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A CHARACTERIZATION OF GENERALIZED
QUASI-EINSTEIN MANIFOLDS

Dan Dumitru1

Abstract. The aim of this paper is to give a characterisation of gener-
alized quasi-Einstein manifolds in terms of scalar curvatures of subspaces
of the tangent space.
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1. Introduction

According to ([2]) we have the following definition.

Definition 1.1. A non-flat Riemannian manifold (M, g), n > 2, is said to be
a quasi-Einstein manifold if its Ricci tensor Ric of type (0, 2) is not identically
zero and satisfies the condition Ric(X,Y ) = ag(X,Y ) + bA(X)A(Y ) for every
X,Y ∈ Γ(TM), where a, b are real scalars, b ̸= 0 and A is a non-zero 1-form on
M , such that A(X) = g(X,U) for all vector field X ∈ Γ(TM), U being a unit
vector field which is called the generator of the manifold.

According to ([4]) we have the following definition.

Definition 1.2. A non-flat Riemannian manifold (M, g), n > 2, is said to
be a generalized quasi-Einstein manifold if its Ricci tensor Ric of type (0, 2)
is not identically zero and satisfies the condition RicM (X,Y ) = ag(X,Y ) +
bA(X)A(Y )+cB(X)B(Y ) for everyX,Y ∈ Γ(TM), where a, b, c are real scalars,
b ̸= 0, c ̸= 0 and A,B are non-zero 1-form on M such that A(X) = g(X,U),
B(X) = g(X,V ), g(U, V ) = 0 for all vector field X ∈ Γ(TM), U, V being unit
vector fields which are called the generators of the manifold.

Let M be a Riemannian n-manifold. Let p ∈ M and L ⊂ TpM a sub-
space of dimension r ≤ n. Let {e1, ..., er} be a basis for L. We will denote
by τ(L) =

∑
1≤i<j≤r

K(ei ∧ ej), where K(ei ∧ ej) is the sectional curvature of

the plane determinated by {ei, ej}. τ(L) is called the scalar curvature of L.
In these conditions, the orthoganal complement of L is the plane spanned by
{er+1, ..., en} and is denoted by L⊥.

We give now some characterisations of Einstein-type manifolds.
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Theorem 1.1. ([6]) Let M be a Riemannian 4-manifold. Then M is an Ein-
stein space if and only if K(π) = K(π⊥) for any plane section π ⊂ TpM, where
π⊥ denotes the orthogonal complement of π in TpM for every p ∈ M.

Theorem 1.2. ([3]) Let M be a Riemannian (2n)-manifold. Then M is an
Einstein space if and only if τ(L) = τ(L⊥) for any n-plane section L ⊂ TpM,
where L⊥ denotes the orthogonal complement of L in TpM for every p ∈ M.

Theorem 1.3. ([5]) Let M be a Riemannian (2n+1)-manifold. Then M is an
Einstein space of constant λ if and only if τ(L) + λ

2 = τ(L⊥) for any n-plane
section L ⊂ TpM , where L⊥ denotes the orthogonal complement of L in TpM
for every p ∈ M.

Theorem 1.4. ([1]) Let (M, g) be a Riemannian (2n+1)-manifold with n ≥ 2.
Then M is quasi-Einstein if and only if the Ricci operator Ric has an eigenvector
ξ such that at any p ∈ M , there exist two real numbers a, b satisfying τ(P )+a =
τ(P⊥) and τ(N) + b = τ(N⊥) for any n-plane section P and (n + 1)-plane
section N , both orthogonal to ξ in TpM , where P⊥ and N⊥ denote respectively
the orthogonal complement of P and N in TpM .

Theorem 1.5. ([1]) Let (M, g) be a Riemannian (2n)-manifold with n ≥ 2.
Then M is quasi-Einstein if and only if the Ricci operator Ric has an eigenvector
ξ such that at any p ∈ M , there exists the real number c satisfying τ(P ) + c =
τ(P⊥) for any n-plane section P orthogonal to ξ in TpM , where P⊥ denotes
the orthogonal complement of P in TpM .

2. Main results

The aim of this paper is to extend in some sense the results from ([1, 3, 5, 6])
to the case when the ambient space is a generalized quasi-Einstein space. Thus,
we will give a characterization of generalized quasi-Einstein manifolds in terms
of scalar curvatures of n-planes included in the tangent space.

Theorem 2.1. Let M be a Riemannian (2n + 1)-manifold, n ≥ 2. Then the
following conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y ) = ag(X,Y )+
bA(X)A(Y )+ cB(X)B(Y ) for every X,Y ∈ Γ(TM), where a, b, c are real scalars
and A,B are non-zero 1-forms on M such that A(X) = g(X,U), B(X) =
g(X,V ), g(U, V ) = 0 for all vector field X ∈ Γ(TM), U, V being unit vector
fields.

2) a) τ(L⊥
1 ) = τ(L1) +

1
2 (a+ b+ c) for any n-plane section L1 ⊂ TpM such

that U, V /∈ L1,
b) τ(L⊥

2 ) = τ(L2)+
1
2 (a− b− c) for any n-plane section L2 ⊂ TpM such

that U, V ∈ L2,
c) τ(L⊥

3 ) = τ(L3)+
1
2 (a+ b− c) for any n-plane section L3 ⊂ TpM such

that U /∈ L1, V ∈ L3,
d) τ(L⊥

4 ) = τ(L4)+
1
2 (a− b+ c) for any n-plane section L4 ⊂ TpM such

that U ∈ L4, V /∈ L4,
where L⊥ denotes the orthogonal complement of L in TpM for every p ∈ M.
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Proof. ”1) ⇒ 2)”. Let p ∈ M and {e1, .., en, ..., e2n+1} an orthonormal frame of
TpM such that U = e1 and V = e2. We know that

Ric(X,Y ) =
2n+1∑
i=1

R(X, ei, Y, ei) = ag(X,Y ) + bA(X)A(Y ) + cB(X)B(Y )

for every X,Y ∈ Γ(TM). Let X = Y = ei. This implies that Ric(ei) =

Ric(ei, ei) =
2n+1∑
j=1

R(ei, ej , ei, ej) = a for every i ∈ {3, ..., 2n + 1}. In the same

way we obtain that Ric(U) = Ric(e1) = a+ b and Ric(V ) = Ric(e2) = a+ c.
We will write now all the equations and by the formula of Ricci cuvature,

we will have the following system of 2n+ 1 equations:

1) Ric(e1) = K(e1 ∧ e2) +K(e1 ∧ e3) + . . .+K(e1 ∧ e2n+1) = a+ b

2) Ric(e2) = K(e2 ∧ e1) +K(e2 ∧ e3) + . . .+K(e2 ∧ e2n+1) = a+ c

3) Ric(e3) = K(e3 ∧ e1) +K(e3 ∧ e2) + . . .+K(e3 ∧ e2n+1) = a

...

2n+1) Ric(e2n+1) = K(e2n+1 ∧ e1) +K(e2n+1 ∧ e2)+. . .+K(e2n+1 ∧ e2n) = a

Without any loss of generality we will consider the following n-planes from
TpM :

L1 = Sp({e3, e4, ..., en+2}), L2 = Sp({e1, e2, ..., en}),

L3 = Sp({e2, e3, ..., en+1}), L4 = Sp({e1, e3, e4, ..., en+1}).

Now, by summing the first n equations we have the following relation:

(i) 2τ(L2) +
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej) = na+ b+ c

By summing the last n+ 1 equations we have another relation:

(ii) 2τ(L⊥
2 ) +

∑
1≤j≤n<i≤2n+1

K(ei ∧ ej) = (n+ 1)a

Then (ii)− (i) implies:

a− b− c =2τ(L⊥
2 )− 2τ(L2) +

∑
1≤j≤n<i≤2n+1

K(ei ∧ ej)−
∑

1≤i≤n<j≤2n+1

K(ei ∧ ej)

⇒τ(L⊥
2 ) = τ(L2) +

1

2
(a− b− c).

In a similar way, by summing the equations from 3) to n+2) we have:
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(iii) 2τ(L1) +
∑

3≤i≤n+2<j≤2n+1

K(ei ∧ ej) +
∑

3≤i≤n+2, j∈{1,2}

K(ei ∧ ej) = na

Also, by summing the remaining equations we have:

(iv) 2τ(L⊥
1 ) +

∑
3≤i≤n+2<j≤2n+1

K(ei ∧ ej) +
∑

3≤i≤n+2, j∈{1,2}

K(ei ∧ ej) = (n+ 1)a+ b+ c

Then (iv)− (iii) implies:

a+ b+ c = 2τ(L⊥
1 )− 2τ(L1) ⇒ τ(L⊥

1 ) = τ(L1) +
1

2
(a+ b+ c).

In a similar way, by summing the equations from 2) to n+1) we have:

(v) 2τ(L3) +
∑

2≤i≤n+1<j≤2n+1

K(ei ∧ ej) +
∑

2≤i≤n+1

K(ei ∧ e1) = na+ c

Also, by summing the remaining equations we have:

(vi) 2τ(L⊥
3 ) +

∑
2≤i≤n+1<j≤2n+1

K(ei ∧ ej) +
∑

2≤i≤n+1

K(ei ∧ e1) = (n+ 1)a+ b

Then (vi)− (v) implies:

a+ b− c = 2τ(L⊥
3 )− 2τ(L3) ⇒ τ(L⊥

3 ) = τ(L3) +
1

2
(a+ b− c).

In a similar way, by summing the equation 1) with all the equations from 3)
to n+1) we have:

(vii) 2τ(L4) +
∑

1≤i≤n+1<j≤2n+1

K(ei ∧ ej)−
∑

1≤i≤n+1

K(ei ∧ e2) = na+ b

Also, by summing the remaining equations we have:

(viii) 2τ(L⊥
4 ) +

∑
1≤i≤n+1<j≤2n+1

K(ei ∧ ej)−
∑

1≤i≤n+1

K(ei ∧ e2) = (n+ 1)a+ c

Then (viii)− (vii) implies:

a− b+ c = 2τ(L⊥
4 )− 2τ(L4) ⇒ τ(L⊥

4 ) = τ(L4) +
1
2 (a− b+ c).
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”2) ⇐ 1)”. Let p ∈ M and {e1, ..., en, en+1, ..., e2n+1} be an orthonormal
frame of TpM such that U = e1 and V = e2.

Let L = Sp({en+2, ..., e2n+1}) and L0 = Sp({e2, ..., en+1}).
Then L⊥ = Sp({e1, ..., en+1}) and L⊥

0 = Sp({e1, en+2, ..., e2n+1}). Thus:

Ric(e1) = [K(e1 ∧ e2) +K(e1 ∧ e3) + . . .+K(e1 ∧ en+1)] +

+[K(e1 ∧ en+2) + . . .+K(e1 ∧ e2n+1)]

= [τ(L⊥)−
∑

2≤i<j≤n+1

K(ei ∧ ej)] + [τ(L⊥
0 )−

∑
n+2≤i<j≤2n+1

K(ei ∧ ej)]

= [τ(L) +
1

2
(a+ b+ c)− τ(L0)] + [τ(L0) +

1

2
(a+ b− c)− τ(L)]

= a+ b.

In a similar way one can prove that Ric(e2)= a + c and Ric(ei) = a for

all i ∈ {3, ..., 2n + 1}. We define now the 1-forms A(X) = g(X,U), B(X) =
g(X,V ) such that A(U) = B(V ) = 1 and we consider the following (0, 2)-tensor
P (X,Y ) = ag(X,Y )+ bA(X)A(Y )+ cB(X)B(Y ). Then Ric(X,X) = P (X,X)
for every X ∈ Γ(TM). Because the tensors Ric and P are symmetric, it follows
that Ric(X,Y ) = P (X,Y ) for every X,Y ∈ Γ(TM) and then M is a generalized
quasi-Einstein manifold.

We give the particular version for dimension three.

Theorem 2.2. Let M be a Riemannian 3-manifold. Then the following condi-
tions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y ) = ag(X,Y )+
bA(X)A(Y )+ cB(X)B(Y ) for every X,Y ∈ Γ(TM), where a, b, c are real scalars
and A,B are non-zero 1-forms on M such that A(X) = g(X,U), B(X) =
g(X,V ), g(U, V ) = 0 for all vector field X ∈ Γ(TM), U, V being unit vector
fields.

2) a) τ(L1) =
1
2 (a+ b+ c), where L1 = Sp({U, V }),

b) τ(L2) =
1
2 (a+ b− c), where L2 is a 2-plane section orthogonal to V,

c) τ(L3) =
1
2 (a− b+ c), where L3 is a 2-plane section orthogonal to U.

Proof. Similar to that of Theorem 2.1.

We can state now the even dimension version of Theorem 2.1. from above.

Theorem 2.3. Let M be a Riemannian (2n)-manifold, n ≥ 2. Then the fol-
lowing conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y ) = ag(X,Y )+
bA(X)A(Y )+ cB(X)B(Y ) for every X,Y ∈ Γ(TM) where a, b, c are real scalars
and A,B are non-zero 1-forms on M such that A(X) = g(X,U), B(X) =
g(X,V ), g(U, V ) = 0 for all vector field X ∈ Γ(TM), U, V being unit vector
fields.
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2) a) τ(L⊥
1 ) = τ(L1)+

1
2 (b+ c) for any n-plane section L1 ⊂ TpM such that

U, V /∈ L1,
b) τ(L⊥

2 ) = τ(L2) − 1
2 (b + c) for any n-plane section L2 ⊂ TpM such

that U, V ∈ L2,
c) τ(L⊥

3 ) = τ(L3) +
1
2 (b − c) for any n-plane section L3 ⊂ TpM such

that U /∈ L1, V ∈ L3,
d) τ(L⊥

4 ) = τ(L4) +
1
2 (−b+ c) for any n-plane section L4 ⊂ TpM such

that U ∈ L4, V /∈ L4,
where L⊥ denotes the orthogonal complement of L in TpM for every p ∈ M.

Proof. Similar to that of Theorem 2.1.

Acknowledgement

The author would like to thank the referee for his useful improvements of
the paper.

References

[1] Bejan, C. L., Characterization of quasi-Einstein manifolds. An. Stiint. Univ. Al. I.
Cuza Iasi Mat. (N.S.) 53 suppl. 1 (2007), 67-72.

[2] Chaki, M.C., Maity, R.K., On quasi-Einstein manifolds. Publ. Math. Debrecen 57
(2000), 297-306.

[3] Chen, B. Y., Dillen, F., Verstraelen, L., Vranken, L., Characterizations of Rieman-
nian space forms, Einstein spaces and conformally flat spaces. Proc. Am. Math.
Soc. 128 No. 2 (2000), 589-598.

[4] De, U. C., Ghosh, G.C., On generalized quasi-Einstein manifolds. Kyungpook
Math. J. 44 (2004), 607-615.

[5] Dumitru, D., On Einstein spaces of odd dimensions. Buletinul Universitatii Tran-
silvania, Brasov, 14(49) Seria B, (2007), 95-97.

[6] Singer, I. M., Thorpe, J. A., The curvature of 4-dimensional Einstein spaces. Global
Analysis, Princeton University Press, (1969), 355-365.

Received by the editors April 17, 2011


	Introduction
	Main results

