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LINEAR SPAN OF THE CONJUGACY CLASS OF A
MATRIX

Marcin Skrzyrnski®

Abstract. Let M, be the vector space of all n X n-matrices over an
algebraically closed field F of characteristic zero. We describe the linear
span of the conjugacy class (with respect to the full linear group GL,)
of an arbitrary matrix A € M,,, and derive the existence of some par-
ticular bases of M,,. Moreover, we propose certain observations on finite
sequences of nilpotent matrices and their linear spans.
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0. Introduction

Let F be an algebraically closed field of characteristic zero and let n €
N\ {0, 1}. We consider the vector space M,, of all n x n-matrices over F. Let
I, O € M,, be the unit matrix and the zero matrix, respectively. We define
sl, ={A e M, : tr(A) =0} and GL,, = {U € M,, : det(U) # 0}. We denote
by O(A) the conjugacy class of a matrix A € M,,, i. e., O(A) = {U AU : U ¢
GL,}. Finally, we define S2(A) to be the sum of all principal minors of size 2 of
the matrix A, and denote by Span & the linear span (over F) of a set £ C M,,.
(It € ={A, ..., Aa}, then we write Span(A4;, ..., Ag) instead of Span&).

It is well known that a matrix A € M,, is nilpotent iff the conjugacy class
O(A) is a cone, in the sense that AB € O(A) for each B € O(A) and each
A € F\ {0}. Notice also that S3(A) = 0 whenever A is nilpotent.

The only topology we consider on the spaces M,, =2 F"* and

2
M, X ... x M, 2 F¥""
N————
d times

where d > 2, and on all their subsets is the Zariski topology.
The key fact we will use is

Theorem 0.1 (Gerstenhaber — Hesselink). Let A, B € M,,. Suppose that A is
a nilpotent matriz. Then the following conditions are equivalent:

(1) B e O(A), the Zariski closure of O(A) in the space M.,,,

(2) tk(B*) <1k(A*) for all k € N\ {0}.
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Proofs of the theorem can be found, for instance, in [, @, &].
We will also use the following version of Gerstenhaber’s theorem on linear
spaces of nilpotent matrices.

Theorem 0.2. If A € M, is a nilpotent matriz, then

max{dim L : £ is a linear subspace of M, L C O(A)}

o0

=2 <n2 — 3 (rk(AF) — rk(AF+Y)) )

k=0
In particular,

max{dim L : £ is a linear subspace of M,

L consists of nilpotent matrices only} = n(n —1)/2.

Proofs and other versions of Theorem 02 can be found in [I, B, A].

We refer for all information needed on algebraic geometry to [i].

In the present note, we describe the linear span of the conjugacy class of an
arbitrary (non-scalar) matrix A € M,,, and derive the existence of some particu-
lar bases of the space M,,. Moreover, given a nilpotent matrix A € M, \{O}, we
propose a necessary and sufficient condition for the existence of a finite sequence
(A, ..., Ay) of elements of O(A) with the property that Span(A4i, ..., Ay)
consists of nilpotent matrices only. We also propose a necessary and sufficient
condition for the existence of such a sequence with the property that its linear
span is contained in O(A).

1. Results

Our main observation is that the linear subspace of M, spanned by the
conjugacy class of a non-scalar matrix is always as large as possible. More
precisely, the following theorem holds true.

Theorem 1.1. If A € M, \ FI, then

| sy, if tr(A) =0,
Span O(A) { M,,, otherwise.

Proof. Define £ = Span O(A), and consider first the case where A is nilpotent.
Notice that in this case tr(A) = 0 which yields £ C sl,,. For each pair (p, ¢q) of
different positive integers not greater than n define By = [B;;] € M,, by

6ij — { (1): if (i, .7) = (pa Q),

otherwise.

Furthermore, for each integer r such that 1 < r < n define C, = [v;;] € M,, by

L if (4, j) € {(1, 1), (1, ")},
Yij = _17 if (7’) .7) € {(7"7 1)7 (Ta ’I")},
0, otherwise.
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Observe that rk(By,) = rk(C,) = 1 and ng = C? = O for all suitable (p, q)

and r. Consequently, by the Gerstenhaber — Hesselink theorem, B,, € O(A)

and C, € O(A), again for all suitable (p, ¢) and r. It is quite easy to verify
that all the matrices B, and C, form a linearly independent set with n* — 1
elements. Since O(A) C L C sl,,, we finally obtain dim £ > n? — 1 = dimsl,
and £ = sl,.

Consider now the case where A is not nilpotent. Notice that the assumption
A ¢ FI yields dimO(A) > 1, and the non-nilpotency implies that O(A) #
FO(A). Consequently, dimFO(A) > 2. By the “in particular” part of [§,
Lemma 3.1], we have dim{C € FO(A) : C is nilpotent} = —1+dimFO(A) > 1.
Therefore, there is a non-zero nilpotent matrix B € FO(A). Observe that
O(B) C FO(A) C L. Applying to B the just-proved nilpotent case of our
theorem, we obtain Span O(B) = sl,, C L. If tr(A) = 0, then £ C sl,, and the
equality £ = sl,, follows. If tr(A) # 0, then £ D sl,, ® FA = M,, which yields
L=M,. O

The above theorem immediately implies the existence of some particular
bases of the space M,,.

Corollary 1.2. Let A € M, \{O} be a nilpotent matriz and let B € M., satisfy
the condition tr(B) # 0. Then, there are matrices Ay, ..., Apz_o € O(A) such
that (A, B, Ay, ..., Ap2_3) is a basis of M,,.

Corollary 1.3. Let A € M, \ FI be such that tr(A) # 0. Then there are
matrices Ay, ..., Ap2 € O(A) which form a basis of the space M,,.

Let us note down an alternative version of Corollary 2.

Corollary 1.4. Let A, B € M, \ {O}. Assume that A is a nilpotent matriz
and that tr(B) = 0. Then, there is an integer d satisfying inequalities 1 < d <
n? —1 and there are linearly independent matrices Ay, ..., Aq € O(A) such that

d
B=Y A.
i=1
We conclude the present note with the following

Theorem 1.5. Let A € M, \ {O} be a nilpotent matriz and let d be an integer
such that 2 < d <n?—1. Define

U={(A1, ..., Ag) € O(A) x ... x O(A) : Ay,..., Ay are linearly independent},

d times

Up={(A1, ..., Ag) €U : Span(A4y, ..., Ag) consists of nilpotent matrices},

Uy ={(A1, ..., Ay) €U : Span(4y, ..., Ay) CO(A)}.

Then, the following are true:
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(i) U is a nonempty open subset of O(A) x ... x O(A),

d times
(i) Us SUy#U,
(iii) Uy and Ua are closed subsets of U,
(iv) Uy #0 < d<n(n—1)/2,
1 o0
(’U) Uy 7’5 0= d < 5 n2 — (rk(Ak) _ rk(Ak'H))Q) .

k=0

Proof. The nonemptiness of U follows immediately from Theorem . The
openness is obvious, as well as the inclusion in (7).

To see the non-equality in (4) consider the Jordan canonical form J of the
matrix A, and notice that the matrices J and J' are linearly independent,
{J, JT} C O(A) and Sy (J 4+ JT) # 0. (If d > 3, then in virtue of Theorem [T
the pair (J, JT) can be completed to an element of If).

Assertion (%) follows from the closedness of the sets

{B € M,, : B is nilpotent} and O(A)

and from the fact that the map

d
My x...xM,> (Bl, Cey Bd)b—)Z)\iBi e M,
SN—— —
d times =t
is regular (hence continuous) for each (A1, ..., \g) € F%.

Implications “=” in (i) and (v) follow immediately from the Gerstenhaber
theorem on linear spaces of nilpotent matrices. To see implication “<” in (iv)
consider the set

T {B € M,, : B is nilpotent and upper triangular},

and observe that T is a linear subspace of M,,, dim7 = n(n — 1)/2 and

1
T C sl,. Consequently, if d < in(n — 1), then there is a d-dimensional lin-
ear subspace £ of M, such that £ C 7. Thus, by Theorem [, we have
L C sl, = Span O(A) which implies that £ = Span(A;, ..., Ayq) for some
(A1, ..., Ag) € U. Therefore, (Ay, ..., Ag) € Up. The implication “<=” in (v)
can be proved in an analogous way, with 7 replaced by a linear subspace S

1 G e

of M,, such that dimS = 3 n? — Z (rk(Ak) - rk(Ak+1))2> and S C O(A).
k=0

(The existence of such a subspace follows from the Gerstenhaber theorem on

linear spaces of nilpotent matrices). O

Notice that Gerstenhaber’s Theorems Ol and 2 remain true over an arbi-
trary field of characteristic zero. Consequently, Theorem [, with an additional
assumption that A is a nilpotent matrix, is valid over an arbitrary field of char-
acteristic zero. This implies that Corollary 2, Corollary T4 and Theorem I3
remain true over an arbitrary field of characteristic zero.
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