, then E is a \star_s -connected subset of X.

Proof. Suppose E is not \star_s -connected. Then there exist nonempty subsets A and B of X such that $cl^*(A) \cap B = \emptyset = A \cap cl(B)$ and $E = A \cup B$. Since A and B are nonempty, there exists a point $a \in A$ and a point $b \in B$. By hypothesis, a and b must be elements of a \star_s -connected subset C of E. Since $C \subset A \cup B$, by Lemma 1.1, either $C \subset A$ or $C \subset B$. Consequently, either a and b are both in A or both in B. Let $a, b \in A$. Then, $A \cap B \neq \emptyset$, a contradiction to the fact that A and B are disjoint. Therefore, E must be \star_s -connected.

Theorem 2.5. [1] Let Y be an open subset of an ideal space (X, τ, \mathcal{I}) . Then, the following are equivalent.

- (a) Y is \star_s -connected in X.
- (b) Y is \star -connected in X.

Theorem 2.6. Let (X, τ, \mathcal{I}) be an ideal space. Then X is \star -connected if and only if X is \star_s -connected.

Note on \star -connected ideal spaces

Proof. The proof follows from Theorem 2.5.

The following theorem gives a property of \star -separated sets. If $\mathcal{I} = \{\emptyset\}$ in Theorem 2.7, we get Corollary 2.8.

Theorem 2.7. Let A and B be two \star -separated sets in an ideal space (X, τ, \mathcal{I}) . If C and D are nonempty subsets such that $C \subset A$ and $D \subset B$, then C and D are also \star -separated.

Proof. Since A and B are \star -separated, $cl^{\star}(A) \cap B = \emptyset = A \cap cl(B)$. Now, $cl^{\star}(C) \cap D \subset cl^{\star}(A) \cap B = \emptyset$ and so $cl^{\star}(C) \cap D = \emptyset$. Similarly, we can prove that $C \cap cl(D) = \emptyset$. Hence C and D are \star -separated.

Corollary 2.8. Let A and B be two separated sets in (X, τ) . If C and D are nonempty subsets such that $C \subset A$ and $D \subset B$, then C and D are also separated.

The following theorem gives a property of \star_s -connected subsets. If $\mathcal{I} = \{\emptyset\}$ in Theorem 2.9, we get Corollary 2.11.

Theorem 2.9. If A is a \star_s -connected subset of a \star_s -connected ideal topological space (X, τ, \mathcal{I}) such that X - A is the union of two \star -separated sets B and C, then $A \cup B$ and $A \cup C$ are \star_s -connected.

Proof. Suppose $A \cup B$ is not \star_s -connected. Then there exist two nonempty \star -separated sets G and H such that $A \cup B = G \cup H$. Since A is \star_s -connected, $A \subset A \cup B = G \cup H$, by Lemma 1.1, either $A \subset G$ or $A \subset H$. Suppose $A \subset G$. Since $A \cup B = G \cup H$, $A \subset G$ implies that $A \cup B \subset G \cup B$ and so $G \cup H \subset G \cup B$. Hence $H \subset B$. Since B and C are \star -separated, H and C are also \star -separated. Thus, H is \star -separated from G as well as C. Now, $cl^{\star}(H) \cap (G \cup C) = (cl^{\star}(H) \cap G) \cup (cl^{\star}(H) \cap C) = \emptyset$ and $H \cap cl(G \cup C) =$ $H \cap (cl(G) \cup cl(C)) = (H \cap cl(G)) \cup (H \cap cl(C)) = \emptyset$. Therefore, H is \star -separated from $G \cup C$. Since $X - A = B \cup C$, $X = A \cup (B \cup C) = (A \cup B) \cup C = (G \cup H) \cup C$, since $A \cup B = G \cup H$ and so $X = (G \cup C) \cup H$. Thus, X is the union of two nonempty \star -separated sets $G \cup C$ and H, which is a contradiction. Similar contradiction will arise if $A \subset H$. Hence, $A \cup B$ is \star_s -connected. Similarly, we can prove that $A \cup C$ is \star_s -connected. \Box

Corollary 2.10. If A is a connected subset of a connected space (X, τ) such that X - A is the union of two separated sets B and C, then $A \cup B$ and $A \cup C$ are connected.

The following example shows that the union of two \star_s -connected sets is not a \star_s -connected set. Theorem 2.12 shows that the union of two \star_s -connected sets is a \star_s -connected set, if none of them is \star -separated.

Example 2.11. Consider the ideal space (X, τ, \mathcal{I}) where $X = \{a, b, c, d\}, \tau = \{\emptyset, \{b\}, \{b, c\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\emptyset, \{b\}\}$. If $A = \{a, b\}$ and $B = \{a, d\}$, then A and B are \star_s -connected. But $A \cup B = \{a, b, d\} = \{b\} \cup \{a, d\}$. Here $cl^{\star}(\{b\}) \cap \{a, d\} = \{b\} \cap \{a, d\} = \emptyset$ and $\{b\} \cap cl(\{a, d\}) = \{b\} \cap \{a, d\} = \emptyset$ and so $\{b\}$ and $\{a, d\}$ are \star -separated sets. Hence, $A \cup B$ is not \star_s -connected.

Theorem 2.12. If A and B are \star_s -connected sets of an ideal space (X, τ, \mathcal{I}) such that none of them is \star -separated, then $A \cup B$ is \star_s -connected.

Proof. Let *A* and *B* be \star_s -connected in *X*. Suppose *A*∪*B* is not \star_s -connected. Then, there exist two nonempty disjoint \star -seperated sets *G* and *H* such that *A*∪*B* = *G*∪*H*. Since *A* and *B* are \star_s -connected, by Lemma 1.1, either *A* ⊂ *G* and *B* ⊂ *H* or *B* ⊂ *G* and *A* ⊂ *H*. Now if *A* ⊂ *G* and *B* ⊂ *H*, then *A*∩*H* = *B*∩*G* = ∅. Therefore, (*A*∪*B*)∩*G* = (*A*∩*G*)∪(*B*∩*G*) = (*A*∩*G*)∪∅ = *A*∩*G* = *A*. Also, (*A*∪*B*)∩*H* = (*A*∩*H*)∪(*B*∩*H*) = *B*∩*H* = *B*. Similarly, if *A* ⊂ *H* and *B* ⊂ *G*, then (*A*∪*B*)∩*G* = *A* and (*A*∪*B*)∩*H* = *B*. Now, ((*A*∪*B*)∩*H*)∩ *cl*((*A*∪*B*)∩*G*) ⊂ (*A*∪*B*)∩*H*)∩ *cl*((*A*∪*B*)∩*H*)∩ ((*A*∪*B*)∩*G*) ⊂ *cl*^{*}(*A*∪*B*)∩*Cl*^{*}(*H*)∩(*A*∪*B*)∩*G* = (*A*∪*B*)∩*cl*^{*}(*H*)∩(*A*∪*B*)∩*G* = (*A*∪*B*)∩*cl*^{*}(*H*)∩(*A*∪*B*)∩*G* = (*A*∪*B*)∩*G* and (*A*∪*B*)∩*H* are \star -seperated sets. Thus, *A* and *B* are \star -seperated, which is a contradiction. Hence, *A*∪*B* is \star_s -connected.

Theorem 2.13. Let (X, τ, \mathcal{I}) be an ideal space and $\{A_{\alpha}\}$ be a family of \star_s -connected subspaces of X, and A be a \star_s -connected subspace of X. If $A \cap A_{\alpha} \neq \emptyset$ for every α , then $A \cup (\bigcup A_{\alpha})$ is \star_s -connected.

Proof. Let $Y = A \cup (\bigcup A_{\alpha})$. Suppose that Y is not \star_s -connected. Then there exist \star -separated sets H and G such that $Y = G \cup H$. Since A is \star_s -connected, by Lemma 1.1, either $A \subset G$ or $A \subset H$. Suppose $A \subset H$. For each α , since $A \cap A_{\alpha} \neq \emptyset$, there exists $x_{\alpha} \in A \cap A_{\alpha}$ which implies that $x_{\alpha} \in A$ and $x_{\alpha} \in A_{\alpha}$. Since $A \subset H$, $x_{\alpha} \in H$ and so $x_{\alpha} \notin cl(G)$, which implies that $x_{\alpha} \notin A_{\alpha}$ and $x_{\alpha} \notin G$. Since each A_{α} is \star_s -connected, either $A_{\alpha} \subset G$ or $A_{\alpha} \subset H$. Now, $x_{\alpha} \in A_{\alpha}$ and $x_{\alpha} \notin G$ implies that $A_{\alpha} \subset H$, which in turn implies that $Y = A \cup (\bigcup A_{\alpha}) \subset H$ and so $G = \emptyset$, a contradiction. Thus, Y is \star_s -connected.

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 2.13, we have the following corollary.

Corollary 2.14. Let (X, τ) be a space, $\{A_{\alpha}\}$ be a family of connected subsets of X, and A be a connected subset of X. If $A \cap A_{\alpha} \neq \emptyset$ for every α , then $A \cup (\bigcup A_{\alpha})$ is connected.

Theorem 2.15. Let (X, τ, \mathcal{I}) be an ideal space and $A \subset X$. If C is \star_s -connected subspace of X that intersects both A and X - A, then C intersects Bd(A), the boundary of A.

Proof. Suppose $C \cap Bd(A) = \emptyset$. Then $C \cap cl(A) \cap cl(X - A) = \emptyset$. Now, $C = C \cap X = C \cap (A \cup (X - A)) = (C \cap A) \cup (C \cap (X - A))$. Also, $cl^*(C \cap A) \cap (C \cap (X - A)) \subset cl^*(C) \cap cl^*(A) \cap C \cap (X - A) = C \cap cl^*(A) \cap (X - A) = \emptyset$ and $(C \cap A) \cap cl(C \cap (X - A)) \subset C \cap A \cap cl(C) \cap cl(X - A) = C \cap cl(X - A) \cap A = \emptyset$. Thus, $C \cap A$ and $C \cap (X - A)$ form a \star -separation for C, which is a contradiction. Hence, $C \cap Bd(A) \neq \emptyset$. □

Corollary 2.16. Let (X, τ, \mathcal{I}) be a \star -connected ideal space. Then every nonempty proper subset has a nonempty boundary. Note on \star -connected ideal spaces

Theorem 2.17. Let (X, τ, \mathcal{I}) be an ideal space. If the union of two \star -separated sets is a closed set, then one set is closed and the other is \star -closed.

Proof. Let *A* and *B* be two *⋆*-separated sets such that $A \cup B$ is closed. Then $A \cap cl^{\star}(B) = \emptyset = cl(A) \cap B$. Since $A \cup B$ is closed, $A \cup B = cl(A) \cup cl(B)$. Now, $cl(A) = cl(A) \cap (cl(A) \cup cl(B)) = cl(A) \cap (A \cup B) = (cl(A) \cap A) \cup (cl(A) \cap B) = A \cup \emptyset = A$ and so *A* is closed. Also, $B \subset A \cup B$ implies that $cl^{\star}(B) \subset cl^{\star}(A \cup B) \subset cl(A \cup B) = cl(A \cup B) = cl^{\star}(B) \cap (A \cup B) = (cl^{\star}(B) \cap A) \cup (cl^{\star}(B) \cap B) = \emptyset \cup B = B$. Hence *B* is *⋆*-closed. □

Theorem 2.18. An ideal space (X, τ, \mathcal{I}) is \star -connected if and only if no nonempty proper subset of X is both open and \star -closed.

Proof. The proof follows from the definition of \star -connected ideal spaces. \Box

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 2.18, we have the following corollary.

Corollary 2.19. A space (X, τ) is connected if and only if no nonempty proper subset of X is both open and closed.

The union of all \star_s -connected subset of X in an ideal space (X, τ, \mathcal{I}) containing a point $x \in X$ is said to be the \star -component [1] of X containing x. Moreover, in [1], it is established that every \star -component is a maximal \star_s -connected \star -closed subset of X. The following theorem gives a property of \star_s -connected subset of X.

Theorem 2.20. Let (X, τ, \mathcal{I}) be an ideal space. Then, each \star_s -connected subset of X which is both open and \star -closed is a \star -component of X.

Proof. Let A be a \star_s -connected subset of X such that A is both open and \star -closed. Let $x \in A$. Since A is a \star_s -connected subset of X containing x, if C is the \star -component containing x, then $A \subset C$. Let A be a proper subset of C. Then C is nonempty and $C \cap (X - A) \neq \emptyset$. Since A is open and \star -closed, X - A is closed and \star -open. $(A \cap C) \cap ((X - A) \cap C) = \emptyset$. Also, $(A \cap C) \cup ((X - A) \cap C) =$ $(A \cup (X - A)) \cap C = C$. Again, A and X - A are two nonempty disjoint open and \star -open sets respectively such that $A \cap cl(X - A) = \emptyset$ and $cl^{\star}(A) \cap (X - A) = \emptyset$. Thus, A and X - A form a \star -separation for C. Hence, C is not \star_s -connected, a contradiction. Hence, A is not a proper subset of C and so A = C. This completes the proof. □

If $\mathcal{I} = \{\emptyset\}$ in the above Theorem 2.20, we have the following Corollary 2.21.

Corollary 2.21. Let (X, τ) be a space. Then, each connected subset of X which is both open and closed is a component of X.

Acknowledgement

The authors sincerely thank the referee for the valuable comments and suggestions.

References

- Ekici, E., Noiri, T., Connectedness in ideal topological spaces. Novi Sad J. Math. 38(2) (2008), 65 - 70.
- [2] Janković, D., Hamlett, T. R., New topologies from old via ideals. Amer. Math. Monthly 97 (1990), 295 - 310.
- [3] Kuratowski, K., Topology, Vol I. New York: Academic press, 1966.
- [4] Vaidyanathaswamy, V., The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51 - 61.

Received by the editors September 15, 2009

20