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COMMON FIXED POINT THEOREM IN
QUASI-UNIFORMIZABLE SPACES

Tatjana Došenović1

Abstract. In this paper a common fixed point theorem in sequentially
complete Hausdorff quasi-uniformizable spaces is proved. Using the ad-
ditional condition for the quasi-metric dλ the condition (2) of Theorem
3.92 in the paper [4] is improved. Since Menger space (S, F , T ), where
sup
a<1

T (a, a) = 1 is a quasi-uniformizable space a corollaries on common

fixed points in Menger spaces is obtained.

AMS Mathematics Subject Classification (2010): 54H25, 55M20, 47H10

Key words and phrases: t-norm, quasi-uniformizable space, common fixed
point, Menger space

1. Introduction

D.H. Tan in [8] introduced the definition of quasi-uniformizable spaces. Us-
ing a similar method as in [4] (see also [2], [3] and [9]) we prove in this paper a
common fixed point theorem for three mappings in sequentially complete Haus-
dorff quasi-uniformizable spaces. As a corollary we prove a common fixed point
theorem in Menger spaces. Menger spaces (see [6]) are a generalization of the
notion of a metric space (M, d) in which the distance d(p, q) (p, q ∈ M) be-
tween p and q is replaced by a distribution function Fp,q ∈ ∆+. Fp,q(x) can
be interpreted as the probability that the distance between p and q is less than
x. Since then, the theory of probabilistic metric spaces has been developed in
many directions ([4], [7]).

2. Preliminaries

D.H. Tan in [8] introduced the notion of quasi-uniformizable spaces.

Definition 1. Let S and I be arbitrary sets, g : I → I and for every i ∈ I,
di : S × S → R+. The triplet (S, (di)i∈I , g) is said to be a quasi-uniformizable
space if for every x, y, z ∈ S and i ∈ I the following hold:

a) di(x, y) ≥ 0, di(x, x) = 0
b) di(x, y) = di(y, x)
c) di(x, y) ≤ dg(i)(x, z) + dg(i)(z, y).
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A quasi-uniformizable space (S, (di)i∈I , g) is Hausdorff if the relation
di(x, y) = 0, for all i ∈ I implies that x = y. A Hausdorff quasi-uniformizable
space (S, (di)i∈I , g) becomes a Hausdorff topological space if the fundamental
system of neighbourhoods of x ∈ S is given by the family Ux = (B(x, ε, i))ε>0

i∈I

B(x, ε, i) = {y | y ∈ S, di(x, y) < ε}, i ∈ I, ε > 0.

Let ∆+ be the set of all distribution functions F such that F (0) = 0 (F is a
nondecreasing, left continuous mapping from R into [0, 1] such that sup

x∈R
F (x) =

1).
The ordered pair (S,F) is said to be a probabilistic metric space if S is

a nonempty set and F : S × S → ∆+ (F(p, q) written by Fp,q for every
(p, q) ∈ S × S) satisfies the following conditions:

1. Fu,v(x) = 1 for every x > 0 ⇒ u = v (u, v ∈ S).
2. Fu,v = Fv,u for every u, v ∈ S.
3. Fu,v(x) = 1 and Fv,w(y) = 1 ⇒ Fu,w(x + y) = 1 for u, v, w ∈ S and

x, y ∈ R+.
A Menger space (see [7]) is an ordered triple (S,F , T ), where (S,F) is a

probabilistic metric space, T is a triangular norm (abbreviated t-norm), and
the following inequality holds

Fu,v(x+ y) ≥ T (Fu,w(x), Fw,v(y)) for every u, v, w ∈ S and every x > 0, y > 0.

Recall that a mapping T : [0, 1] × [0, 1] → [0, 1] is called a triangular norm
(a t-norm) if the following conditions are satisfied:

(i) T (a, 1) = a for every a ∈ [0, 1],

(ii) T (a, b) = T (b, a) for every a, b ∈ [0, 1],

(iii) a ≥ b, c ≥ d ⇒ T (a, c) ≥ T (b, d) (a, b, c, d ∈ [0, 1]),

(iv) T (a, T (b, c)) = T (T (a, b), c) (a, b, c ∈ [0, 1]).

The following are the four basic t-norms:

TM (x, y) = min(x, y)

TP (x, y) = x · y
TL(x, y) = max(x+ y − 1, 0)

TD(x, y) =

{
min(x, y) if max(x, y) = 1,
0 otherwise.

As regards the pointwise ordering, we have the inequalities

TD < TL < TP < TM .

The (ϵ, λ)−topology in S is introduced by the family of neighbourhoods
U = {Uv(ϵ, λ)}(v,ϵ,λ)∈S×R+×(0,1), where

Uv(ϵ, λ) = {u; Fu,v(ϵ) > 1− λ}.
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If a t-norm T is such that sup
x<1

T (x, x) = 1, then S is in the (ϵ, λ)-topology a

metrizable topological space.
In [1], the following class of t-norms is introduced, which is useful in the

fixed point theory in probabilistic metric spaces.
Let T be a t-norm and Tn : [0, 1] → [0, 1] (n ∈ N) is defined in the following

way:
T1(x) = T (x, x), Tn+1(x) = T (Tn(x), x) (n ∈ N, x ∈ [0, 1]).

We say that t-norm T is of the H-type if T is continuous and the family
{Tn(x)}n∈N is equicontinuous at x = 1.

The family {Tn(x)}n∈N is equicontinuous at x = 1 , if for every λ ∈ (0, 1)
there exists δ(λ) ∈ (0, 1) such that the following implication holds:

x > 1− δ(λ) ⇒ Tn(x) > 1− λ, for all n ∈ N.

A trivial example of t-norms of H-type is T = TM . A nontrivial example is
given in the paper [1].

Each t-norm T can be extended (by associativity) (see [5]) in a unique way
to an n-ary operation taking for (x1, . . . , xn) ∈ [0, 1]n the values

T
0

i=1xi = 1, T
n

i=1xi = T (T
n−1

i=1 xi, xn).

We can extend T to a countable infinitary operation taking for any sequence
(xn)n∈N from [0, 1] the values

T
∞
i=1xi = lim

n→∞
T

n

i=1xi.

Limit of the right side exists since the sequence (T
n

i=1xi)n∈N is nonincreasing
and bounded from below.

In [4], the following lemma is given.

Lemma 1. A Menger space (S, F , T ) such that sup
x<1

T (x, x) = 1 is a quasi-

uniformizable space (S, (dλ)λ∈J , g), where J = (0, 1), g : J → J ,

(1) dλ(x, y) = sup{s |Fx, y(s) ≤ 1− λ}, λ ∈ J, x, y ∈ S.

Every locally convex space (X, (pi)i∈I), where (pi)i∈I is the familly of semi-
norms on X, is a quasi-uniformizable space, where g : I → I is defined by
g(i) = i, for every i ∈ I.

3. Common fixed point theorem

In this paper we prove a common fixed point theorem in some special class
of quasi-uniformizable spaces. This theorem is a generalization of a theorem
proved in [4].
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Lemma 2. Let (S, F , T ) be a Menger space and T be a t-norm of H-type.
Then (S, (dλ)λ∈J , g), J = (0, 1) is a quasi-uniformizable space such that for
every α ∈ (0, 1) there exists β ∈ (0, 1) such that for all x1, . . . xn ∈ S

(2) dα(x1, xn) ≤ dβ(x1, x2) + dβ(x2, x3) + · · ·+ dβ(xn−1, xn).

Proof. Let α ∈ (0, 1). Since T is a t-norm of H-type for a given α ∈ (0, 1),

there exists β ∈ (0, 1) such that T
n−1

i=1 (1− β) > 1− α, for all n ∈ N.
In order to prove (2) we shall suppose that α1, α2, . . . αn−1 , n ∈ N is such

that

dβ(x1, x2) < α1

dβ(x2, x3) < α2

. . .(3)

dβ(xn−1, xn) < αn−1.

We need to prove dα(x1, xn) < α1 + α2 + · · ·+ αn−1.
From (3) it follows

Fx1, x2(α1) > 1− β

Fx2, x3(α2) > 1− β

. . .(4)

Fxn−1, xn
(αn−1) > 1− β

and

Fx1, xn(α1 + α2 + · · ·+ αn−1) ≥ T (Fx1, x2(α1), Fx2, xn(α2 + · · ·+ αn−1))

≥ T (T (. . . T︸ ︷︷ ︸
(n−2)−time

(Fx1,x2(α1), . . . (Fxn−1,xn(αn−1)))

≥ T (T (. . . T︸ ︷︷ ︸
(n−2)−time

(1− β, 1− β) . . . , 1− β)

= T
n−1

i=1 1− β

> 1− α,

so dα(x1, xn) < α1 + α2 + · · ·+ αn−1 i.e. (2) holds.

Definition 2. Let (S, (dλ)λ∈I , f) be a sequentially complete Hausdorff quasiu-
niformizable space. We say that the space satisfies condition (*), if for a given
α ∈ I there exists β ∈ I such that for all x1, . . . , xn ∈ S

(*) dα(x1, xn) ≤ dβ(x1, x2) + dβ(x2, x3) + · · ·+ dβ(xn−1, xn).
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We observe that, a Menger space (S,F , T ), where T is a t-norm of H-type,
satisfies the condition (*).

Theorem 1. Let (S, (dλ)λ∈I , f) be a sequentially complete Hausdorff quasi-
uniformizable space, family (dλ)λ∈I satisfies the condition (2), f : I → I,
L1, L2 : S → S continuous mapping, L : S → L1S ∩L2S a continuous mapping
which commutes with L1 and L2, and the following conditions are satisfied:

(i) for every i ∈ I there exists qi : R+ → [0, 1) which is a non-decreasing
function, for which lim

n→∞
qfn(i)(t) < 1, for every t ∈ R+ and every i ∈ I and

di(Lx, Ly) ≤ qi(df(i)(L1x, L2y)) · df(i)(L1x, L2y) for everyx, y ∈ S.

(ii) there exists x0 ∈ S such that for every i ∈ I

sup
j∈O(i, f)

dj(Lx0, Lx1) ≤ Ki (Ki ∈ R+)

where O(i, f) = {fn(i) : n ∈ N}, and the sequence (xp)p∈N is defined by

L1x2n−1 = Lx2n−2 and L2x2n = Lx2n−1, (n ∈ N).

Then there exists z ∈ S such that Lz = L1z = L2z.

If for every i ∈ I

sup
j∈O(i, f)

dj(L
3x1, L

2x0) ≤ Mi, (Mi ∈ R+),

then Lz is a common fixed point for L, L1 and L2, and Lz is the unique common
fixed point for L, L1, L2 in the set

{u |u ∈ S, (∀i ∈ I), (∃Vi ∈ R+) ( sup
j∈O(i, f)

dj(Lz, u) ≤ Vi)}.

Proof. Let (xn)n∈N be such sequence from S that

L2x2k = Lx2k−1 and L1x2k−1 = Lx2k−2, for every k ∈ N.

We will prove that (Lxn)n∈N is a Cauchy sequence which means that for
every i ∈ I and every ε > 0 there exists n(ε, i) ∈ N such that

(5) di(Lxn, Lxn+p) < ε, for every n ≥ n(ε, i), and every p ∈ N

In order to prove (5), we will estimate

di(Lx2k, Lx2k−1) and di(Lx2k+1, Lx2k), for every i ∈ I and every k ∈ N.
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From condition (i) it follows that

di(Lx2k, Lx2k−1)

≤ qi(df(i)(L2x2k, L1x2k−1)) · df(i)(L2x2k, L1x2k−1)

= qi(df(i)(Lx2k−1, Lx2k−2)) · df(i)(Lx2k−1, Lx2k−2)

≤ qi(df(i)(Lx2k−1, Lx2k−2)) · qf(i)(df2(i)(L1x2k−1, L2x2k−2))

· (df2(i))(L1x2k−1, L2x2k−2)

. . .

≤ qi(df(i)(Lx2k−1, Lx2k−2))

·
2k−3∏
s=0

qfs+1(i)(dfs+2(i)(Lx2k−s−1, Lx2k−s−2)) · df2k−1(i)(Lx1, Lx0)

and similarly

di(Lx2k+1, Lx2k) ≤ qi(df(i)(Lx2k, Lx2k−1))

·
2k−2∏
s=0

qfs+1(i)(dfs+2(i)(Lx2k−s−1, Lx2k−s−2))

·df2k(i)(Lx1, Lx0)

Since qi(t) < 1 for every i ∈ I and every t ∈ R+, it follows that for every i ∈ I
and every n ∈ N

dj(Lxn, Lxn−1) ≤ Ki,

for every j ∈ O(i, f) and therefore

di(Lx2k, Lx2k−1) ≤
2k−2∏
s=0

qfs(i)(Ki)Ki

di(Lx2k+1, Lx2k) ≤
2k−1∏
s=0

qfs(i)(Ki)Ki

where f0(i) = i for every i ∈ I.
Since lim

n→∞
qfn(i)(Ki) ≤ Qi < 1, for all i ∈ I there exists ni ∈ N such that

for some Si ∈ R+ (i ∈ I) it follows

di(Lxn, Lxn−1) ≤ SiQ
n
i ,

for every i ∈ I.
From Lemma 2, for every i ∈ I there exists j ∈ I such that

di(Lxn, Lxn+p) ≤ dj(Lxn, Lxn+1) + dj(Lxn+1, Lxn+2) + . . .

· · ·+ dj(Lxn+p−1, Lxn+p)

≤ Sj

∞∑
i=n+1

Q i
j .
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From the condition Qj < 1, (j ∈ I), it follows that the sequence (Lxn)n∈N is a
Cauchy sequence. Let

z = lim
n→∞

Lxn = lim
n→∞

Lx2n−1 = lim
n→∞

Lx2n.

Since L and L1 are continuous functions, we have

L1z = lim
n→∞

L1Lx2n+1 = lim
n→∞

LL1x2n+1 = Lz

and similarly L2z = Lz.
We are going to prove that Lz is a common fixed point for the mappings L,

L1 and L2 if
sup

j∈O(i,f)

dj(L
3x1, L

2x0) ≤ Mi

for all i ∈ I.
First we shall prove that for every i ∈ I

sup
j∈O(i,f)

dj(L
2z, Lz) ≤ Mi.

Since
dj(L

2z, Lz) = lim
n→∞

dj(L
2Lx2n+1, LLx2n),

it is enough to prove that for every i ∈ I

dj(L
3x2n+1, L

2x2n) ≤ Mi for every n ∈ N and j ∈ O(i, f).

The pairs L, L1 and L, L2 commute, and we obtain that

dj(L
3x2n+1, L

2x2n)

≤ qj(df(j)(L2(Lx2n), L1(L
2x2n+1)))df(j)(L2(Lx2n), L1(L

2x2n+1))

= qj(df(j)(L(L2x2n), L
2(L1x2n+1)))df(j)(L(L2x2n), L

2(L1x2n+1))

= qj(df(j)(LLx2n−1, L
2Lx2n))df(j)(LLx2n−1, L

2Lx2n)

= qj(df(j)(L
2x2n−1, L

3x2n))df(j)(L
2x2n−1, L

3x2n)

≤ df(j)(L
2x2n−1, L

3x2n)

...

≤ df(j)(L
3x1, L

2x0)

≤ Mi

for every n ∈ N since f2n(j) ∈ O(i, f).
Now we have

di(L
2z, Lz) ≤ qi(df(i)(L1Lz, L2z)) · df(i)(L1Lz, L2z)

= qi(df(i)(L
2z, Lz)) · df(i)(L2z, Lz)

...

≤ qi(Mi)qf(i)(Mi) . . . qfn(i)(Mi)Mi
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for every i ∈ I.
Since lim

n→∞
qfn(i)(Mi) < 1 it follows that di(L

2z, Lz) = 0 for every i ∈ I,

which implies that Lz = L2z.
Hence, from Lz = L1z = L2z it follows that

L2z = LL1z = L1Lz = L2Lz = Lz

which means that Lz is a common fixed point for the mappings L, L1 and L2.
Suppose that y = Ly = L1y = L2y and for every i ∈ I

sup
j∈O(i,f)

dj(Lz, y) ≤ Vi (Vi ∈ R+).

We prove that y = Lz. For every i ∈ I we have

di(Lz, y) = di(L(Lz), Ly)

≤ qi(df(i)(L1(Lz), L2y)) · df(i)(L1(Lz), L2y)

= qi(df(i)(Lz, y)) · df(i)(Lz, y)
...

≤ qi(df(i)(Lz, y)) . . . qfn(i)(dfn+1(i)(Lz, y)) · dfn+1(i)(Lz, y)

≤ qi(Vi)qf(i)(Vi) . . . qfn(i)(Vi)Vi

Since lim
n→∞

qfn(i)(Vi) < 1 it follows that di(Lz, y) = 0 for every i ∈ I, which

means that y = Lz.

Corollary 1. Let (S, F , T ) be a complete Menger space and t-norm T is of
H-type, f : (0, 1) → (0, 1), L1, L2 : S → S continuous mappings, L : S →
L1S ∩ L2S a continuous mapping which commutes with L1 and L2, and the
following conditions are satisfied:
(a) for every λ ∈ (0, 1), there exists a right continuous, non-decreasing mapping

qλ : R+ → [0, 1) for which lim
n→∞

qfn(λ)(t) < 1 for every t ∈ R+

and for every λ ∈ (0, 1), every r > 0 and every x, y ∈ S

(6) FL1x,L2y(r) > 1− f(λ) ⇒ FLx,Ly(qλ(r)r) > 1− λ.

(b) there exists x0 ∈ S such that for every λ ∈ (0, 1), there exists Kλ ∈ R+ such
that for every n ∈ N

FLx0, Lx1(Kλ) > 1− fn(λ)

where the sequence (xn)n∈N is defined by

L1x2n−1 = Lx2n−2 and L2x2n = Lx2n−1 (n ∈ N).

Then, there exists z ∈ S such that

Lz = L1z = L2z.
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If, in addition, for every λ ∈ (0, 1) there exists Mλ ∈ R+ such that for every
n ∈ N

FL3x1,L2x0
(Mλ) > 1− fn(λ),

then, Lz is a common fixed point for the mapping L, L1 and L2, which is the
unique common fixed point in the set

{u |u ∈ S, (∀λ ∈ (0, 1)) (∃Pλ ∈ R+) (∀n ∈ N) (FLz,u(Pλ) > 1− fn(λ))}.

Proof. We have only to prove that condition (6) implies that for every λ ∈ (0, 1)
and every x, y ∈ S

dλ(Lx, Ly) ≤ qλ(df(λ)(L1x, L2y)) · df(λ)(L1x, L2y) (7)

Suppose that df(λ)(L1x, L2y) < r. Then, FL1x,L2y(r) > 1− f(λ) and by (6)
we obtain that FLx,Ly(qλ(r)r) > 1 − λ. Hence, dλ(Lx, Ly) < qλ(r)r and since
qλ is right-continuous, the inequality (7) holds.
From Lemma 2 it follows that for every α ∈ (0, 1) there exists β ∈ (0, 1) such
that for every x1, . . . , xn ∈ S

dα(x1, xn) ≤ dβ(x1, x2) + dβ(x2, x3) + · · ·+ dβ(xn−1, xn)

and all conditions of the previous theorem are satisfied.
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