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HOMOMORPHISM-HOMOGENEOUS GRAPHS WITH
LOOPS

Andreja Ilić1, Dragan Mašulović23 and Uroš Rajković4

Abstract. In 2006, P. J. Cameron and J. Nešetřil introduced the fol-
lowing variant of homogeneity: we say that a structure is homomorphism-
homogeneous if every homomorphism between finite substructures of the
structure extends to an endomorphism of the structure. In this paper we
classify finite homomorphism-homogeneous graphs where some vertices
may have loops, but only up to a certain point. We focus on disconnected
graphs, and on connected graphs whose subgraph induced by loops is dis-
connected. In a way, this is the best one can hope for, since it was shown
in a recent paper by M. Rusinov and P. Schweitzer that there is no polyno-
mially computable characterization of finite homomorphism-homogeneous
graphs whose subgraph induced by loops is connected (unless P = coNP).
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1. Introduction

A structure is ultrahomogeneous if every isomorphism between finite sub-
structures of the structure extends to an automorphism of the structure. The
theory of (countable) ultrahomogeneous structures gained its momentum in 1953
with the famous theorem of Fräıssé [3] which states that countable ultrahomo-
geneous structures can be recognized by the fact that their collections of finitely
induced substructures have the amalgamation property. Nowadays it is a well-
established theory with deep consequences in many areas of mathematics.

Ultrahomogeneous objects have been determined for many important classes
of structures. For example, countably infinite ultrahomogeneous posets were
characterized in [10]; countably infinite ultrahomogeneous graphs were described
in [7], while the finite ones were determined in [4]; countably infinite ultraho-
mogeneous digraphs were described in [2], while finite and countably infinite
ultrahomogeneous tournaments were described in [6].

In their paper [1], the authors introduce the following variant of homogene-
ity: a structure is called homomorphism-homogeneous if every homomorphism
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e-mail: andrejko@bankerinter.net

2Supported by the Ministry of Science and Environmental Protection of the Republic of
Serbia, Grant No. 174019

3Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja
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between finite substructures of the structure extends to an endomorphism of
the structure. Not much is known about homomorphism-homogeneous struc-
tures. For example, homomorphism-homogeneous posets were characterized
in [8], and finite homomorphism-homogeneous tournaments (with loops) were
characterized in [5]. Finite homomorphism-homogeneous graphs without loops
were characterized in [1]: a finite graph G with no loops is homomorphism-
homogeneous if and only if G is a disjoint union of complete graphs of the same
size.

In this paper we classify finite homomorphism-homogeneous graphs where
some vertices may have loops, but only up to a certain point. We focus on
disconnected graphs, and on connected graphs whose subgraph induced by
loops is disconnected. In a way, this is the best one can hope for, since it
was shown in [9] that deciding homomorphism-homogeneity for finite graphs
whose subgraph induced by loops is connected is coNP-complete. Therefore,
unless P = coNP, there is no polynomially computable characterization of the
latter class of graphs.

All graphs in this paper are finite.

2. Preliminaries

Throughtout the paper G is a finite graph with at least one loop. Let x ∼G y
denote that x and y are adjacent in G. For S ⊆ V (G) let NS(v) = {x ∈ S :
x ∼ v}, and δS(v) = |NS(v)|. We shorthand NV (G)(v) and δV (G)(v) to NG(v)
and δG(v). Moreover, if G is obvious, we simply write ∼, N(v) and δ(v). For
S ⊆ V (G), by G[S] we denote the subgraph of G induced by S. Let P (G)
denote the set of all vertices of G that have a loop and let Q(G) = V (G)\P (G).

Recall that G∪H denotes the disjoint union of G and H, and G∇H denotes
the graph obtained from the disjoint union G ∪ H by adding all edges {u, v},
where u ∈ V (G) and v ∈ V (H). By n · G we denote the disjoint union of n
copies of G. A complete graph (or a clique) on S is the graph KS with the set
of vertices S where each pair of distinct vertices is adjacent. We often write
Kn instead of KS where n = |S|. Let K(m,n) denote the complete graph with
m+n vertices where m vertices have a loop and the remaining n do not. Hence,
K(0, n) ∼= Kn, and K(m, 0) is the complete graph on m vertices where each
vertex has a loop. In particular, K(1, 0) is just a vertex with a loop.

An isomorphism between graphs G andH is a bijective mapping f : V (G) →
V (H) such that x ∼G y if and only if f(x) ∼H f(y), for all x, y ∈ V (G). By
G ∼= H we denote that G and H are isomorphic. A homomorphism between
graphs G and H is a mapping f : V (G) → V (H) such that x ∼G y implies
f(x) ∼H f(y), for all x, y ∈ V (G). An endomorphism of G is a homomorphism
from G into itself. If f is anendomorphism of G and S ⊆ V (G), then:

• f(P (G)) ⊆ P (G);

• if G[S] is connected, then so is G[f(S)]; in particular, f maps a connected
component into a connected component;
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• if G[S] = KS and f(S) ∩ P (G) = ∅ then f |S is injective.

Definition 1. Following [1], we say that a graph G with loops allowed is
homomorphism-homogeneous if every homomorphism f : S → T between fi-
nite induced subgraphs G[S] and G[T ] of G extends to an endomorphism of G.

Lemma 2. Let G be a homomorphsim-homogeneous graph.

(1) if Kr and Ks are connected components of G then r = s;

(2) if S is a connected component of G such that S ∩ P (G) = ∅ then G[S] =
KS.

(3) G[P (G)] is a homomorphism-homogeneous graph.

Proof. (1) Take any x ∈ V (Kr) and y ∈ V (Ks). Then f : x 7→ y extends to
an endomorphism f∗. Now, f∗ is injective on V (Kr) and f∗(V (Kr)) ⊆ V (Ks).
Hence r 6 s. The same argument yields s 6 r.

(2) Assume that G[S] ̸= KS . Take x, y1 ∈ S such that d(x, y1) = 2 and
let z be a common neighbour of x and y1. Let N(z) = {x, y1, . . . , yk} and

consider f =

(
x y1 . . . yk
z y1 . . . yk

)
. This is easily seen to be a homomorphism

from G[x, y1, . . . , yk] to G[z, y1, . . . , yk] (since z ∼ yi for all i), so it extends
to an endomorphsim f∗ of G. From z ∼ x it follows that f∗(z) ∼ f∗(x) = z
i.e. f∗(z) ∈ N(z). If f∗(z) = yi for some i then yi ∼ z implies yi = f∗(yi) ∼
f∗(z) = yi, which contradicts S∩P (G) = ∅. If, however, f∗(z) = x then z ∼ y1
implies x ∼ y1, which contradicts d(x, y1) = 2.

(3) Obvious, since f(P (G)) ⊆ P (G) for every endomorphism f of G. �

We say that u and v are of the same type and write u ≡ v if either both u
and v have a loop, or both u and v do not have a loop. More precisely, u and v
are of the same type if {u, v} ⊆ P (G) or {u, v} ⊆ Q(G).

Lemma 3. Let G be a connected homomorphism-homogeneous graph.

(1) If d(x, y) = 3 and if x ∼ a ∼ b ∼ y then x ̸≡ a and y ̸≡ b.

(2) If d(x, y) = 3 and if x ∼ a ∼ b ∼ y then x, y ∈ Q(G) and a, b ∈ P (G).

(3) diam(G) 6 3.

(4) If {x, y} ̸⊆ Q(G) then d(x, y) 6 2.

Proof. (1): Suppose that x ≡ a and consider f : a 7→ x, y 7→ y. This is a
homomorphism between G[a, y] and G[x, y] so it extends to an endomorphism
f∗ of G. Now, a ∼ b ∼ y implies f∗(a) ∼ f∗(b) ∼ f∗(y) i.e. x ∼ f∗(b) ∼ y,
which contradicts d(x, y) = 3. By the same argument, y ̸≡ b.

(2): According to (1), there are only three possibilities to consider:

• x, b ∈ P (G) and a, y ∈ Q(G);
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• x, y ∈ P (G) and a, b ∈ Q(G); and

• x, y ∈ Q(G) and a, b ∈ P (G).

In the first two cases f : a 7→ x, y 7→ y is a homomorphism between the two
induced substructures and extends to an endomorphism f∗ of G. Now a ∼ b ∼ y
implies x ∼ f∗(b) ∼ y, which contradicts d(x, y) = 3.

(3): Suppose diam(G) > 4. Take x, y such that d(x, y) = 4 and let x ∼ a ∼
b ∼ c ∼ y. Applying (2) to x ∼ a ∼ b ∼ c yields c ∈ Q(G), while applying (2)
to a ∼ b ∼ c ∼ y yields c ∈ P (G). Contradiction.

(4) is a direct consequence of (2) and (3). �

Note that it is not possible to improve (2) and (3) in the previous lemma
since the graph on four vertices x, a, b, y and with edges x ∼ a ∼ b ∼ y, a ∼ a,
b ∼ b is homomorphism-homogeneous and its diameter is 3.

3. The main result

In this section we first characterize finite homomorphism-homogeneous dis-
connected graphs. Using this characterization, we then obtain the character-
ization of all finite homomorphism-homogeneous connected graphs G whose
subgraph induced by loops is not connected.

Lemma 4. Let G be a disconnected homomorphism-homogeneous graph.

(1) If x and y are distinct vertices which belong to the same connected com-
ponent of G and at least one of them is in Q(G) then x ∼ y.

(2) If there exists a vertex with a loop adjacent to a vertex with no loop, then
every connected component of G has a vertex with a loop.

(3) Assume that at least two connected components of G have vertices with
loops. Then in each connected component of G each pair of vertices with
loops is adjacent.

Proof. (1) Let S be a connected component of G such that x, y ∈ S, let y ∈ Q(G)
and assume that x ̸∼ y. Let S′ be another connected component of G and let
z ∈ S′. Then f : x 7→ x, y 7→ z is a homomorphism between the induced
subgraphs and hence extends to an endomorphism f∗ of G. Now, x and y
belong to the same connected component, so there is a path x ∼ v1 ∼ . . . ∼ y.
Applying f∗ to this path yields x ∼ f∗(v1) ∼ . . . ∼ z whence follows S∩S′ ̸= ∅.
Contradiction.

(2) Let p be a vertex with a loop and suppose that p ∼ x, where x is a vertex
with no loop. Let S be a connected component that does not contain p and let
y ∈ S be arbitrary. Then f : x 7→ y is a homomorphism, and hence extends to
an endomorphism f∗. Now, p ∼ x implies f∗(p) ∼ y. Since f∗(p) is a vertex
with a loop, the statement follows.
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(3) Let S be a connected component of G and assume there exist p1, p2 ∈
S ∩ P (G) such that p1 ̸∼ p2. By the assumption, there exist another connected
component S′ and a vertex p′ ∈ S′∩P (G). The mapping f : p1 7→ p1, p2 7→ p′ is
a homomorphism, and hence extends to an endomorphism f∗. Now, p1 and p2
belong to the same connected component, so there is a path p1 ∼ v1 ∼ . . . ∼ p2.
Applying f∗ to this path yields p1 ∼ f∗(v1) ∼ . . . ∼ p′ whence follows S ∩ S′ ̸=
∅. Contradiction. �

Proposition 5. Let G be a disconnected graph. Then G is homomorphism-
homogeneous if and only if G is one of the following graphs:

(1) K(m1, n1) ∪ . . . ∪K(mt, nt) for some integers t > 2, mi > 1 and ni > 0
such that n1 + . . .+ nt > 1;

(2) K(n1, 0) ∪ . . . ∪K(nt, 0) ∪ s ·Km for some integers t > 1, s > 0, ni > 1,
m > 1 such that s+ t > 2;

(3) H ∪ s ·Kn for some integers s > 1, n > 1, and some connected homomor-
phism-homogeneous graph H whose every vertex has a loop.

Proof. (⇐) is easy.
(⇒): If G has a vertex with a loop that has a neighbour without a loop,

then Lemma 4 implies that every connected component of G is isomorphic to
K(m,n) for some m and n, and we have case (1).

If no vertex with a loop is adjacent to a vertex without a loop, and there
exist at least two connected components containing a vertex with a loop, then
Lemmas 2 and 4 imply that G ∼= K(n1, 0) ∪ . . . ∪ K(nt, 0) ∪ s · Km for some
integers t > 1, s > 0, ni > 1, m > 1 such that s+ t > 2, and we have case (2).

Finally, if no vertex with a loop is adjacent to a vertex without a loop, and
there exists only one connected component containing a vertex with a loop, then
the other connected components have to be complete graphs of the same size
according to Lemma 2, while the connected component that contains vertices
with loops has to be a connected homomorphism-homogeneous graph where
every vertex has a loop. So, we have case (3). �

Proposition 6. Let G be a connected homomorphism-homogeneous graph such
that G[P (G)] is not connected. Then G ∼= Ks∇(K(t1, 0) ∪ . . . ∪ K(tm, 0)) for
some m > 2 and some s, t1, . . . , tm > 1.

Proof. Clearly, Q(G) ̸= ∅ since G is connected and G[P (G)] is not. Let T1,
. . . , Tm, m > 2, be connected components of G[P (G)], and for for each i ∈
{1, . . . ,m} let Si ⊆ Q(G) be the set of all the vertices in Q(G) that have at
least one neighbour in Ti.

One can easily adapt the idea of the proof of Lemma 4 (3) to show that
G[Ti] ∼= K(|Ti|, 0), for every i ∈ {1, . . . ,m}.

Let us show that G[Si] ∼= K(0, |Si|), for every i ∈ {1, . . . ,m}. Suppose,
to the contrary, that there exists an i ∈ {1, . . . ,m} and some a, b ∈ Si such
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that a ̸= b and a ̸∼ b. By the definition of Si, there exist u, v ∈ Ti such
that a ∼ u and b ∼ v. Moreover, u ∼ v since G[Ti] ∼= K(|Ti|, 0). Take any

j ̸= i and let w be an arbitrary vertex of Tj . The mapping f =

(
a b
u w

)
is a

homomorphism from G[a, b] to G[u,w], so it extends to an endomorphism f∗ of
G. Now, a ∼ u ∼ v ∼ b implies u ∼ f∗(u) ∼ f∗(v) ∼ w, which is a path from u
to w which consists of vertices from P (G) – contradiction with the fact that Ti

and Tj are distinct connected components of G[P (G)].
Next, let us show that for every i ∈ {1, . . . ,m}, every vertex in Ti is ad-

jacent to every vertex in Si. Suppose, to the contrary, that there exists an
i ∈ {1, . . . ,m} and some a ∈ Si and u ∈ Ti such that a ̸∼ u. By the def-
inition of Si, there exists a v ∈ Ti such that a ∼ v. Moreover, u ∼ v since
G[Ti] ∼= K(|Ti|, 0). Take any j ̸= i and let w be an arbitrary vertex of Tj . The

mapping f =

(
u a
u w

)
is a homomorphism from G[a, u] to G[u,w], so it extends

to an endomorphism f∗ of G. Now, u ∼ v ∼ a implies u ∼ f∗(v) ∼ w, which is
a path from u to w which consists of vertices from P (G) – contradiction.

As the next step, let us show that Si ∩ Sj = ∅ or Si = Sj , whenever i ̸= j.
Suppose, to the contrary, that there exist i ̸= j such that Si ∩ Sj ̸= ∅ and
Si \ Sj ̸= ∅. Take any a ∈ Si \ Sj , b ∈ Si ∩ Sj , u ∈ Ti and v ∈ Tj and let
X = Si ∪ Sj ∪ {u, v}. Because b is adjacent to every x ∈ X, the mapping
f : X \ {b} → X \ {a} given by

f(x) =

{
b, x = a

x, x ∈ X \ {a, b}

is a homomorphism from G[X \ {b}] to G[X \ {a}], so by the homogeneity
assumption, it extends to an endomorphism f∗ of G. From u ∼ b ∼ v it follows
that f∗(u) ∼ f∗(b) ∼ f∗(v), that is, u ∼ f∗(b) ∼ v. Since u and v belong to
distinct connected components of G[P (G)], it follows that f∗(b) cannot be an
element of P (G). Therefore, f∗(b) ∈ Q(G), and consequently, f∗(b) ∈ Si ∩ Sj .
If f∗(b) = b then a ∼ b implies f∗(a) ∼ f∗(b), that is b ∼ b – contradiction
with b ∈ Si ∩ Sj ⊆ Q(G). On the other hand, if f∗(b) = c for some c ̸= b then
b ∼ c implies f∗(b) ∼ f∗(c). From c ̸= b it follows that f∗(c) = f(c) = c, so
f∗(b) ∼ f∗(c) implies c ∼ c – contradiction with c ∈ Si ∩ Sj ⊆ Q(G).

Finally, let us show that Si = Sj for all i and j. Take any i and j such that
i ̸= j, and any u ∈ Ti and v ∈ Tj . Since u ̸∼ v, Lemma 3 (4) yields d(u, v) = 2,
so there is an x ∈ V (G) such that u ∼ x ∼ v. But x ∈ Q(G) since Ti and Tj

are distinct connected components of G[P (G)]. Therefore, x ∈ Si ∩ Sj , whence
Si = Sj by the previous paragraph.

Putting it all together, we obtain G ∼= K|S1|∇(K(|T1|, 0)∪ . . .∪K(|Tm|, 0)).
�

Theorem 7. Let G be a graph such that G[P (G)] is not connected. Then G is
homomorphism-homogeneous if and only if G is one of the following graphs:
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(1) K(m1, n1) ∪ . . . ∪K(mt, nt) for some integers t > 2, mi > 1 and ni > 0
such that n1 + . . .+ nt > 1;

(2) K(n1, 0) ∪ . . . ∪K(nt, 0) ∪ s ·Km for some integers t > 1, s > 0, ni > 1,
m > 1 such that s+ t > 2;

(3) Ks∇(K(t1, 0)∪ . . .∪K(tm, 0)) for some m > 2 and some s, t1, . . . , tm > 1.

Proof. (⇐) It is easy to see that all the graphs in (1)–(3) are homomorphism-
homogeneous.

(⇒) Let G be a homomorphism-homogeneous graph such that G[P (G)] is
not connected. If G is not connected then, according to Proposition 5, we have
that G is isomorphic to a graph in (1) or (2). However, if G is connected,
Proposition 6 yields that G is isomorphic to a graph in (3). �
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C. R. Acad. Sci. Paris 237 (1953), 540–542

[4] Gardiner, A. D., Homogeneous graphs. J. Combinatorial Theory (B) 20 (1976),
94–102.
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