A CHARACTERIZATION OF GENERALIZED QUASI-EINSTEIN MANIFOLDS

Dan Dumitru ${ }^{\text {II }}$

Abstract

The aim of this paper is to give a characterisation of generalized quasi-Einstein manifolds in terms of scalar curvatures of subspaces of the tangent space.

AMS Mathematics Subject Classification (2010): 53C15, 53B20, 53C42
Key words and phrases: quasi-Einstein manifold, generalized quasi-Einstein

1. Introduction

According to ([2]) we have the following definition.
Definition 1.1. A non-flat Riemannian manifold $(M, g), n>2$, is said to be a quasi-Einstein manifold if its Ricci tensor Ric of type $(0,2)$ is not identically zero and satisfies the condition $\operatorname{Ric}(X, Y)=a g(X, Y)+b A(X) A(Y)$ for every $X, Y \in \Gamma(T M)$, where a, b are real scalars, $b \neq 0$ and A is a non-zero 1-form on M, such that $A(X)=g(X, U)$ for all vector field $X \in \Gamma(T M), U$ being a unit vector field which is called the generator of the manifold.

According to ([4]) we have the following definition.
Definition 1.2. A non-flat Riemannian manifold $(M, g), n>2$, is said to be a generalized quasi-Einstein manifold if its Ricci tensor Ric of type $(0,2)$ is not identically zero and satisfies the condition $\operatorname{Ric}_{M}(X, Y)=a g(X, Y)+$ $b A(X) A(Y)+c B(X) B(Y)$ for every $X, Y \in \Gamma(T M)$, where a, b, c are real scalars, $b \neq 0, c \neq 0$ and A, B are non-zero 1-form on M such that $A(X)=g(X, U)$, $B(X)=g(X, V), g(U, V)=0$ for all vector field $X \in \Gamma(T M), U, V$ being unit vector fields which are called the generators of the manifold.

Let M be a Riemannian n-manifold. Let $p \in M$ and $L \subset T_{p} M$ a subspace of dimension $r \leq n$. Let $\left\{e_{1}, \ldots, e_{r}\right\}$ be a basis for L. We will denote by $\tau(L)=\sum_{1 \leq i<j \leq r} K\left(e_{i} \wedge e_{j}\right)$, where $K\left(e_{i} \wedge e_{j}\right)$ is the sectional curvature of the plane determinated by $\left\{e_{i}, e_{j}\right\} . \tau(L)$ is called the scalar curvature of L. In these conditions, the orthoganal complement of L is the plane spanned by $\left\{e_{r+1}, \ldots, e_{n}\right\}$ and is denoted by L^{\perp}.

We give now some characterisations of Einstein-type manifolds.

[^0]Theorem 1.1. ([b]) Let M be a Riemannian 4-manifold. Then M is an Einstein space if and only if $K(\pi)=K\left(\pi^{\perp}\right)$ for any plane section $\pi \subset T_{p} M$, where π^{\perp} denotes the orthogonal complement of π in $T_{p} M$ for every $p \in M$.

Theorem 1.2. ([囼]) Let M be a Riemannian (2n)-manifold. Then M is an Einstein space if and only if $\tau(L)=\tau\left(L^{\perp}\right)$ for any n-plane section $L \subset T_{p} M$, where L^{\perp} denotes the orthogonal complement of L in $T_{p} M$ for every $p \in M$.

Theorem 1.3. ([5]) Let M be a Riemannian ($2 n+1$)-manifold. Then M is an Einstein space of constant λ if and only if $\tau(L)+\frac{\lambda}{2}=\tau\left(L^{\perp}\right)$ for any n-plane section $L \subset T_{p} M$, where L^{\perp} denotes the orthogonal complement of L in $T_{p} M$ for every $p \in M$.
Theorem 1.4. ([1] $]$ Let (M, g) be a Riemannian $(2 n+1)$-manifold with $n \geq 2$. Then M is quasi-Einstein if and only if the Ricci operator Ric has an eigenvector ξ such that at any $p \in M$, there exist two real numbers a, b satisfying $\tau(P)+a=$ $\tau\left(P^{\perp}\right)$ and $\tau(N)+b=\tau\left(N^{\perp}\right)$ for any n-plane section P and $(n+1)$-plane section N, both orthogonal to ξ in $T_{p} M$, where P^{\perp} and N^{\perp} denote respectively the orthogonal complement of P and N in $T_{p} M$.
Theorem 1.5. ([1]) Let (M, g) be a Riemannian ($2 n$)-manifold with $n \geq 2$. Then M is quasi-Einstein if and only if the Ricci operator Ric has an eigenvector ξ such that at any $p \in M$, there exists the real number c satisfying $\tau(P)+c=$ $\tau\left(P^{\perp}\right)$ for any n-plane section P orthogonal to ξ in $T_{p} M$, where P^{\perp} denotes the orthogonal complement of P in $T_{p} M$.

2. Main results

The aim of this paper is to extend in some sense the results from ([IT, $3,5,5]$) to the case when the ambient space is a generalized quasi-Einstein space. Thus, we will give a characterization of generalized quasi-Einstein manifolds in terms of scalar curvatures of n-planes included in the tangent space.

Theorem 2.1. Let M be a Riemannian $(2 n+1)$-manifold, $n \geq 2$. Then the following conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with $\operatorname{Ric}(X, Y)=a g(X, Y)+$ $b A(X) A(Y)+c B(X) B(Y)$ for every $X, Y \in \Gamma(T M)$, where a, b, c are real scalars and A, B are non-zero 1-forms on M such that $A(X)=g(X, U), B(X)=$ $g(X, V), g(U, V)=0$ for all vector field $X \in \Gamma(T M), U, V$ being unit vector fields.
2) a) $\tau\left(L_{1}^{\perp}\right)=\tau\left(L_{1}\right)+\frac{1}{2}(a+b+c)$ for any n-plane section $L_{1} \subset T_{p} M$ such that $U, V \notin L_{1}$,
b) $\tau\left(L_{2}^{\perp}\right)=\tau\left(L_{2}\right)+\frac{1}{2}(a-b-c)$ for any n-plane section $L_{2} \subset T_{p} M$ such that $U, V \in L_{2}$,
c) $\tau\left(L_{3}^{\perp}\right)=\tau\left(L_{3}\right)+\frac{1}{2}(a+b-c)$ for any n-plane section $L_{3} \subset T_{p} M$ such that $U \notin L_{1}, V \in L_{3}$,
d) $\tau\left(L_{4}^{\perp}\right)=\tau\left(L_{4}\right)+\frac{1}{2}(a-b+c)$ for any n-plane section $L_{4} \subset T_{p} M$ such that $U \in L_{4}, V \notin L_{4}$,
where L^{\perp} denotes the orthogonal complement of L in $T_{p} M$ for every $p \in M$.

Proof. "1) $\Rightarrow 2) "$. Let $p \in M$ and $\left\{e_{1}, . ., e_{n}, \ldots, e_{2 n+1}\right\}$ an orthonormal frame of $T_{p} M$ such that $U=e_{1}$ and $V=e_{2}$. We know that

$$
\operatorname{Ric}(X, Y)=\sum_{i=1}^{2 n+1} R\left(X, e_{i}, Y, e_{i}\right)=a g(X, Y)+b A(X) A(Y)+c B(X) B(Y)
$$

for every $X, Y \in \Gamma(T M)$. Let $X=Y=e_{i}$. This implies that $\operatorname{Ric}\left(e_{i}\right)=$ $\operatorname{Ric}\left(e_{i}, e_{i}\right)=\sum_{j=1}^{2 n+1} R\left(e_{i}, e_{j}, e_{i}, e_{j}\right)=a$ for every $i \in\{3, \ldots, 2 n+1\}$. In the same way we obtain that $\operatorname{Ric}(U)=\operatorname{Ric}\left(e_{1}\right)=a+b$ and $\operatorname{Ric}(V)=\operatorname{Ric}\left(e_{2}\right)=a+c$.

We will write now all the equations and by the formula of Ricci cuvature, we will have the following system of $2 n+1$ equations:

1) $\quad \operatorname{Ric}\left(e_{1}\right)=K\left(e_{1} \wedge e_{2}\right)+K\left(e_{1} \wedge e_{3}\right)+\ldots+K\left(e_{1} \wedge e_{2 n+1}\right)=a+b$
2) $\quad \operatorname{Ric}\left(e_{2}\right)=K\left(e_{2} \wedge e_{1}\right)+K\left(e_{2} \wedge e_{3}\right)+\ldots+K\left(e_{2} \wedge e_{2 n+1}\right)=a+c$
3) $\quad \operatorname{Ric}\left(e_{3}\right)=K\left(e_{3} \wedge e_{1}\right)+K\left(e_{3} \wedge e_{2}\right)+\ldots+K\left(e_{3} \wedge e_{2 n+1}\right)=a$
$2 n+1) \quad \operatorname{Ric}\left(e_{2 n+1}\right)=K\left(e_{2 n+1} \wedge e_{1}\right)+K\left(e_{2 n+1} \wedge e_{2}\right)+\ldots+K\left(e_{2 n+1} \wedge e_{2 n}\right)=a$
Without any loss of generality we will consider the following n-planes from $T_{p} M$:

$$
\begin{gathered}
L_{1}=\operatorname{Sp}\left(\left\{e_{3}, e_{4}, \ldots, e_{n+2}\right\}\right), L_{2}=\operatorname{Sp}\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right) \\
L_{3}=\operatorname{Sp}\left(\left\{e_{2}, e_{3}, \ldots, e_{n+1}\right\}\right), L_{4}=\operatorname{Sp}\left(\left\{e_{1}, e_{3}, e_{4}, \ldots, e_{n+1}\right\}\right)
\end{gathered}
$$

Now, by summing the first n equations we have the following relation:

$$
\begin{equation*}
2 \tau\left(L_{2}\right)+\sum_{1 \leq i \leq n<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)=n a+b+c \tag{i}
\end{equation*}
$$

By summing the last $n+1$ equations we have another relation:

$$
\begin{equation*}
2 \tau\left(L_{2}^{\perp}\right)+\sum_{1 \leq j \leq n<i \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)=(n+1) a \tag{ii}
\end{equation*}
$$

Then (ii) - (i) implies:

$$
\begin{aligned}
a-b-c & =2 \tau\left(L_{2}^{\perp}\right)-2 \tau\left(L_{2}\right)+\sum_{1 \leq j \leq n<i \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)-\sum_{1 \leq i \leq n<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right) \\
& \Rightarrow \tau\left(L_{2}^{\perp}\right)=\tau\left(L_{2}\right)+\frac{1}{2}(a-b-c)
\end{aligned}
$$

In a similar way, by summing the equations from 3) to $n+2$) we have:

$$
\begin{equation*}
2 \tau\left(L_{1}\right)+\sum_{3 \leq i \leq n+2<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)+\sum_{3 \leq i \leq n+2, j \in\{1,2\}} K\left(e_{i} \wedge e_{j}\right)=n a \tag{iii}
\end{equation*}
$$

Also, by summing the remaining equations we have:
(iv)

$$
2 \tau\left(L_{1}^{\perp}\right)+\sum_{3 \leq i \leq n+2<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)+\sum_{3 \leq i \leq n+2,} K\left(e_{i} \wedge e_{j}\right)=(n+1) a+b+c
$$

Then (iv) - (iii) implies:

$$
a+b+c=2 \tau\left(L_{1}^{\perp}\right)-2 \tau\left(L_{1}\right) \Rightarrow \tau\left(L_{1}^{\perp}\right)=\tau\left(L_{1}\right)+\frac{1}{2}(a+b+c)
$$

In a similar way, by summing the equations from 2) to $\mathrm{n}+1$) we have:

$$
\begin{equation*}
2 \tau\left(L_{3}\right)+\sum_{2 \leq i \leq n+1<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)+\sum_{2 \leq i \leq n+1} K\left(e_{i} \wedge e_{1}\right)=n a+c \tag{v}
\end{equation*}
$$

Also, by summing the remaining equations we have:

$$
\begin{equation*}
2 \tau\left(L_{3}^{\perp}\right)+\sum_{2 \leq i \leq n+1<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)+\sum_{2 \leq i \leq n+1} K\left(e_{i} \wedge e_{1}\right)=(n+1) a+b \tag{vi}
\end{equation*}
$$

Then $(v i)-(v)$ implies:

$$
a+b-c=2 \tau\left(L_{3}^{\perp}\right)-2 \tau\left(L_{3}\right) \Rightarrow \tau\left(L_{3}^{\perp}\right)=\tau\left(L_{3}\right)+\frac{1}{2}(a+b-c) .
$$

In a similar way, by summing the equation 1) with all the equations from 3) to $n+1$) we have:

$$
\begin{equation*}
2 \tau\left(L_{4}\right)+\sum_{1 \leq i \leq n+1<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)-\sum_{1 \leq i \leq n+1} K\left(e_{i} \wedge e_{2}\right)=n a+b \tag{vii}
\end{equation*}
$$

Also, by summing the remaining equations we have:

$$
\begin{equation*}
2 \tau\left(L_{4}^{\perp}\right)+\sum_{1 \leq i \leq n+1<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)-\sum_{1 \leq i \leq n+1} K\left(e_{i} \wedge e_{2}\right)=(n+1) a+c \tag{viii}
\end{equation*}
$$

Then (viii) - (vii) implies:

$$
a-b+c=2 \tau\left(L_{4}^{\perp}\right)-2 \tau\left(L_{4}\right) \Rightarrow \tau\left(L_{4}^{\perp}\right)=\tau\left(L_{4}\right)+\frac{1}{2}(a-b+c) .
$$

$" 2) \Leftarrow 1) "$. Let $p \in M$ and $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n+1}\right\}$ be an orthonormal frame of $T_{p} M$ such that $U=e_{1}$ and $V=e_{2}$.

Let $L=S p\left(\left\{e_{n+2}, \ldots, e_{2 n+1}\right\}\right)$ and $L_{0}=S p\left(\left\{e_{2}, \ldots, e_{n+1}\right\}\right)$.
Then $L^{\perp}=S p\left(\left\{e_{1}, \ldots, e_{n+1}\right\}\right)$ and $L_{0}^{\perp}=S p\left(\left\{e_{1}, e_{n+2}, \ldots, e_{2 n+1}\right\}\right)$. Thus:

$$
\begin{aligned}
\operatorname{Ric}\left(e_{1}\right)= & {\left[K\left(e_{1} \wedge e_{2}\right)+K\left(e_{1} \wedge e_{3}\right)+\ldots+K\left(e_{1} \wedge e_{n+1}\right)\right]+} \\
& +\left[K\left(e_{1} \wedge e_{n+2}\right)+\ldots+K\left(e_{1} \wedge e_{2 n+1}\right)\right] \\
= & {\left[\tau\left(L^{\perp}\right)-\sum_{2 \leq i<j \leq n+1} K\left(e_{i} \wedge e_{j}\right)\right]+\left[\tau\left(L_{0}^{\perp}\right)-\sum_{n+2 \leq i<j \leq 2 n+1} K\left(e_{i} \wedge e_{j}\right)\right] } \\
= & {\left[\tau(L)+\frac{1}{2}(a+b+c)-\tau\left(L_{0}\right)\right]+\left[\tau\left(L_{0}\right)+\frac{1}{2}(a+b-c)-\tau(L)\right] } \\
= & a+b .
\end{aligned}
$$

In a similar way one can prove that $\operatorname{Ric}\left(e_{2}\right)=a+c$ and $\operatorname{Ric}\left(e_{i}\right)=a$ for all $i \in\{3, \ldots, 2 n+1\}$. We define now the 1-forms $A(X)=g(X, U), B(X)=$ $g(X, V)$ such that $A(U)=B(V)=1$ and we consider the following (0,2)-tensor $P(X, Y)=a g(X, Y)+b A(X) A(Y)+c B(X) B(Y)$. Then $\operatorname{Ric}(X, X)=P(X, X)$ for every $X \in \Gamma(T M)$. Because the tensors Ric and P are symmetric, it follows that $\operatorname{Ric}(X, Y)=P(X, Y)$ for every $X, Y \in \Gamma(T M)$ and then M is a generalized quasi-Einstein manifold.

We give the particular version for dimension three.
Theorem 2.2. Let M be a Riemannian 3-manifold. Then the following conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with $\operatorname{Ric}(X, Y)=a g(X, Y)+$ $b A(X) A(Y)+c B(X) B(Y)$ for every $X, Y \in \Gamma(T M)$, where a, b, c are real scalars and A, B are non-zero 1-forms on M such that $A(X)=g(X, U), B(X)=$ $g(X, V), g(U, V)=0$ for all vector field $X \in \Gamma(T M), U, V$ being unit vector fields.
2) a) $\tau\left(L_{1}\right)=\frac{1}{2}(a+b+c)$, where $L_{1}=S p(\{U, V\})$,
b) $\tau\left(L_{2}\right)=\frac{1}{2}(a+b-c)$, where L_{2} is a 2-plane section orthogonal to V,
c) $\tau\left(L_{3}\right)=\frac{1}{2}(a-b+c)$, where L_{3} is a 2-plane section orthogonal to U.

Proof. Similar to that of Theorem 2.1.
We can state now the even dimension version of Theorem 2.1. from above.
Theorem 2.3. Let M be a Riemannian (2n)-manifold, $n \geq 2$. Then the following conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with $\operatorname{Ric}(X, Y)=a g(X, Y)+$ $b A(X) A(Y)+c B(X) B(Y)$ for every $X, Y \in \Gamma(T M)$ where a, b, c are real scalars and A, B are non-zero 1-forms on M such that $A(X)=g(X, U), B(X)=$ $g(X, V), g(U, V)=0$ for all vector field $X \in \Gamma(T M), U, V$ being unit vector fields.
2) a) $\tau\left(L_{1}^{\perp}\right)=\tau\left(L_{1}\right)+\frac{1}{2}(b+c)$ for any n-plane section $L_{1} \subset T_{p} M$ such that $U, V \notin L_{1}$,
b) $\tau\left(L_{2}^{\perp}\right)=\tau\left(L_{2}\right)-\frac{1}{2}(b+c)$ for any n-plane section $L_{2} \subset T_{p} M$ such that $U, V \in L_{2}$,
c) $\tau\left(L_{3}^{\perp}\right)=\tau\left(L_{3}\right)+\frac{1}{2}(b-c)$ for any n-plane section $L_{3} \subset T_{p} M$ such that $U \notin L_{1}, V \in L_{3}$,
d) $\tau\left(L_{4}^{\perp}\right)=\tau\left(L_{4}\right)+\frac{1}{2}(-b+c)$ for any n-plane section $L_{4} \subset T_{p} M$ such that $U \in L_{4}, V \notin L_{4}$,
where L^{\perp} denotes the orthogonal complement of L in $T_{p} M$ for every $p \in M$.
Proof. Similar to that of Theorem 2.1.

Acknowledgement

The author would like to thank the referee for his useful improvements of the paper.

References

[1] Bejan, C. L., Characterization of quasi-Einstein manifolds. An. Stiint. Univ. Al. I. Cuza Iasi Mat. (N.S.) 53 suppl. 1 (2007), 67-72.
[2] Chaki, M.C., Maity, R.K., On quasi-Einstein manifolds. Publ. Math. Debrecen 57 (2000), 297-306.
[3] Chen, B. Y., Dillen, F., Verstraelen, L., Vranken, L., Characterizations of Riemannian space forms, Einstein spaces and conformally flat spaces. Proc. Am. Math. Soc. 128 No. 2 (2000), 589-598.
[4] De, U. C., Ghosh, G.C., On generalized quasi-Einstein manifolds. Kyungpook Math. J. 44 (2004), 607-615.
[5] Dumitru, D., On Einstein spaces of odd dimensions. Buletinul Universitatii Transilvania, Brasov, 14(49) Seria B, (2007), 95-97.
[6] Singer, I. M., Thorpe, J. A., The curvature of 4-dimensional Einstein spaces. Global Analysis, Princeton University Press, (1969), 355-365.

Received by the editors April 17, 2011

[^0]: ${ }^{1}$ Spiru Haret University of Bucharest, Department of Mathematics and Computer Science, 13 Ghica str., Bucharest, Romania, e-mail: dandumitru1984@yahoo.com

