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COMMON FIXED POINT THEOREM IN
QUASI-UNIFORMIZABLE SPACES

Tatjana DoSenovié®

Abstract. In this paper a common fixed point theorem in sequentially
complete Hausdorff quasi-uniformizable spaces is proved. Using the ad-
ditional condition for the quasi-metric dx the condition (2) of Theorem
3.92 in the paper [d] is improved. Since Menger space (S, F, T'), where

supT'(a,a) = 1 is a quasi-uniformizable space a corollaries on common
a<l
fixed points in Menger spaces is obtained.
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1. Introduction

D.H. Tan in [§] introduced the definition of quasi-uniformizable spaces. Us-
ing a similar method as in [d] (see also [2], [3] and [d]) we prove in this paper a
common fixed point theorem for three mappings in sequentially complete Haus-
dorff quasi-uniformizable spaces. As a corollary we prove a common fixed point
theorem in Menger spaces. Menger spaces (see [0]) are a generalization of the
notion of a metric space (M, d) in which the distance d(p, q) (p, ¢ € M) be-
tween p and ¢ is replaced by a distribution function F,, € A*. F, ,(x) can
be interpreted as the probability that the distance between p and ¢ is less than
z. Since then, the theory of probabilistic metric spaces has been developed in
many directions ([4], [7]).

2. Preliminaries
D.H. Tan in [§] introduced the notion of quasi-uniformizable spaces.

Definition 1. Let S and I be arbitrary sets, g : I — I and for every i € I,
d; : S x S — RT. The triplet (S, (d;)icr, g) is said to be a quasi-uniformizable
space if for every x, y, z € S and i € I the following hold:

a) di(z, y) >0, di(z, x) =0

b) di(z, y) = di(y, )

¢) di(x, y) < dg(iy(@, 2) + dg(iy (2, y)-
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A quasi-uniformizable space (S, (d;);cr, g) is Hausdorff if the relation
di(z,y) = 0, for all ¢ € I implies that z = y. A Hausdorfl quasi-uniformizable
space (5, (d;)ier, g) becomes a Hausdorff topological space if the fundamental
system of neighbourhoods of x € S is given by the family U, = (B(z, ¢, z))fglo

B(xvgai):{y“/esvdi(xay)<5}7 iGI,€>O.

Let AT be the set of all distribution functions F such that F(0) =0 (F is a

nondecreasing, left continuous mapping from R into [0, 1] such that sup F'(z) =
rcR
1)

The ordered pair (S,F) is said to be a probabilistic metric space if S is
a nonempty set and F : S x S — AT (F(p,q) written by F,, for every
(p,q) € S x S) satisfies the following conditions:

1. Fyp(z)=1forevery z >0=u=v (u,v €5).

2. Fy,=F,, for every u,v € S.

3. Fuv(x) =1and F,,(y) =1 = F,w(x+y) =1 for u,v,w € S and
z,y € RT.

A Menger space (see [[f]) is an ordered triple (S, F,T), where (S, F) is a
probabilistic metric space, T is a triangular norm (abbreviated t-norm), and
the following inequality holds

Fyo(z+y) > T(Fyw(x), Fuwu(y)) for every u,v,w € S and every z > 0,y > 0.

Recall that a mapping T : [0,1] x [0,1] — [0,1] is called a triangular norm
(a t-norm) if the following conditions are satisfied:

(i) T(a,1) = a for every a € [0, 1],

(il) T'(a,b) = T(b,a) for every a,b € [0,1],

(i) a > b, c>d= T(a,c)>T(bd) (a,b,c,de0,1]),
(iv) T(a,T(b,c)) = T(T(a,b),c) (a,b,c € [0,1]).

The following are the four basic t-norms:

T
T

T (z,y) min(z, y)
Tp(r,y) = x-y
TL(g;’y) = max(ery* 170)
B min(z,y) if max(z,y) =1,
Tp(z,y) = { 0 otherwise.

As regards the pointwise ordering, we have the inequalities
Tp < T <Tp < Tyy.

The (e, A\)—topology in S is introduced by the family of neighbourhoods
U ={Uu(&N) }(v,e,0)eSxR, x(0,1), Where

Un(e, \) = {u; Fyp(e) >1— A}
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If a t-norm T is such that supT'(z,z) = 1, then S is in the (¢, A)-topology a

<1
metrizable topological space.
In [0, the following class of t-norms is introduced, which is useful in the

fixed point theory in probabilistic metric spaces.
Let T be a t-norm and Ty, : [0, 1] — [0, 1] (n € N) is defined in the following
way:
Ti(z) =T(z, x), Thy1(z) =T(To(z), ) (n €N, z € [0, 1]).

We say that t-norm T is of the H-type if T is continuous and the family
{T,(z)}nen is equicontinuous at = = 1.

The family {7, (z)}nen is equicontinuous at z = 1 , if for every A € (0, 1)
there exists 6(\) € (0, 1) such that the following implication holds:

x>1=0A)=Ty(x) >1—\ forallneN

A trivial example of t-norms of H-type is T'= T;. A nontrivial example is
given in the paper [f].

Each t-norm T can be extended (by associativity) (see [6]) in a unique way
to an n-ary operation taking for (z1,...,z,) € [0,1]™ the values

0 n n—1
Ti:1$i =1, T¢:1$i = T(']:‘i:1 Ly L)

We can extend T to a countable infinitary operation taking for any sequence
(zn)nen from [0, 1] the values

0o . n
Ti:ﬁ?i = nhﬁngo T, 1.

=

Limit of the right side exists since the sequence (T?:lxi)nEN is nonincreasing
and bounded from below.

In [4], the following lemma is given.
Lemma 1. A Menger space (S, F, T) such that supT(z, ) = 1 is a quasi-

<l
uniformizable space (S, (dx)aeJs, g), where J =(0,1), g:J — J,

(1) da(z, y) =sup{s|F,, ,(s) <1-A}h AeJ z,yes.

Every locally convex space (X, (p;)icr), where (p;);cr is the familly of semi-
norms on X, is a quasi-uniformizable space, where g : I — [ is defined by
g(i) = i, for every i € I.

3. Common fixed point theorem

In this paper we prove a common fixed point theorem in some special class
of quasi-uniformizable spaces. This theorem is a generalization of a theorem
proved in [4].
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Lemma 2. Let (S, F, T) be a Menger space and T be a t-norm of H-type.
Then (S, (dx)res, 9), J = (0, 1) is a quasi-uniformizable space such that for
every « € (0, 1) there exists 8 € (0, 1) such that for all x1,...2, € S

(2) do(x1, ) < dg(z1, x2) +dg(x2, x3) + -+ dg(Tp_1, Tn).

Proof. Let a € (0, 1). Since T is a t-norm of H-type for a given a € (0, 1),

-1
there exists 8 € (0, 1) such that T:;l (1-5)>1—a,forallneN.
In order to prove (B) we shall suppose that a1, ag,...a,—1 , n € N is such
that

dﬁ(‘rla IQ) < a1
d,@(l‘g, .1‘3) < (6%)
(3)

dﬂ(xn—la xn) < Op—1-

We need to prove do (1, Tn) < a1 + o+ -+ + Qp_1.
From (3) it follows

FILHEQ(OQ) > l_ﬁ
iy ag(ae) > 1-8
(4)
an,l,xn(anfl) > 1_5

and

F‘El,ﬂjn (al +ag+ -+ an—l) T(le,wg (011), Fxg,wn (OQ i an—l))

T(T(... T (Fay s (1) (Fap g w0 (@n-1)))
——

(n—2)—time

T(T(.. T(1—B,1-8)...,1— )
———

(n—2)—time

- T 1-5

> 1—aq,

(AVARLYS

Y

80 do (1, Tpn) < a1+ g+ -+ + a,—1 Le. (2) holds. O
Definition 2. Let (S, (d))aer, f) be a sequentially complete Hausdorff quasiu-

niformizable space. We say that the space satisfies condition (*), if for a given
« € I there exists 8 € I such that for all z4,...,2, € S

(*) do(z1, o) < dg(x1, T2) +dg(w2, 23) + -+ +dg(@n_1, Tp).
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We observe that, a Menger space (S, F,T), where T is a t-norm of H-type,
satisfies the condition (*).

Theorem 1. Let (S, (da)xer, f) be a sequentially complete Hausdorff quasi-
uniformizable space, family (dx)xer satisfies the condition (2), f : I — I,
Ly, Lo : S — S continuous mapping, L : S — L1SN LyS a continuous mapping
which commutes with Ly and Lo, and the following conditions are satisfied:

(i) for every i € I there exists q; : RT™ — [0, 1) which is a non-decreasing
function, for which nli}n;oqf"(i)(t) <1, for every t € RT and every i € I and

di(Lz, Ly) < qi(dyiy(Liz, Loy)) - dyy(Liz, Loy) for everyx, y € S.
(1) there exists o € S such that for everyi e I

sup dj(Lxo, Lz1) < K; (K; € RT)
J€0(, f)

where O(i, f) = {f"(i) : n € N}, and the sequence (xp)pen is defined by
Lyixop_1 = Lxo, o and Loxo, = Lxo,_1, (n € N)

Then there exists z € S such that Lz = L1z = Loz.
If for everyi e I

sup d;(L*zy, L*x0) < M;, (M; € RT),
J€0(i, f)

then Lz is a common fized point for L, L1 and Lo, and Lz is the unique common
fixed point for L, L1, Ly in the set

{ulue S, (VieI), FV; e RY)( sup d;(Lz, u) <V;)}.
JEO, f)

Proof. Let (z,,)nen be such sequence from S that
Loxop = Laop—1 and Lixog_1 = Lxog_o, for every k € N.

We will prove that (Lzy)nen is a Cauchy sequence which means that for
every i € I and every € > 0 there exists n(e, ¢) € N such that

(5) di(Lzy, Lx,yp) < €, for every n > n(e, i), and every p € N
In order to prove (5), we will estimate

d;(Lxog, Lxok—1) and d;(Lasg41, Laay), for every ¢ € I and every k € N.
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From condition (i) it follows that

di(Lxog, Lrok—1)

< qildyy (Laxar, Lixar—1)) - dyiy(Lawag, Livag—1)

= qi(dsu)(Laak—1, Lror—2)) - dpiy(Loog—1, Lok _2)

< qildyy(Laok—1, Lrok—2)) - qpay(ds2(y (Lizar—1, Lozor—2))
(dg2y)(L1wog—1, Lowog—2)

< qildyy(Laor—1, Lrog—2))
2%—3
. H qfs+1(i)(dfs+2(i)(L:E2k,S,17 Lxgkfsfg)) . dek—l(i)(LfL'l, L.’E())
$=0

and similarly

di(Lwagt1, Lear) < qi(dyey(Laag, Lrog—1))
22

: H qpot1(y (dpsr2(y (Lor—s—1, LTok—s—2))
s=0

'dek(i) (La:l, LZ‘Q)

Since ¢;(t) < 1 for every i € I and every t € R, it follows that for every i € I
and every n € N
dj(Lay, Lr,—1) < K,
for every j € O(i, f) and therefore
2k—2

di(Lxak, Lrog—1) < H Qs (i) (K3) K
s=0

2k—1

di(Lxory1, Laoy) < H Qs ) () K
s=0

where f0(i) = i for every i € I.
Since lim ggn(;y(K;) < Q; < 1, for all i € I there exists n; € N such that
n— o0

for some S; € RY (i € I) it follows

di(ana anfl) S SzQ??

for every i € I.
From Lemma B, for every i € I there exists j € I such that

di(an, Ll‘n+p) < dj(Ll‘n, Ll‘n+1) + dj (L$n+1, an+2) + ...
~+dj(Ltntp—1, LTnip)

S;i > Q).

i=n+1

IN
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From the condition Q; < 1, (j € I), it follows that the sequence (Lzy)nen is a
Cauchy sequence. Let

z= lim Lx, = lim Lx9,_1 = lim Lxs,.
n— o0 n— o0 n— oo

Since L and L; are continuous functions, we have

L12’ = lim L1L$2n+1 = lim LL1.1327H_1 =Lz
n—00 n—00

and similarly Loz = Lz.
We are going to prove that Lz is a common fixed point for the mappings L,
L1 and L2 if
sup dj(Lga:l, L2x) < M;
JEO(,f)

for all i € I.
First we shall prove that for every ¢ € T

sup dj(L*z, Lz) < M;.
J€03.])

Since
d;j(L*z, Lz) = lim d;(L*Laany1, LLxay),

n—r oo

it is enough to prove that for every i € I
dj(LSzgnH, L%x5,) < M; for every n € N and j € O(4, f).
The pairs L, L1 and L, Ly commute, and we obtain that
d;(LPzoni1, L?22,)
< qi(dyj)(La(Laan), Li(L*wan41)))dys(j) (La(Laan), Li(L*xan41))
= qj(dsj)(L(Lawan), L*(Liwoni1)))ds(y (L(Lawan), L*(L17ont1))
qj(ds(j)(LL2on—1, L*Laay))dy(j)(LLaon—1, L?Laay)
0 (ds) (LP2on—1, L*22,))dy(j)(LPzan—1, L zay)

< df(j)(L2x2n—17 L¥22,)
< df(j)(Lle, LQQSQ)
< M

for every n € N since f2"(j) € O(i, f).
Now we have

di(L?z, Lz) < qi(dgy(L1Lz, Lez)) - dgy (L1 Lz, Lyz)
= qi(df(i) (LQZ, LZ)) . df(i) (Lzz, Lz)

@i (M) qrey (M) . .. qpn iy (M;) M;

IN
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for every i € I.
Since lim ggn(;)(M;) < 1 it follows that d;(L?z, Lz) = 0 for every i € I,
n—oo

which implies that Lz = L?z.
Hence, from Lz = L1z = Lyz it follows that

L?2=LLz=L1Lz= LoLz= Lz

which means that Lz is a common fixed point for the mappings L, L1 and L.
Suppose that y = Ly = L1y = Loy and for every i €

sup d;(Lz,y) < Vi (V; €RY).
JEO(i,f)

We prove that y = Lz. For every i € I we have

di(Lz,y) = di(L(Lz), Ly)
< qildyy(La(Lz), Lay)) - dpy (L1 (Lz), Lay)
= qi(dsu)(Lz, y)) - dseiy(Lz, y)

A

< aildyiy(Lz, ) - apny (dpnsay (L2, ) - dpnsrpy (L2, y)
< a(Vi)ary (Vi) o apmy (Vi) Vi

Since lim ggn ;) (Vi) < 1 it follows that d;(Lz, y) = 0 for every i € I, which
n—oo
means that y = Lz. O

Corollary 1. Let (S, F, T) be a complete Menger space and t-norm T is of
H-type, f :(0,1) = (0,1), Ly, Ly : S — S continuous mappings, L : S —
L1S N LS a continuous mapping which commutes with Ly and Lo, and the
following conditions are satisfied:

(a) for every X € (0, 1), there exists a right continuous, non-decreasing mapping

qr:RY — [0, 1) for which lim gm0 (t) < 1 for everyt € R*
n—oo

and for every A € (0, 1), every r > 0 and every x, y € S

(6) FrieLoy(r) > 1= f(A) = Frony(ga(r)r) > 1= X,

(b) there exists xg € S such that for every X € (0, 1), there exists Ky € Rt such
that for everyn € N
FLIQ,L:Dl (KA) > 1 - fn()\>

where the sequence (xp)nen is defined by
Lixo,_1 = Lxo,_o and Loxo, = Lxo,_1 (TL € N)
Then, there exists z € S such that

Lz=11z= Lsz.
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If, in addition, for every X € (0, 1) there exists My € RT such that for every
neN

FL3zl,L210(M)\) >1- fn()‘)v
then, Lz is a common fixed point for the mapping L, L1 and Lo, which is the
unique common fixed point in the set
{ulue S, (VA € (0, 1)) (3P, € RY) (¥n € N) (Fpou(Py) > 1 — 7 (\)}.

Proof. We have only to prove that condition (6) implies that for every A € (0, 1)
and every x, y € S

dx(Lz, Ly) < qx(dson(Laz, Lay)) - dgxy (L1, Loy) (7)

Suppose that dyy)(Lix, Lay) < r. Then, Fr, ¢ 1,,(r) > 1 — f(\) and by (6)
we obtain that Fr, 1,(gr(r)r) > 1 — A. Hence, dx(Lz, Ly) < gx(r)r and since
@ is right-continuous, the inequality (7) holds.

From Lemma B it follows that for every a € (0, 1) there exists 8 € (0, 1) such
that for every x1,...,2, € S

do(z1, T0) < dg(z1, T2) + dg(x2, T3) + - -+ dg(@Tn-1, Tp)

and all conditions of the previous theorem are satisfied. O
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