NOVI SAD J. MATH. Vol. 42, No. 1, 2012, 27-35

GENERALIZATIONS OF PRIMARY IDEALS IN COMMUTATIVE RINGS

Ahmad Yousefian Darani¹

Abstract. Let *R* be a commutative ring with identity. Let $\phi : \Im(R) \to \Im(R) \cup \{\emptyset\}$ be a function where $\Im(R)$ denotes the set of all ideals of *R*. A proper ideal *Q* of *R* is called ϕ -primary if whenever $a, b \in R, ab \in Q - \phi(Q)$ implies that either $a \in Q$ or $b \in \sqrt{Q}$. So if we take $\phi_{\emptyset}(Q) = \emptyset$ (resp., $\phi_0(Q) = 0$), a ϕ -primary ideal is primary (resp., weakly primary). In this paper we study the properties of several generalizations of primary ideals of *R*.

AMS Mathematics Subject Classification (2010): 13A15

Key words and phrases: primary ideal, weakly primary ideal, almost primary ideal, ϕ -primary ideal, strongly primary ideal

1. Introduction

Throughout this paper R will be a commutative ring with nonzero identity having total quotient ring T(R). We will denote the set of ideals of R by $\Im(R)$. By a proper ideal I of R we mean an ideal I of R with $I \neq R$. Denote by $\Im^*(R)$ the set of proper ideals of R.

The concept of weakly prime ideals was introduced by Anderson and Smith (2003), where an ideal $P \in \mathfrak{I}^*(R)$ is called weakly prime if, for $a, b \in R$ with $0 \neq ab \in P$, either $a \in P$ or $b \in P$, [2]. In [4], Bhatwadekar and Sharma (2005) defined a proper ideal I of an integral domain R to be almost prime (resp., *n*-almost prime) if for $a, b \in R$ with $ab \in I - I^2$, (resp., $ab \in I - I^n (n \geq 2)$) either $a \in I$ or $b \in I$. This definition can obviously be made for any commutative ring R. Thus:

I prime \Rightarrow I weakly prime \Rightarrow I n-almost prime \Rightarrow I almost prime.

Later, Anderson and Batanieh (2008) gave a generalization of prime ideals which covers all the above mentioned definitions. Let $\phi : \Im(R) \to \Im(R) \cup \{\emptyset\}$ be a function. A proper ideal I of R is said to be ϕ -prime if for $a, b \in R$ with $ab \in I - \phi(I)$, either $a \in I$ or $b \in I$, [1].

The radical of an ideal $I \in \mathfrak{I}(R)$ is defined to be the set of all $a \in R$ for which $a^n \in I$ for some positive integer n. Primary ideals have an important role in commutative ring theory. An ideal $Q \in \mathfrak{I}^*(R)$ of R is said to be primary provided that for $a, b \in R$, $ab \in Q$ implies that either $a \in Q$ or $b \in \sqrt{Q}$. We can generalize the concept of primary ideals by enlarging the set where a and

¹Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran, e-mail: yousefian@uma.ac.ir, yousefian@gmail.com

b lie, or by restricting the set where ab lies. Let R be an integral domain with the quotient field K. Badawi and Houston [3] defined a proper ideal Q of Rto be strongly primary if, whenever $ab \in Q$ with $a, b \in K$, we have $a \in Q$ or $b \in \sqrt{Q}$. The definition can obviously be made for any commutative ring Rusing T(R) instead of K. A proper ideal Q of R is weakly primary if for $a, b \in R$ with $0 \neq ab \in Q$, either $a \in Q$ or $b \in \sqrt{Q}$. Weakly primary ideals were first introduced and studied by Ebrahimi Atani and Farzalipour in 2005, [5]. We say that a proper ideal Q of R is almost primary (resp., n-almost primary) provided that for $a, b \in R$, $ab \in Q - Q^2$ (resp., $ab \in Q - Q^n$ $(n \ge 2)$) implies that $a \in Q$ or $b \in \sqrt{Q}$.

In this paper we give some more generalizations of primary ideals and study the properties of these classes of ideals. Many of our results are analogous to the results in [1]. In fact, among the other results we prove the results mentioned below. It is shown in Lemma 2.7 that if Q is a ϕ -primary ideal of R with $\sqrt{\phi(Q)} = \phi(\sqrt{Q})$, then \sqrt{Q} is a ϕ -prime ideal of R. Clearly, every primary ideal is ϕ -primary, but the converse does not necessarily hold. We prove in Theorem 2.11 that if Q is a ϕ -primary ideal of R with $Q^2 \notin \phi(Q)$, then Q is primary. Thus, if Q is not primary, then $\sqrt{Q} = \sqrt{\phi(Q)}$. Several characterizations of ϕ -primary ideals are given in Theorem 2.8

2. Results

Definition 2.1. Let R be a commutative ring and let $\phi : \Im(R) \to \Im(R) \cup \{\emptyset\}$ be a function. A proper ideal Q of R is called ϕ -primary (resp., strongly ϕ -primary) provided that for $a, b \in R$ (resp., $a, b \in T(R)$), $ab \in Q - \phi(Q)$ implies $a \in Q$ or $b \in \sqrt{Q}$.

Example 2.2. Let R be a commutative ring. Define the map $\phi_{\alpha} : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ as follows:

- (1) $\phi_{\emptyset} : \phi(Q) = \emptyset$ defines primary ideals.
- (2) $\phi_0: \phi(Q) = 0$ defines weakly primary ideals.
- (3) ϕ_2 : $\phi(Q) = Q^2$ defines almost primary ideals.
- (4) $\phi_n (n \ge 2)$: $\phi(Q) = Q^n$ defines *n*-almost primary ideals.
- (5) $\phi_{\omega}: \phi(Q) = \bigcap_{n=1}^{\infty} Q^n$ defines ω -primary ideals.
- (6) $\phi_1 : \phi(Q) = Q$ defines any ideals.

Let R be a commutative ring. Clearly, every strongly ϕ -primary ideal of R is ϕ -primary, but the converse does not necessarily hold. Now, consider the following result.

Proposition 2.3. Let V be a valuation ring with the quotient field K, and let $\phi : \Im(V) \to \Im(V) \cup \{\emptyset\}$ be a function. Then every ϕ -primary ideal of V is strongly ϕ -primary.

Proof. Let Q be a ϕ -primary ideal of V. Let $a, b \in K$ be such that $ab \in Q - \phi(Q)$ but $a \notin Q$. Consider the two cases $a \notin V$ and $a \in V$. In the former case, $a^{-1} \in V$. So $b = a^{-1}ab \in Q$. So, assume that the latter case holds. Then, from $abb^{-1} = a \notin Q$ we get $b \in V$. Now $a, b \in V$, $ab \in Q - \phi(Q)$ and $Q \phi$ -primary imply that $b \in \sqrt{Q}$, that is, Q is strongly ϕ -primary.

Remark 2.4.

- 1. Let R be a commutative ring, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function. Then, every ϕ -prime ideal of R is ϕ -primary.
- 2. Let R be a commutative ring, Q an ideal of R and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function with $\phi(Q) \in \mathfrak{I}(R)$. Then, if Q is a weakly primary ideal of R, it is ϕ -primary.
- 3. Given two functions $\psi_1, \psi_2 : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$, we define $\psi_1 \leq \psi_2$ if $\psi_1(J) \subseteq \psi_2(J)$ for each $J \in \mathfrak{I}(R)$. Note in this case that

$$\phi_{\emptyset} \le \phi_0 \le \phi_{\omega} \le \dots \le \phi_{n+1} \le \phi_n \le \phi_2 \le \phi_1.$$

- 4. Since $I \phi(I) = I (I \cap \phi(I))$, without loss of generality we may assume that $\phi(I) \subseteq I$. We henceforth make this assumption.
- 5. For an ideal A of R we define the function $\phi_A : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ by $\phi_A(J) = AJ$.

Lemma 2.5. Let R be a commutative ring, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function. An ideal Q of R is ϕ -primary if and only if $Q/\phi(Q)$ is a weakly primary ideal of $R/\phi(Q)$.

Proof. First assume that Q is a ϕ -primary ideal of R. Let $a, b \in R$ be such that $0 \neq (a + \phi(Q))(b + \phi(Q)) \in Q/\phi(Q)$. Then, $ab \in Q - \phi(Q)$ implies that either $a \in Q$ or $b \in \sqrt{Q}$. Hence, either $a + \phi(Q) \in Q/\phi(Q)$ or $b + \phi(Q) \in \sqrt{Q}/\phi(Q) = \sqrt{Q/\phi(Q)}$. Consequently, $Q/\phi(Q)$ is weakly primary.

Conversely, assume that $Q/\phi(Q)$ is a weakly primary ideal of $R/\phi(Q)$. Let $a, b \in R$ be such that $ab \in Q - \phi(Q)$. Then $0 \neq (a + \phi(Q))(b + \phi(Q)) \in Q/\phi(Q)$. Since $Q/\phi(Q)$ is weakly primary, either $a + \phi(Q) \in Q/\phi(Q)$ or $b + \phi(Q) \in \sqrt{Q/\phi(Q)} = \sqrt{Q/\phi(Q)}$; so either $a \in Q$ or $b \in \sqrt{Q}$, as required

Proposition 2.6. Let R be a commutative ring and Q a proper ideal of R.

- (1) Let $\psi_1, \psi_2 : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be functions with $\psi_1 \leq \psi_2$. Then, if Q is ψ_1 -primary, it is ψ_2 -primary too.
- (2) (a) Q primary $\Rightarrow Q$ weakly primary $\Rightarrow Q \omega$ -primary $\Rightarrow Q (n+1)$ -almost primary $\Rightarrow Q$ n-almost primary $\Rightarrow Q$ almost primary.
 - (b) Q is ω -primary if and only if Q is n-almost primary for all $n \geq 2$.

Proof. (1) It is obvious.

(2) It follows from part (1) and the linear ordering in Remark 2.4.

Lemma 2.7. Let R be a commutative ring, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function. If Q is a ϕ -primary ideal of R with $\sqrt{\phi(Q)} = \phi(\sqrt{Q})$, then \sqrt{Q} is a ϕ -prime ideal of R.

Proof. Set $P = \sqrt{Q}$ and let $a, b \in R$ be such that $ab \in P - \phi(P)$ but $a \notin P$. Then there exists a positive integer n with $a^n b^n \in Q$. If $(ab)^n \in \phi(Q)$, then $ab \in \sqrt{\phi(Q)} = \phi(\sqrt{Q}) = \phi(P)$ a contradiction. Since Q is ϕ -primary, it follows from $a^n b^n \in Q - \phi(Q)$ that $b \in \sqrt{Q} = P$, that is P is ϕ -prime.

Theorem 2.8. Let I be a proper ideal of the commutative ring R, and let ϕ : $\Im(R) \to \Im(R) \cup \{\emptyset\}$ be a function. Then the following statements are equivalent:

- (i) I is ϕ -primary.
- (ii) For every $a \in R \sqrt{I}$, $(I :_R a) = I \cup (\phi(I) :_R a)$.
- (iii) For every $a \in R \sqrt{I}$, either $(I:_R a) = I$ or $(I:_R a) = (\phi(I):_R a)$.
- (iv) For the ideals A and B of R, $AB \subseteq I$ and $AB \nsubseteq \phi(I)$ imply $A \subseteq I$ or $B \subseteq \sqrt{I}$.

Proof. $(i) \Rightarrow (ii)$ Assume that I is ϕ -primary. Clearly, $I \cup (\phi(I) :_R a) \subseteq (I :_R a)$. On the other hand, for every $r \in (I :_R a)$, if $ra \in \phi(I)$, then $r \in (\phi(I) :_R a)$. Otherwise, from $ra \in I - \phi(I)$ and $a \notin \sqrt{I}$ we get $r \in I$. Hence, $(I :_R a) \subseteq I \cup (\phi(I) :_R a)$. Thus, $(I :_R a) = I \cup (\phi(I) :_R a)$.

 $(ii) \Rightarrow (iii)$ Is clear because $(I:_R a)$ is an ideal of R.

 $(iii) \Rightarrow (i)$ Assume that $ab \in I - \phi(I)$ for some $a, b \in R$. Obviously, $(I :_R a) \neq (\phi(I) :_R a)$. If $a \notin \sqrt{I}$, then by (iii), $(I :_R a) = I$. This implies that $b \in I$, that is I is ϕ -primary.

 $(iii) \Rightarrow (iv)$ Let A and B be ideals of R with $AB \subseteq I$. Suppose that $A \notin I$ and $B \notin \sqrt{I}$. We will show that $AB \subseteq \phi(I)$. Let $b \in B$. We have two cases $b \notin \sqrt{I}$ and $b \in \sqrt{I}$. If the former case holds, then either $(I :_R b) = I$ or $(I :_R b) = (\phi(I) :_R b)$ by (iii). Now from $Ab \subseteq AB \subseteq I$ we have $A \subseteq (I :_R b)$. Choose $a \in A \setminus I$. Then from $a \in (I :_R b) \setminus I$ and (iii) we get $(I :_R b) =$ $(\phi(I) :_R b)$. Therefore, $A \subseteq (I :_R b) = (\phi(I) :_R b)$, that is $Ab \subseteq \phi(I)$. Now suppose that the latter case holds. Then $b \in B \cap \sqrt{I}$. Choose $b' \in B \setminus \sqrt{I}$. Then $b + b' \in B \setminus \sqrt{I}$, and hence we have $Ab' \subseteq \phi(I)$ and $A(b + b') \subseteq \phi(I)$. Let $a \in A$. Then $ab = a(b + b') - ab' \in \phi(I)$. Hence, $Ab \subseteq \phi(I)$.

 $(iv) \Rightarrow (i)$ Let $ab \in I \setminus \phi(I)$, where $a, b \in R$. Then $(a)(b) \subseteq I$, but $(a)(b) \notin \phi(I)$. The condition (iv) gives that $(a) \subseteq I$ or $(b) \subseteq \sqrt{I}$. Hence, I is ϕ -primary. \Box

Let J be an ideal of R and $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ a function. Define $\phi_J : \mathfrak{I}(R/J) \to \mathfrak{I}(R/J) \cup \{\emptyset\}$ by $\phi_J(I/J) = (\phi(I)+J)/J$ for every ideal $I \in \mathfrak{I}(R)$

with $J \subseteq I$ (and $\phi_J(I/J) = \emptyset$ if $\phi(I) = \emptyset$). In the following proposition we show that if I is a ϕ -primary ideal of R, then I/J is a ϕ_J -primary ideal of R/J.

Proposition 2.9. Let Q be a proper ideal of the commutative ring R, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function. Assume that Q is a ϕ -primary ideal of R. Then

(1) If J is an ideal of R with $J \subseteq Q$, then Q/J is a ϕ_J -primary ideal of R/J.

(2) If in addition $J \subseteq \phi(Q)$, and Q/J is ϕ_J -primary, then Q is ϕ -primary.

Proof.

- (1) Assume that $a, b \in R$ are such that $(a + J)(b + J) \in Q/J \phi_J(Q/J) = Q/J (\phi(Q) + J)/J$. Then $ab \in Q \phi(Q)$ and $Q \phi$ -primary gives $a \in Q$ or $b \in \sqrt{Q}$. Therefore, $a + J \in Q/J$ or $b + J \in \sqrt{Q}/J = \sqrt{Q/J}$. This shows that Q/J is ϕ_J -primary.
- (2) Suppose that $ab \in Q \phi(Q)$ for some $a, b \in R$. Then $(a + J)(b + J) \in Q/J \phi(Q)/J = Q/J \phi_J(Q/J)$. Since Q/J is assumed to be ϕ_J -primary, we get $a + J \in Q/J$ or $b + J \in \sqrt{Q/J} = \sqrt{Q}/J$. Consequently, either $a \in Q$ or $b \in \sqrt{Q}$, that is Q is ϕ -primary.

Let S be a multiplicatively closed subset of the commutative ring R. If Q is a P-primary ideal of R, it is easy to see that $P \cap S = \emptyset$ if and only if $Q \cap S = \emptyset$. It is also well known that if $Q \cap S = \emptyset$, then Q_S is a primary ideal of R_S and $Q_S \cap R = Q$. It is shown in [5, Proposition 2.8] that the second of these two results holds for weakly primary ideals. Let $\phi : \Im(R) \to \Im(R) \cup \{\emptyset\}$ be a function and define $\phi_S : \Im(R_S) \to \Im(R_S) \cup \{\emptyset\}$ by $\phi_S(J) = (\phi(J \cap R))_S$ (and $\phi_S(J) = \emptyset$ if $\phi(J \cap R) = \emptyset$) for every ideal J of R_S . Note that $\phi_S(J) \subseteq J$. In the following Proposition, we show that if Q is a ϕ -primary ideal of R with $Q \cap S = \emptyset$ and $\phi(Q)_S \subseteq \phi_S(Q_S)$, then Q_S is a ϕ_S -primary ideal of R_S .

Proposition 2.10. Let R be a commutative ring, $\phi : \Im(R) \to \Im(R) \cup \{\emptyset\}$ a function and Q a ϕ -primary ideal of R. Suppose that S is a multiplicatively closed subset of R with $Q \cap S = \emptyset$ and $\phi(Q)_S \subseteq \phi_S(Q_S)$. Then Q_S is a ϕ_S -primary ideal of R_S . If $Q_S \neq \phi(Q)_S$, then $Q_S \cap R = Q$.

Proof. Assume that $\frac{a}{s}, \frac{b}{t} \in R_S$ are such that $\frac{a}{s}, \frac{b}{t} \in Q_S - \phi_S(Q_S)$. Then, there exists $c \in Q$ and $s' \in S$ such that $\frac{ab}{st} = \frac{c}{s'}$. Then $us'ab = ustc \in Q$ for some $u \in S$. Assume that $us'ab \in \phi(Q)$. Then $\frac{a}{s}, \frac{b}{t} = \frac{us'ab}{us'st} \in \phi(Q)_S \subseteq \phi_S(Q_S)$, a contradiction. Hence $us'ab \in Q - \phi(Q)$. As Q is ϕ -primary, we get $us'a \in Q$ or $b \in \sqrt{Q}$. Therefore, either $\frac{a}{s} \in Q_S$ or $\frac{b}{t} \in (\sqrt{Q})_S = \sqrt{Q_S}$. This implies that Q_S is a ϕ_S -primary ideal of R_S .

Now assume that $Q_S \neq \phi(Q)_S$. Clearly, $Q \subseteq Q_S \cap R$. For the reverse containment, pick an element $a \in Q_S \cap R$. Then there exists $c \in Q$ and $s \in S$

with $\frac{a}{1} = \frac{c}{s}$. Therefore, tsa = tc for some $t \in S$. If $(ts)a \notin \phi(Q)$, then $(ts)a \in Q - \phi(Q)$ and $\sqrt{Q} \cap S = \emptyset$ gives $a \in Q$. So assume that $(ts)a \in \phi(Q)$. In this case $a \in \phi(Q)_S \cap R$. Therefore, $Q_S \cap R \subseteq Q \cup (\phi(Q)_S \cap R)$. It follows that either $Q_S \cap R = \phi(Q)_S \cap R$ or $Q_S \cap R = Q$. If the former case holds, then $Q_S = \phi(Q)_S$ which is a contradiction. So the result follows.

Let R be a commutative ring, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function. Clearly, every primary ideal of R is ϕ -primary. Theorems 2.11 and 2.13 provide some conditions under which a ϕ -primary ideal is primary.

Theorem 2.11. Let R be a commutative ring, and let $\phi : \mathfrak{I}(R) \to \mathfrak{I}(R) \cup \{\emptyset\}$ be a function, and let Q be a ϕ -primary ideal of R.

- (1) If $Q^2 \not\subseteq \phi(Q)$, then Q is primary.
- (2) If Q is not primary, then $\sqrt{Q} = \sqrt{\phi(Q)}$.

Proof.

- (1) Assume that $a, b \in R$ are such that $ab \in Q$. If $ab \notin \phi(Q)$, since Q is ϕ -primary, either $a \in Q$ or $b \in \sqrt{Q}$. Hence we may assume that $ab \in \phi(Q)$. If $aQ \notin \phi(Q)$, then there exists an element $a_0 \in Q$ such that $aa_0 \notin \phi(Q)$. Now $a(a_0 + b) = aa_0 + ab \in Q - \phi(Q)$ and $Q \phi$ -primary imply that either $a \in Q$ or $a_0 + b \in \sqrt{Q}$. But $a_0 \in Q \subseteq \sqrt{Q}$. So, either $a \in Q$ or $b \in \sqrt{Q}$. Similarly, if $bQ \notin \phi(Q)$, we can show that either $a \in Q$ or $b \in \sqrt{Q}$. So we may assume that $aQ \subseteq \phi(Q)$ and $bQ \subseteq \phi(Q)$. Since $Q^2 \notin \phi(Q)$, there exist $c, d \in Q$ with $cd \notin \phi(Q)$. Now $(a+c)(b+d) = ab+ad+bc+cd \in Q - \phi(Q)$, imply that either $a + c \in Q$ or $b + d \in \sqrt{Q}$. Therefore, either $a \in Q$ or $b \in \sqrt{Q}$.
- (2) Since $\phi(Q) \subseteq Q$, we have $\sqrt{\phi(Q)} \subseteq \sqrt{Q}$. On the other hand, it follows from part (1) that $Q^2 \subseteq \phi(Q)$. Hence, $\sqrt{Q} = \sqrt{Q^2} \subseteq \sqrt{\phi(Q)}$; and hence $\sqrt{Q} = \sqrt{\phi(Q)}$.

Corollary 2.12. Let Q be a ϕ -primary ideal where $\phi \leq \phi_3$. Then Q is ω -primary.

Proof. If Q is primary, then it is ω -primary. So assume that Q is not primary. Then $Q^2 \subseteq \phi(Q) \subseteq Q^3$ by Theorem 2.11. Hence $\phi(Q) = Q^n$ for every $n \ge 2$. Consequently, Q is *n*-almost primary for every $n \ge 2$ and hence it is ω -primary by Proposition 2.6.

Let R be a commutative ring. R is called decomposable if $R = R_1 \times R_2$ for some commutative rings R_1 and R_2 . If I_1 is an ideal of R_1 , then $Rad(I_1 \times R_2) = Rad(I_1) \times R_2$. Similarly, if I_2 is an ideal of R_2 , then $Rad(R_1 \times I_2) = R_1 \times Rad(I_2)$. Assume that both R_1 and R_2 are commutative rings with identity. Then, by [5, Theorem 2.6], the following hold:

- (i) If P_1 is a primary ideal of R_1 , then $P_1 \times R_2$ is a primary ideal of R.
- (ii) If P_2 is a primary ideal of R_2 , then $R_1 \times P_2$ is a primary ideal of R.

(iii) If P is a weakly primary ideal of R, then either P = 0 or P is primary. Now consider the following results:

Theorem 2.13. Let R_1 and R_2 be commutative rings and let $\psi_i : \Im(R_i) \to \Im(R_i) \cup \{\emptyset\}$ be a function for i = 1, 2. Set $R = R_1 \times R_2$, and $\phi = \psi_1 \times \psi_2$. Then, Q is a ϕ -primary ideal of R if and only if one of the following cases hold:

- (1) $Q = Q_1 \times Q_2$ where, for $i = 1, 2, Q_i$ is a proper ideal of R_i with $\psi_i(Q_i) = Q_i$.
- (2) $Q = Q_1 \times R_2$ where Q_1 is a ψ_1 -primary ideal of R_1 which will be primary if $\psi_2(R_2) \neq R_2$.
- (3) $Q = R_1 \times Q_2$ where Q_2 is a ψ_2 -primary ideal of R_2 which will be primary if $\psi_1(R_1) \neq R_1$.

Proof. First assume that Q is a ϕ -primary ideal of R. Then $Q = Q_1 \times Q_2$ for some ideals Q_1 and Q_2 of R_1 and R_2 , respectively. First we show that, for $i = 1, 2, Q_i$ is a ψ_i -primary ideal of R_i . Let $a_1, b_1 \in R_1$ be such that $a_1 b_1 \in R_1$ $Q_1 - \psi_1(Q_1)$. Then, $(a_1, 0)(b_1, 0) = (a_1b_1, 0) \in Q_1 \times Q_2 - \psi_1(Q_1) \times \psi_2(Q_2) =$ $Q - \phi(Q)$. As Q is ϕ -primary, either $(a_1, 0) \in Q$ or $(b_1, 0) \in \sqrt{Q}$. So either $a_1 \in Q_1$ or $b_1 \in \sqrt{Q_1}$, that is Q_1 is a ψ_1 -primary ideal of R_1 . In a similar way, one can show that Q_2 is a ψ_2 -primary ideal of R_2 . Now we show that Q has one of the forms (1) – (3). If $\phi(Q) = Q$, then $\psi_i(Q_i) = Q_i$ for i = 1, 2. So assume that $\phi(Q) \neq Q$. Then, either $Q_1 \neq \psi_1(Q_1)$ or $Q_2 \neq \psi_2(Q_2)$. If the former case holds, there exists $c \in Q_1 - \psi_1(Q_1)$. For every $d \in Q_2$, from (c, 1)(1, d) = $(c,d) \in Q_1 \times Q_2 - \psi_1(Q_1) \times \psi_2(Q_2) = Q - \phi(Q)$ we get $(c,1) \in Q_1 \times Q_2$ or $(1,d) \in \sqrt{Q_1} \times \sqrt{Q_2}$. Hence, either $Q_2 = R_2$ or $Q_1 = R_1$. Suppose that $Q_2 = R_2$. Then, $Q = Q_1 \times R_2$ is a ϕ -primary ideal of R, where Q_1 is a ψ_1 -primary ideal of R_1 . Now assume that $\psi_2(R_2) \neq R_2$. Let $a_1, b_1 \in R_1$ be such that $a_1b_1 \in Q_1$. Then, $(a_1, 1)(b_1, 1) = (a_1b_1, 1) \in Q_1 \times R_2 - \psi_1(Q_1) \times \psi_2(R_2) = Q - \phi(Q)$ since $1 \notin \psi_2(R_2)$. As $Q = Q_1 \times R_2$ is ϕ -primary we get $(a_1, 1) \in Q_1 \times R_2$ or $(b_1,1) \in \sqrt{Q_1 \times R_2} = \sqrt{Q_1} \times R_2$. So, either $a_1 \in Q_1$ or $b_1 \in \sqrt{Q_1}$, and this implies that Q_1 is primary. If the latter case holds, that is if $Q_2 \neq \psi_2(Q_2)$, one can show that $Q = R_1 \times Q_2$ is ϕ -primary, where Q_2 is ψ_2 -primary which must be primary if $\psi_1(R_1) \neq R_1$.

Next we show that an ideal of R having one of these three types is ϕ -primary. In case (1) we have $\phi(Q) = \psi_1(Q_1) \times \psi_2(Q_2) = Q_1 \times Q_2 = Q$. So, obviously Q is ϕ -primary. If the case (2) holds, and if Q_1 is primary, then $Q = Q_1 \times R_2$ is a primary ideal of R and so it is ϕ -primary. So, assume that Q_1 is ψ_1 -primary and $\psi_2(R_2) = R_2$. Let $(a_1, a_2), (b_1, b_2) \in R$ be such that $(a_1b_1, a_2b_2) = (a_1, a_2)(b_1, b_2) \in Q - \phi(Q) = Q_1 \times R_2 - \psi_1(Q_1) \times \psi_2(R_2) = (Q_1 - \psi_1(Q_1)) \times R_2$. Then, $a_1b_1 \in Q_1 - \psi_1(Q_1)$ gives $a_1 \in Q_1$ or $b_1 \in \sqrt{Q_1}$. Thus, either $(a_1, a_2) \in Q$. $Q_1 \times R_2$ or $(b_1, b_2) \in \sqrt{Q_1} \times R_2 = \sqrt{Q_1 \times R_2}$. Hence, Q is ϕ -primary. The proof for the case (3) is similar.

- **Theorem 2.14.** (1) Let T and S be commutative rings and let I be a weakly primary ideal of T. Then $J = I \times S$ is a ϕ -primary ideal of $R = T \times S$ for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_1$.
 - (2) Let R be a commutative ring and let J be a finitely generated proper ideal of R. Suppose that J is ϕ -primary where $\phi \leq \phi_3$. Then, either J is weakly primary or $J^2 \neq 0$ is idempotent and R decomposes as $T \times S$ where $S = J^2$ and $J = I \times S$ where I is weakly primary. Hence J is ϕ -primary for each ϕ with $\phi_{\omega} \leq \phi \leq \phi_1$.

Proof.

- (1) Let I be a weakly primary ideal of T, and let φ : ℑ(R) → ℑ(R) ∪ {∅} be a function with φ_ω ≤ φ. If I is actually primary, then J is primary and hence is φ-primary for all φ. So, assume that I is not primary. Then I² = 0 by [5, Theorem 2.2]. So J² = 0 × S. It follows that φ_ω(J) = 0 × S. So, J-φ_ω(J) = I×S-0×S = (I-{0})×S. Assume that (x₁, x₂), (y₁, y₂) ∈ R are such that (x₁, x₂)(y₁, y₂) = (x₁y₁, x₂y₂) ∈ J φ_ω(J). Then, x₁y₁ ∈ I-{0}. So, either x₁ ∈ I or y₁ ∈ √I since I is a weakly primary ideal of T. Therefore, either (x₁, x₂) ∈ J or (y₁, y₂) ∈ √I × S = √I × S. Therefore, J is φ_ω-primary and so it is φ-primary.
- (2) If J is primary, then J is weakly primary. So we may assume that J is not primary. Then, by Theorem 2.11, $J^2 \subseteq \phi(J)$ and hence $J^2 \subseteq \phi(J) \subseteq \phi_3(J) = J^3$. So $J^2 = J^3$. Hence, J^2 is idempotent. Since J^2 is finitely generated, we have $J^2 = Re$ for some idempotent element $e \in R$. Consider the two cases $J^2 = 0$ and $J^2 \neq 0$. If the former case holds, then $\phi(J) \subseteq J^3 = 0$. So $\phi(J) = 0$ and hence J is weakly primary. In the latter case, put $S = J^2 = Re$ and T = R(1 - e). Then, $R = T \times S$. Let I = J(1 - e). Then, $J = I \times S$ where $I^2 = (J(1 - e))^2 = J^2(1 - e)^2 = (e)(1 - e) = 0$. We show that I is weakly primary. Suppose that $xy \in I - \{0\}$. Then $(x, 1)(y, 1) = (xy, 1) \in I \times S - (I \times S)^2 = I \times S - 0 \times S \subseteq J - \phi(J)$ since $\phi \leq \phi_3$. implies $\phi(J) \subseteq J^3 = (I \times S)^3 = 0 \times S$. Hence, $(x, 1) \in J$ or $(y, 1) \in \sqrt{J}$ since J is assumed to be ϕ -primary. Therefore, $x \in I$ or $y \in \sqrt{I}$, that is I is weakly primary.

Corollary 2.15. Let R be an indecomposable commutative ring and J a finitely generated ϕ -primary ideal of R where $\phi \leq \phi_3$. Then J is weakly primary. If, further, R is an integral domain, J is actually primary.

Corollary 2.16. Let R be a Noetherian integral domain. A proper ideal J of R is primary if and only if $xy \in J - J^3$ implies $x \in J$ or $y \in \sqrt{J}$.

Acknowledgement

The author thanks the referee for useful comments.

References

- Anderson, D. D., Batanieh, M., Generalizations of prime ideals. Comm. Algebra 36 (2008), 686–696.
- [2] Anderson, D. D., Smith, E., Weakly prime ideals. Houston J. Math. 29 (2003), 831-840.
- [3] Badawi, A., Houston, E., Powerful ideals, strongly primary ideals, almost Pseudovaluation domains and conductive domains. Comm. Algebra 30 (2002), 1591–1606.
- [4] Bhatwadekar, S. M., Sharma, P. K., Unique factorization and birth of almost primes. Comm. Algebra 33 (2005), 43–49.
- [5] Ebrahimi Atani, S., Farzalipour, F., On weakly primary ideals, Georgian Math. J. 12 (2005), 423-429.

Received by the editors August 10, 2010