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LINEAR SPAN OF THE CONJUGACY CLASS OF A
MATRIX

Marcin Skrzyński1

Abstract. Let Mn be the vector space of all n × n-matrices over an
algebraically closed field F of characteristic zero. We describe the linear
span of the conjugacy class (with respect to the full linear group GLn)
of an arbitrary matrix A ∈ Mn, and derive the existence of some par-
ticular bases of Mn. Moreover, we propose certain observations on finite
sequences of nilpotent matrices and their linear spans.
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0. Introduction

Let F be an algebraically closed field of characteristic zero and let n ∈
N \ {0, 1}. We consider the vector space Mn of all n× n-matrices over F. Let
I, O ∈ Mn be the unit matrix and the zero matrix, respectively. We define
sln = {A ∈ Mn : tr(A) = 0} and GLn = {U ∈ Mn : det(U) ̸= 0}. We denote
by O(A) the conjugacy class of a matrix A ∈ Mn, i. e., O(A) = {U−1AU : U ∈
GLn}. Finally, we define S2(A) to be the sum of all principal minors of size 2 of
the matrix A, and denote by Span E the linear span (over F) of a set E ⊆ Mn.
(If E = {A1, . . . , Ad}, then we write Span(A1, . . . , Ad) instead of Span E).

It is well known that a matrix A ∈ Mn is nilpotent iff the conjugacy class
O(A) is a cone, in the sense that λB ∈ O(A) for each B ∈ O(A) and each
λ ∈ F \ {0}. Notice also that S2(A) = 0 whenever A is nilpotent.

The only topology we consider on the spaces Mn
∼= Fn2

and

Mn × . . .×Mn︸ ︷︷ ︸
d times

∼= Fdn2

,

where d ≥ 2, and on all their subsets is the Zariski topology.
The key fact we will use is

Theorem 0.1 (Gerstenhaber – Hesselink). Let A, B ∈ Mn. Suppose that A is
a nilpotent matrix. Then the following conditions are equivalent:
(1) B ∈ O(A), the Zariski closure of O(A) in the space Mn,

(2) rk(Bk) ≤ rk(Ak) for all k ∈ N \ {0}.
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Proofs of the theorem can be found, for instance, in [2, 4, 5].
We will also use the following version of Gerstenhaber’s theorem on linear

spaces of nilpotent matrices.

Theorem 0.2. If A ∈ Mn is a nilpotent matrix, then

max{dimL :L is a linear subspace of Mn, L ⊆ O(A)}

=
1

2

(
n2 −

∞∑
k=0

(
rk(Ak)− rk(Ak+1)

)2)
.

In particular,

max{dimL :L is a linear subspace of Mn,

L consists of nilpotent matrices only} = n(n− 1)/2.

Proofs and other versions of Theorem 0.2 can be found in [1, 3, 6].
We refer for all information needed on algebraic geometry to [7].
In the present note, we describe the linear span of the conjugacy class of an

arbitrary (non-scalar) matrix A ∈ Mn, and derive the existence of some particu-
lar bases of the spaceMn. Moreover, given a nilpotent matrix A ∈ Mn\{O}, we
propose a necessary and sufficient condition for the existence of a finite sequence
(A1, . . . , Ad) of elements of O(A) with the property that Span(A1, . . . , Ad)
consists of nilpotent matrices only. We also propose a necessary and sufficient
condition for the existence of such a sequence with the property that its linear
span is contained in O(A).

1. Results

Our main observation is that the linear subspace of Mn spanned by the
conjugacy class of a non-scalar matrix is always as large as possible. More
precisely, the following theorem holds true.

Theorem 1.1. If A ∈ Mn \ FI, then

SpanO(A) =

{
sln, if tr(A) = 0,
Mn, otherwise.

Proof. Define L = SpanO(A), and consider first the case where A is nilpotent.
Notice that in this case tr(A) = 0 which yields L ⊆ sln. For each pair (p, q) of
different positive integers not greater than n define Bpq = [βij ] ∈ Mn by

βij =

{
1, if (i, j) = (p, q),
0, otherwise.

Furthermore, for each integer r such that 1 < r ≤ n define Cr = [γij ] ∈ Mn by

γij =

 1, if (i, j) ∈ {(1, 1), (1, r)},
−1, if (i, j) ∈ {(r, 1), (r, r)},
0, otherwise.
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Observe that rk(Bpq) = rk(Cr) = 1 and B2
pq = C2

r = O for all suitable (p, q)

and r. Consequently, by the Gerstenhaber – Hesselink theorem, Bpq ∈ O(A)

and Cr ∈ O(A), again for all suitable (p, q) and r. It is quite easy to verify
that all the matrices Bpq and Cr form a linearly independent set with n2 − 1

elements. Since O(A) ⊆ L ⊆ sln, we finally obtain dimL ≥ n2 − 1 = dim sln
and L = sln.

Consider now the case where A is not nilpotent. Notice that the assumption
A /∈ FI yields dimO(A) ≥ 1, and the non-nilpotency implies that O(A) ̸=
FO(A). Consequently, dimFO(A) ≥ 2. By the “in particular” part of [8,
Lemma 3.1], we have dim{C ∈ FO(A) : C is nilpotent} = −1+dimFO(A) ≥ 1.
Therefore, there is a non-zero nilpotent matrix B ∈ FO(A). Observe that
O(B) ⊆ FO(A) ⊆ L. Applying to B the just-proved nilpotent case of our
theorem, we obtain SpanO(B) = sln ⊆ L. If tr(A) = 0, then L ⊆ sln and the
equality L = sln follows. If tr(A) ̸= 0, then L ⊇ sln ⊕ FA = Mn which yields
L = Mn.

The above theorem immediately implies the existence of some particular
bases of the space Mn.

Corollary 1.2. Let A ∈ Mn\{O} be a nilpotent matrix and let B ∈ Mn satisfy
the condition tr(B) ̸= 0. Then, there are matrices A1, . . . , An2−2 ∈ O(A) such
that (A, B, A1, . . . , An2−2) is a basis of Mn.

Corollary 1.3. Let A ∈ Mn \ FI be such that tr(A) ̸= 0. Then there are
matrices A1, . . . , An2 ∈ O(A) which form a basis of the space Mn.

Let us note down an alternative version of Corollary 1.2.

Corollary 1.4. Let A, B ∈ Mn \ {O}. Assume that A is a nilpotent matrix
and that tr(B) = 0. Then, there is an integer d satisfying inequalities 1 ≤ d ≤
n2−1 and there are linearly independent matrices A1, . . . , Ad ∈ O(A) such that

B =
d∑

i=1

Ai.

We conclude the present note with the following

Theorem 1.5. Let A ∈ Mn \ {O} be a nilpotent matrix and let d be an integer
such that 2 ≤ d ≤ n2 − 1. Define

U = {(A1, . . . , Ad) ∈ O(A)× . . .×O(A)︸ ︷︷ ︸
d times

: A1, . . . , Ad are linearly independent},

U0 = {(A1, . . . , Ad) ∈ U : Span(A1, . . . , Ad) consists of nilpotent matrices},

UA = {(A1, . . . , Ad) ∈ U : Span(A1, . . . , Ad) ⊆ O(A)}.

Then, the following are true:
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(i) U is a nonempty open subset of O(A)× . . .×O(A)︸ ︷︷ ︸
d times

,

(ii) UA ⊆ U0 ̸= U ,
(iii) U0 and UA are closed subsets of U ,
(iv) U0 ̸= ∅ ⇔ d ≤ n(n− 1)/2,

(v) UA ̸= ∅ ⇔ d ≤ 1

2

(
n2 −

∞∑
k=0

(
rk(Ak)− rk(Ak+1)

)2)
.

Proof. The nonemptiness of U follows immediately from Theorem 1.1. The
openness is obvious, as well as the inclusion in (ii).

To see the non-equality in (ii) consider the Jordan canonical form J of the
matrix A, and notice that the matrices J and JT are linearly independent,
{J, JT} ⊆ O(A) and S2(J + JT) ̸= 0. (If d ≥ 3, then in virtue of Theorem 1.1
the pair (J, JT) can be completed to an element of U).

Assertion (iii) follows from the closedness of the sets

{B ∈ Mn : B is nilpotent} and O(A)

and from the fact that the map

Mn × . . .×Mn︸ ︷︷ ︸
d times

∋ (B1, . . . , Bd) 7→
d∑

i=1

λiBi ∈ Mn

is regular (hence continuous) for each (λ1, . . . , λd) ∈ Fd.
Implications “⇒” in (iv) and (v) follow immediately from the Gerstenhaber

theorem on linear spaces of nilpotent matrices. To see implication “⇐” in (iv)
consider the set

T def.
= {B ∈ Mn : B is nilpotent and upper triangular},

and observe that T is a linear subspace of Mn, dim T = n(n − 1)/2 and

T ⊂ sln. Consequently, if d ≤ 1

2
n(n − 1), then there is a d-dimensional lin-

ear subspace L of Mn such that L ⊆ T . Thus, by Theorem 1.1, we have
L ⊂ sln = SpanO(A) which implies that L = Span(A1, . . . , Ad) for some
(A1, . . . , Ad) ∈ U . Therefore, (A1, . . . , Ad) ∈ U0. The implication “⇐” in (v)
can be proved in an analogous way, with T replaced by a linear subspace S

of Mn such that dimS =
1

2

(
n2 −

∞∑
k=0

(
rk(Ak)− rk(Ak+1)

)2)
and S ⊂ O(A).

(The existence of such a subspace follows from the Gerstenhaber theorem on
linear spaces of nilpotent matrices).

Notice that Gerstenhaber’s Theorems 0.1 and 0.2 remain true over an arbi-
trary field of characteristic zero. Consequently, Theorem 1.1, with an additional
assumption that A is a nilpotent matrix, is valid over an arbitrary field of char-
acteristic zero. This implies that Corollary 1.2, Corollary 1.4 and Theorem 1.5
remain true over an arbitrary field of characteristic zero.



Linear span of the conjugacy class of a matrix 25

References

[1] Brualdi, R. A., Chavey, K. L., Linear spaces of Toeplitz and nilpotent matrices.
J. Comb. Theory, Ser. A 63 (1993), 65–78.

[2] Gerstenhaber, M., On dominance and varieties of commuting matrices. Ann.
Math. 73 (1961), 324–348.

[3] Gerstenhaber, M., On nilalgebras and linear varieties of nilpotent matrices IV.
Ann. Math. 75 (1962), 382–418.

[4] Hazewinkel, M., Martin, C. F., Representations of the symmetric group,
the specialization order, systems and Grassmann manifolds. L’Enseignement
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