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GENERALIZATIONS OF PRIMARY IDEALS IN
COMMUTATIVE RINGS

Ahmad Yousefian Darani”

Abstract. Let R be a commutative ring with identity. Let ¢ : J(R) —
J(R) U {0} be a function where J(R) denotes the set of all ideals of R. A
proper ideal @ of R is called ¢-primary if whenever a,b € R, ab € Q—¢(Q)
implies that either a € Q or b € /Q. So if we take ¢¢(Q) = 0 (resp.,
¢0(Q) = 0), a ¢-primary ideal is primary (resp., weakly primary). In this
paper we study the properties of several generalizations of primary ideals
of R.

AMS Mathematics Subject Classification (2010): 13A15

Key words and phrases: primary ideal, weakly primary ideal, almost pri-
mary ideal, ¢-primary ideal, strongly primary ideal

1. Introduction

Throughout this paper R will be a commutative ring with nonzero identity
having total quotient ring T'(R). We will denote the set of ideals of R by J(R).
By a proper ideal I of R we mean an ideal I of R with I # R. Denote by J*(R)
the set of proper ideals of R.

The concept of weakly prime ideals was introduced by Anderson and Smith
(2003), where an ideal P € J*(R) is called weakly prime if, for a,b € R with
0 # ab € P, either a € P or b € P, [?]. In [d], Bhatwadekar and Sharma (2005)
defined a proper ideal I of an integral domain R to be almost prime (resp., n-
almost prime) if for a,b € R with ab € I —I?, (resp., ab € I —I"(n > 2)) either
a € I or b € I. This definition can obviously be made for any commutative ring
R. Thus:

I prime = I weakly prime = I n-almost prime =- I almost prime.

Later, Anderson and Batanieh (2008) gave a generalization of prime ideals
which covers all the above mentioned definitions. Let ¢ : J(R) — J(R) U {0}
be a function. A proper ideal I of R is said to be ¢-prime if for a,b € R with
abe I —¢(I), either a € I or b € I, [].

The radical of an ideal I € J(R) is defined to be the set of all @ € R for
which a™ € I for some positive integer n. Primary ideals have an important
role in commutative ring theory. An ideal @ € J*(R) of R is said to be primary
provided that for a,b € R, ab € @Q implies that either a € Q or b € v/Q. We
can generalize the concept of primary ideals by enlarging the set where a and
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b lie, or by restricting the set where ab lies. Let R be an integral domain with
the quotient field K. Badawi and Houston [3] defined a proper ideal @ of R
to be strongly primary if, whenever ab € @Q with a,b € K, we have a € @
or b € v/@Q. The definition can obviously be made for any commutative ring R
using T'(R) instead of K. A proper ideal @ of R is weakly primary if for a,b € R
with 0 # ab € Q, either a € Q or b € \/Q. Weakly primary ideals were first
introduced and studied by Ebrahimi Atani and Farzalipour in 2005, [5]. We say
that a proper ideal @ of R is almost primary (resp., n-almost primary) provided
that for a,b € R, ab € Q — Q? (resp., ab € Q — Q™ (n > 2)) implies that a € Q
or b e +/Q.

In this paper we give some more generalizations of primary ideals and study
the properties of these classes of ideals. Many of our results are analogous to the
results in [0]. In fact, among the other results we prove the results mentioned
below. It is shown in Lemma P74 that if @ is a ¢-primary ideal of R with
Vo(Q) = ¢(/Q), then /@ is a ¢-prime ideal of R. Clearly, every primary ideal
is ¢-primary, but the converse does not necessarily hold. We prove in Theorem
20 that if Q is a ¢-primary ideal of R with Q? ¢ ¢(Q), then Q is primary.
Thus, if @ is not primary, then /Q = /¢(Q). Several characterizations of
¢-primary ideals are given in Theorem IR

2. Results

Definition 2.1. Let R be a commutative ring and let ¢ : J(R) — J(R)U{0} be
a function. A proper ideal @ of R is called ¢-primary (resp., strongly ¢-primary)
provided that for a,b € R (resp., a,b € T(R)), ab € Q — ¢(Q) implies a € Q or
beVaQ.

Example 2.2. Let R be a commutative ring. Define the map ¢, : J(R) —
J(R) U {0} as follows:

(1) ¢y : #(Q) = 0 defines primary ideals.
@0 = ¢(Q) = 0 defines weakly primary ideals.
¢+ 9(Q) = Q? defines almost primary ideals.
)+ ¢(Q) = Q™ defines n-almost primary ideals.
> 1 Q" defines w-primary ideals.

n
1 : ¢(Q) = Q defines any ideals.

Let R be a commutative ring. Clearly, every strongly ¢-primary ideal of
R is ¢-primary, but the converse does not necessarily hold. Now, consider the
following result.

Proposition 2.3. Let V ba a valuation ring with the quotient field K, and
let ¢ : I(V) = I(V)U {0} be a function. Then every ¢-primary ideal of V is
strongly ¢-primary.
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Proof. Let @ be a ¢-primary ideal of V. Let a,b € K be such that ab € Q—¢(Q)
but a ¢ Q. Consider the two cases a ¢ V and @ € V. In the former case,
a ' €V.Sob=a"tab € Q. So, assume that the latter case holds. Then, from
abb™t =a ¢ Q weget be V. Now a,b €V, ab € Q — ¢(Q) and Q ¢-primary
imply that b € /@, that is, Q is strongly ¢-primary. O

Remark 2.4.

1. Let R be a commutative ring, and let ¢ : J(R) — J(R)U{0} be a function.
Then, every ¢-prime ideal of R is ¢-primary.

2. Let R ba a commutative ring, @ an ideal of R and let ¢ : J(R) — J(R)U{0}
be a function with ¢(Q) € J(R). Then, if @ is a weakly primary ideal of
R, it is ¢-primary.

3. Given two functions 1,19 : J(R) — J(R) U {0}, we define ¢y < 1o if
Y1(J) C ha(J) for each J € J(R). Note in this case that

P9 < 0 < by <. K Ppy1 < @y < P < g1

4. Since I — ¢p(I) = I — (IN$(I)), without loss of generality we may assume
that ¢(I) C I. We henceforth make this assumption.

5. For an ideal A of R we define the function ¢4 : I(R) — J(R) U {0} by
da(J) = AJ.

Lemma 2.5. Let R be a commutative ring, and let ¢ : J(R) — J(R) U {0} be
a function. An ideal Q of R is ¢-primary if and only if Q/d(Q) is a weakly
primary ideal of R/¢(Q).

Proof. First assume that @ is a ¢-primary ideal of R. Let a,b € R be such that
0# (a+6(Q))b+d(Q)) € Q/d(Q). Then, ab € Q — ¢(Q) implies that either
a € Q or b e /Q. Hence, either a + ¢(Q) € Q/d(Q) or b+ ¢(Q) € VQ/P(Q) =

v Q/6(Q). Consequently, Q/¢d(Q) is weakly primary.
Conversely, assume that Q/¢(Q) is a weakly primary ideal of R/¢(Q). Let

a,b € R be such that ab € Q@ —¢(Q). Then 0 # (a+¢(Q))(b+d(Q)) € Q/P(Q).
Since Q/¢(Q) is weakly primary, either a + ¢(Q) € Q/d(Q) or b+ ¢(Q) €
VQ/d(Q) = VQ/d(Q); so either a € Q or b € \/Q, as required O

Proposition 2.6. Let R be a commutative ring and Q a proper ideal of R.

(1) Let 41,12 : I(R) — T(R) U {0} be functions with 1 < ¢o. Then, if Q is
1 -primary, it is Yo-primary too.

(2) (a) Q primary = Q weakly primary = Q w-primary = @ (n+ 1)-almost
primary = Q n-almost primary = @ almost primary.

(b) Q is w-primary if and only if Q is n-almost primary for all n > 2.

Proof. (1) It is obvious.
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(2) It follows from part (1) and the linear ordering in Remark P2.
O

Lemma 2.7. Let R be a commutative ring, and let ¢ : I(R) — T(R) U{0} be a

function. If Q is a ¢-primary ideal of R with \/$(Q) = ¢(/Q), then \/Q is a
¢-prime ideal of R.

Proof. Set P = +/Q and let a,b € R be such that ab € P — ¢(P) but a ¢ P.
Then there exists a positive integer n with a™b™ € Q. If (ab)™ € ¢(Q), then
ab € \/9(Q) = ¢(+/Q) = ¢(P) a contradiction. Since Q is ¢-primary, it follows
from a"b" € Q — ¢(Q) that b € /Q = P, that is P is ¢-prime. O

Theorem 2.8. Let I be a proper ideal of the commutative ring R, and let ¢ :
J(R) — J(R)U{D} be a function. Then the following statements are equivalent:

(i) 1 is ¢-primary.
(ii) For every a € R— /I, (I :g a) =T U (6(I) :R a).
(iii) For every a € R — /1, either (I :r a) =1 or (I :g a) = (¢(I) :r a).

(iv) For the ideals A and B of R, AB C I and AB ¢ ¢(I) imply A C I or
BCVI.

Proof. (i) = (i) Assume that I is ¢-primary. Clearly, IU(¢(I) :g a) C (I :g a).
On the other hand, for every r € (I :g a), if ra € ¢(I), then 7 € ((b([) a).
Otherwise, from ra € T — ¢(I) and a ¢ /T we get r € I. Hence, (I :p a) C

ITU(¢(I):ga). Thus, (I :pa)=1U (o) :r a).

(73) = (7it) Is clear because (I :g a) is an ideal of R.

(#91) = (i) Assume that ab € I — ¢(I) for some a,b € R. Obviously, (I :r
a) # (¢(I) :r a). If a ¢ VT, then by (iii), (I :g a) = I. This implies that b € I,
that is [ is ¢-primary.

(iit) = (iv) Let A and B be ideals of R with AB C I. Suppose that A € I
and B ¢ v/I. We will show that AB C ¢(I). Let b € B. We have two cases
b ¢ VIand b € VI. If the former case holds, then either (I :p b) = I or
(I :gb)=(6¢(I):gb) by (iii). Now from Ab C AB C I we have A C (I :p b).
Choose a € A\ I. Then from a € (I :g b) \ I and (iii) we get (I :g b) =
(¢(I) :p b). Therefore, A C (I :g b) = (¢(I) :g b), that is Ab C ¢(I). Now
suppose that the latter case holds. Then b € BN+/I. Choose b’ € B\\ﬁ Then
b+ € B\VI, and hence we have AV’ C ¢(I) and A(b+ ') C ¢(I). Let a € A.
Then ab = a(b+ V') — ab’ € ¢(I). Hence, Ab C ¢(I).

(iv) = (i) Let ab € I\¢(I), where a,b € R. Then (a)(b) C I, but (a)(b) €
#(I). The condition (iv) gives that (a) C I or (b)) C v/I. Hence, I is ¢-
primary. O

Let J be an ideal of R and ¢ : J(R) — J(R) U {0} a function. Define
oy :I(R/JT) — T(R/T)U{0} by ¢ (I/J) = (¢p(I)+J)/J for every ideal I € J(R)
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with J C I (and ¢;(I/J) =0 if ¢(I) = 0). In the following proposition we show
that if I is a ¢-primary ideal of R, then I/J is a ¢ j-primary ideal of R/J.

Proposition 2.9. Let Q) be a proper ideal of the commutative ring R, and let
¢ :T(R) = J(R)U{D} be a function. Assume that Q is a ¢-primary ideal of R.
Then

(1) If J is an ideal of R with J C Q, then Q/J is a ¢ j-primary ideal of R/J.
(2) If in addition J C #(Q), and Q/J is ¢ -primary, then Q is ¢-primary.
Proof.

(1) Assume that a,b € R are such that (a + J)(b+ J) € Q/J — ¢;(Q/J) =
Q/J — (p(Q)+ J)/J. Then ab € Q — ¢(Q) and Q ¢-primary gives a € Q

or b € /Q. Therefore, a +J € Q/J or b+ J € /Q/J = \/Q/J. This
shows that Q/J is ¢ -primary.

(2) Suppose that ab € Q — #(Q) for some a,b € R. Then (a + J)(b+ J) €
Q/I-6(Q)/J=Q/J—¢;(Q/J). Since Q/J is assumed to be ¢ j-primary,
we get a+J € Q/J or b+ J € +/Q/J = /Q/J. Consequently, either
a € Q orbe+/Q, that is Q is ¢-primary.

O

Let S be a multiplicatively closed subset of the commutative ring R. If @ is
a P-primary ideal of R, it is easy to see that PNS = () if and only if QNS = 0.
It is also well known that if @ NS = (), then Qg is a primary ideal of Rg and
Qs N R = Q. It is shown in [5, Proposition 2.8] that the second of these two
results holds for weakly primary ideals. Let ¢ : J(R) — J(R)U{0} be a function
and define ¢g : J(Rs) — T(Rg) U {0} by ¢5(J) = (¢(J N R))s (and ¢s(J) =0
if (JNR) = 0) for every ideal J of Rs. Note that ¢s(J) C J. In the following
Proposition, we show that if Q is a ¢-primary ideal of R with Q@ NS = ) and
?(Q)s C ds(Qs), then Qg is a ¢pg-primary ideal of Rg.

Proposition 2.10. Let R be a commutative ring, ¢ : J(R) — TJ(R) U {0} a
function and Q a ¢-primary ideal of R. Suppose that S is a multiplicatively
closed subset of R with QNS = 0 and ¢(Q)s C ¢s(Qs). Then Qg is a ¢g-
primary ideal of Rs. If Qs # &(Q)s, then Qs N R = Q.

Proof. Assume that %,% € Rg are such that %% € Qs — ¢s(Qs). Then, there
exists ¢ € Q and s’ € S such that 2 = <. Then us'ab = ustc € Q for some
u € S. Assume that us’ab € ¢(Q). Then %9 = usab o ?(Q)s C ¢5(Qs), a

contradiction. Hence us’'ab € Q — ¢(Q). As Qtis gb—%?fr%ary, we get us'a € Q or
b € \/Q. Therefore, either 2 € Qg or % € (vQ)s = v/Qs. This implies that Qg
is a ¢g-primary ideal of Rg.

Now assume that Qs # ¢(Q)s. Clearly, @ C Qs N R. For the reverse
containment, pick an element a € Qg N R. Then there exists ¢ € Q and s € S



32 A. Yousefian Darani

with ¢ = <. Therefore, tsa = tc for some t € S. If (ts)a ¢ ¢(Q), then
(ts)a € Q — #(Q) and /Q N S = 0 gives a € Q. So assume that (ts)a € ¢(Q).
In this case a € ¢(Q)s N R. Therefore, Qs N R C Q U (¢(Q)s N R). Tt follows
that either Qs N R = ¢(Q)s N R or Qs N R = Q. If the former case holds, then
Qs = ¢(Q)s which is a contradiction. So the result follows. O

Let R be a commutative ring, and let ¢ : J(R) — J(R) U {0} be a function.
Clearly, every primary ideal of R is ¢-primary. Theorems EZ10 and 2713 provide
some conditions under which a ¢-primary ideal is primary.

Theorem 2.11. Let R be a commutative ring, and let ¢ : I(R) — J(R) U {0}
be a function, and let Q be a ¢-primary ideal of R.

(1) If Q* ¢ ¢(Q), then Q is primary.

(2) If Q is not primary, then v/Q = /(Q).
Proof.

(1) Assume that a,b € R are such that ab € Q. If ab ¢ ¢(Q), since Q is ¢-
primary, either a € Q or b € v/Q. Hence we may assume that ab € ¢(Q).
If a@Q € ¢(Q), then there exists an element ag € @ such that aap ¢ ¢(Q).
Now a(ap +b) = aag+ab € Q — $(Q) and @Q ¢-primary imply that either
a€Qorayg+be/Q. But ag € Q C /Q. So, either a € Q or b € /Q.
Similarly, if bQ ¢ #(Q), we can show that either a € Q or b € /@Q. So we
may assume that a@Q C ¢(Q) and bQ C ¢(Q). Since Q* € ¢(Q), there exist
¢,d € Q with ed ¢ ¢(Q). Now (a+c)(b+d) = ab+ad+bc+cd € Q—p(Q),
imply that either a +c € Q or b+ d € \/Q. Therefore, either a € @ or
b € v/Q. Consequently, @ is primary.

(2) Since ¢(Q) C Q, we have 1/¢(Q) C +/Q. On the other hand, it follows
from part (1) that Q? C ¢(Q). Hence, /@ = /Q2 C 1/#(Q); and hence
VQ = /9(Q).

O

Corollary 2.12. Let Q be a ¢-primary ideal where ¢ < ¢3. Then Q is w-
primary.

Proof. If Q is primary, then it is w-primary. So assume that @) is not primary.
Then Q2 C ¢(Q) C Q* by Theorem EII. Hence ¢(Q) = Q" for every n > 2.
Consequently, @ is n-almost primary for every n > 2 and hence it is w-primary
by Proposition P4. O

Let R be a commutative ring. R is called decomposable if R = Ry X Ry for
some commutative rings Ry and Ry. If 7 is an ideal of Ry, then Rad(I; x Rg) =
Rad(I1) x Ry. Similarly, if I5 is an ideal of Ra, then Rad(R; xIs) = Ry x Rad(I3).
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Assume that both R; and Ry are commutative rings with identity. Then, by [5,
Theorem 2.6], the following hold:
(i) If P, is a primary ideal of Ry, then P; X Ry is a primary ideal of R.
(ii) If P, is a primary ideal of Ry, then Ry X P; is a primary ideal of R.
(iii) If P is a weakly primary ideal of R, then either P =0 or P is primary.
Now consider the following results:

Theorem 2.13. Let Ry and Ry be commutative rings and let ; : T(R;) —
J(R;) U {0} be a function for i = 1,2. Set R = Ry X Ra, and ¢ = 1)1 X 1a.
Then, Q is a ¢p-primary ideal of R if and only if one of the following cases hold:

(1) Q = Q1 % Q2 where, for i =1,2, Q; is a proper ideal of R; with ¥;(Q;) =
Q-

(2) Q = Q1 X Ry where Q1 is a ¢¥1-primary ideal of Ry which will be primary
if Y2(R2) # Ra.

(8) Q = Ry x Q2 where Q2 is a Yo-primary ideal of Ry which will be primary
if 1(R1) # Ry

Proof. First assume that @ is a ¢-primary ideal of R. Then Q = Q1 x Q2 for
some ideals @)1 and Q2 of R; and Ry, respectively. First we show that, for
1= 1,2, Q; is a Y;-primary ideal of R;. Let a1,b; € Ry be such that a1b; €
@1 — ¥1(Q1). Then, (a1,0)(b1,0) = (a1b1,0) € Q1 X Q2 — ¥1(Q1) X Y2(Q2) =
Q — #(Q). As Q is ¢-primary, either (a;,0) € Q or (b1,0) € /Q. So either
a1 € Q1 or by € v/Q1, that is Q1 is a 11-primary ideal of R;. In a similar way,
one can show that Q5 is a 1o-primary ideal of Ry. Now we show that @ has one
of the forms (1) — (3). If ¢(Q) = @, then ¥;(Q;) = Q; for i = 1,2. So assume
that ¢(Q) # Q. Then, either Q1 # ¥1(Q1) or Q2 # ¥2(Q2). If the former
case holds, there exists ¢ € Q1 — 11 (Q1). For every d € @2, from (¢,1)(1,d) =
(c,d) € Q1 x Q2 — 1(Q1) X P2(Q2) = Q — #(Q) we get (c,1) € Q1 x Q2 or
(1,d) € /Q1%+/Q2. Hence, either Q2 = Ry or Q1 = R;. Suppose that Q2 = Rs.
Then, Q = Q1 X Ry is a ¢-primary ideal of R, where ()1 is a i-primary ideal
of Ry. Now assume that 12(Rs) # Ra. Let a1,b; € Ry be such that a1b; € Q1.
Then, (al,l)(bl,l) = (albl,l) S Q1 X Ry — ¢1(Q1) X ¢2(R2) = Q — gb(Q)
since 1 ¢ ¥9(Rs). As Q = Q1 X Ry is ¢-primary we get (a1,1) € Q1 X Ry or
(b1,1) € VQ1 X Ry = /Q1 X Ry. So, either a; € Q1 or by € /@1, and this
implies that @ is primary. If the latter case holds, that is if Q2 # 12(Q2), one
can show that Q = Ry X Q2 is ¢-primary, where @5 is o-primary which must
be primary if 11 (R1) # R;.

Next we show that an ideal of R having one of these three types is ¢-primary.
In case (1) we have ¢(Q) = ¥1(Q1) X P2(Q2) = Q1 X Q2 = Q. So, obviously
Q is ¢-primary. If the case (2) holds, and if Q; is primary, then Q@ = Q1 X Rs
is a primary ideal of R and so it is ¢-primary. So, assume that @ is ;-
primary and 13(R2) = Ry. Let (a1, as), (b1,b2) € R be such that (a1by, asbs) =
(a1,a2)(b1,b2) € Q —d(Q) = Q1 x Ro —¥1(Q1) X ¢h2(R2) = (@1 —¥1(Q1)) X Ra.
Then, a1b; € Q1 — ¥1(Q1) gives a; € Q1 or by € /Q1. Thus, either (ay,a2) €
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Q1 X R or (b1,b2) € VQ1 X Ra = v/Q1 X Ry. Hence, Q is ¢-primary. The proof

for the case (3) is similar. O

Theorem 2.14. (1) Let T and S be commutative rings and let I be a weakly
primary ideal of T. Then J =1 X S is a ¢-primary ideal of R =T x S
for each ¢ with ¢, < ¢ < ¢1.

(2) Let R be a commutative ring and let J be a finitely generated proper ideal
of R. Suppose that J is ¢-primary where ¢ < ¢3. Then, either J is weakly
primary or J? # 0 is idempotent and R decomposes as T x S where S = J?
and J = I x S where I is weakly primary. Hence J is ¢-primary for each
¢ with ¢, < ¢ < 1.

Proof.

(1) Let I be a weakly primary ideal of T', and let ¢ : J(R) — J(R) U {0} be a
function with ¢, < ¢. If I is actually primary, then J is primary and hence
is ¢-primary for all ¢. So, assume that I is not primary. Then I? = 0
by [6, Theorem 2.2]. So J2 = 0 x S. It follows that ¢,(J) =0 x S. So,
J—=¢,(J) =IxS-0xS = (I—-{0})xS. Assume that (z1,z2), (y1,92) € R
are such that (z1,22)(y1,92) = (v1y1,22y2) € J — ¢, (J). Then, x1y; €
I—{0}. So, either z; € I or y; € /T since I is a weakly primary ideal of T'.
Therefore, either (z1,22) € J or (y1,92) € VI x S = /T x S. Therefore,
J is ¢,-primary and so it is ¢-primary.

(2) If J is primary, then J is weakly primary. So we may assume that J is
not primary. Then, by Theorem 211, J2 C ¢(.J) and hence J? C ¢(.J) C
#3(J) = J®. So J? = J3. Hence, J? is idempotent. Since J? is finitely
generated, we have J2 = Re for some idempotent element e € R. Consider
the two cases J2 = 0 and J? # 0. If the former case holds, then ¢(J) C
J3 =0. So ¢(J) = 0 and hence J is weakly primary. In the latter case,
put S=J?=Reand T = R(1—¢). Then, R=T x S. Let [ = J(1 —e¢).
Then, J =1 x S where 12 = (J(1 —¢))? = J2(1 —¢e)? = (e)(1 —¢) = 0.
We show that I is weakly primary. Suppose that zy € I — {0}. Then
(2, 1)(y,1) = (2y,1) € IxS—(Ix8)?=IxS5—-0xS8CJ—¢J)
since ¢ < ¢3. implies ¢(J) C J? = (I x S)3 =0 x S. Hence, (x,1) € J
or (y,1) € V/J since J is assumed to be ¢-primary. Therefore, 2 € I or
y € VI, that is I is weakly primary.

O
Corollary 2.15. Let R be an indecomposable commutative ring and J a finitely

generated ¢-primary ideal of R where ¢ < ¢3. Then J is weakly primary. If,
further, R is an integral domain, J is actually primary.

Corollary 2.16. Let R be a Noetherian integral domain. A proper ideal J of
R is primary if and only if xy € J — J° implies x € J ory € \/J.
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