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A CHARACTERIZATION OF GENERALIZED
QUASI-EINSTEIN MANIFOLDS
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Abstract. The aim of this paper is to give a characterisation of gener-
alized quasi-Einstein manifolds in terms of scalar curvatures of subspaces
of the tangent space.
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1. Introduction
According to ([2]) we have the following definition.

Definition 1.1. A non-flat Riemannian manifold (M, g), n > 2, is said to be
a quasi-Einstein manifold if its Ricci tensor Ric of type (0,2) is not identically
zero and satisfies the condition Ric(X,Y) = ag(X,Y) + bA(X)A(Y) for every
X,Y € I(T M), where a,b are real scalars, b # 0 and A is a non-zero 1-form on
M, such that A(X) = ¢g(X,U) for all vector field X € I'(T'M), U being a unit
vector field which is called the generator of the manifold.

According to ([d]) we have the following definition.

Definition 1.2. A non-flat Riemannian manifold (M, g), n > 2, is said to
be a generalized quasi-Einstein manifold if its Ricci tensor Ric of type (0,2)
is not identically zero and satisfies the condition Ricp/(X,Y) = ag(X,Y) +
bA(X)A(Y)+cB(X)B(Y) for every X,Y € I'(T'M), where a, b, ¢ are real scalars,
b # 0,c # 0 and A, B are non-zero 1-form on M such that A(X) = ¢g(X,U),
B(X) =g(X,V), g(U,V) = 0 for all vector field X € T'(TM), U,V being unit
vector fields which are called the generators of the manifold.

Let M be a Riemannian n-manifold. Let p € M and L C T,M a sub-
space of dimension r < n. Let {e1,...,e,} be a basis for L. We will denote
by 7(L) = > K(e; Aej), where K(e; A ej) is the sectional curvature of

1<i<j<r
the plane determinated by {e;,e;}. 7(L) is called the scalar curvature of L.
In these conditions, the orthoganal complement of L is the plane spanned by
{€r+1,--,en} and is denoted by L*.
We give now some characterisations of Einstein-type manifolds.
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Theorem 1.1. (f6]) Let M be a Riemannian 4-manifold. Then M is an Fin-
stein space if and only if K (7) = K(rt) for any plane section = C T, M, where
7+ denotes the orthogonal complement of 7 in T,M for every p € M.

Theorem 1.2. (f3]) Let M be a Riemannian (2n)-manifold. Then M is an
Einstein space if and only if (L) = 7(L*) for any n-plane section L C T,M,
where L+ denotes the orthogonal complement of L in T,M for every p € M.

Theorem 1.3. (fid]) Let M be a Riemannian (2n+ 1)-manifold. Then M is an
Einstein space of constant X if and only if (L) + % = 7(L*) for any n-plane
section L C T,M, where L+ denotes the orthogonal complement of L in T,M
for every p € M.

Theorem 1.4. ([i1]) Let (M, g) be a Riemannian (2n+ 1)-manifold with n > 2.
Then M s quasi-Einstein if and only if the Ricci operator Ric has an eigenvector
& such that at any p € M, there exist two real numbers a,b satisfying T(P)+a =
7(PY) and 7(N) +b = 7(N*) for any n-plane section P and (n + 1)-plane
section N, both orthogonal to & in T,M, where P and Nt denote respectively
the orthogonal complement of P and N in T, M.

Theorem 1.5. (fi]) Let (M,g) be a Riemannian (2n)-manifold with n > 2.
Then M 1is quasi-Einstein if and only if the Ricci operator Ric has an eigenvector
& such that at any p € M, there exists the real number ¢ satisfying 7(P) + ¢ =
7(Pt) for any n-plane section P orthogonal to & in T,M, where Pt denotes
the orthogonal complement of P in T,M.

2. Main results

The aim of this paper is to extend in some sense the results from (]I, 8, B, B])
to the case when the ambient space is a generalized quasi-Einstein space. Thus,
we will give a characterization of generalized quasi-Einstein manifolds in terms
of scalar curvatures of n-planes included in the tangent space.

Theorem 2.1. Let M be a Riemannian (2n + 1)-manifold, n > 2. Then the
following conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y) = ag(X,Y) +
bA(X)A(Y)+ ¢B(X)B(Y) for every X, Y € I'(T' M), where a, b, ¢ are real scalars
and A, B are non-zero 1-forms on M such that A(X) = g(X,U), B(X) =
9(X, V), g(U, V) = 0 for all vector field X € T(TM), U,V being unit vector
fields.

2) a) (L) = 7(L1) + 3(a+ b+ c) for any n-plane section Ly C T,M such
that U,V ¢ Ly,

b) 7(L3) = 7(L2) + 3 (a—b—c) for any n-plane section Ly C T,M such
that U,V € Lo,

¢) 7(L3) = 7(L3) + 5(a+b—c) for any n-plane section Ly C T,M such
that U ¢ Ll, Ve L37

d) 7(Li) = 7(La) + 3(a—b+c) for any n-plane section Ly C T,M such
that U € Ly, V ¢ Ly,

where L+ denotes the orthogonal complement of L in T,M for everyp € M.
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Proof. 71) = 2)”. Let p € M and {ey, .., en, ..., €2,+1} an orthonormal frame of
T,M such that U = e; and V = ep. We know that

2n+1
Ric(X,Y) = Y R(X,e;,Y,e;) = ag(X,Y) + bA(X)A(Y) + ¢B(X)B(Y)
i=1
for every X, Y € I'(TM). Let X = Y = e¢;. This implies that Ric(e;) =
2n+1
Ric(e;,ei) = ). R(es,ej,e;,e5) = a for every i € {3,...,2n + 1}. In the same
j=1
way we obtain that Ric(U) = Ric(e1) = a + b and Ric(V) = Ric(es) = a+c.
We will write now all the equations and by the formula of Ricci cuvature,
we will have the following system of 2n + 1 equations:

1) Ric(er) = K(ex ANea) + K(eg1 ANeg)+ ...+ K(eg Neapy1) =a+b
2) Ric(es) = K(ea Nep) + K(eag ANes)+ ...+ K(ea Aeapr1) =a+c
3) Ric(es) = K(esNe1) + K(egANez)+ ...+ K(es Aeapi1) =a

27’L—|—1) Ric(egn_H) = K(egn_H A 61) + K(62n+1 A 62)—|—. . .—|—K(62n+1 A Egn) =a

Without any loss of generality we will consider the following n-planes from
T,M :
Ll = Sp({€37 €4y ey en+2})7 L2 = Sp({€17 €2, ..y en})7

L3 = Sp({e27637 "'76n+1})7L4 = Sp<{617637647 ~-~7en+1})-

Now, by summing the first n equations we have the following relation:

(7) 27(La) + Z K(e;Nej)=na+b+c
1<i<n<j<2n+1

By summing the last n + 1 equations we have another relation:

(i) 27(Ly) + Z K(ejNej) = (n+1)a
1<j<n<i<2n+1

Then (i¢) — (¢) implies:

a—b—c=2r(Ly) —2r(La)+ > Kleine)— > KleiNej)

1<j<n<i<2n+1 1<i<n<j<2n+1

:>T(L2L) =17(Ls) + %(a —b—oc).

In a similar way, by summing the equations from 3) to n+2) we have:
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(vi1) 27(L1) + Z K(e; Nej) + Z K(e; Nej) =na
3<i<n+2<j<2n+1 3<i<n+2, je{1,2}

Also, by summing the remaining equations we have:

(iv)  27(Li) + Z K(e; Nej) + Z K(e; Nej)=(n+1)a+b+c
3<i<nt2<j<2n+1 3<i<n+2, je{1,2}

Then (iv) — (4i4) implies:

1
a+b+c=27(L7) —27(L1) = 7(L7) = 7(L1) + §(a +b+c).

In a similar way, by summing the equations from 2) to n+1) we have:

(v) 27(L3) + Z K(ei/\ej)—FZK(ei/\el):na—Fc
2<i<n+1<j<2n+1 2<i<n+1

Also, by summing the remaining equations we have:

(vi) 27(L3) + Z K(e; Nej) + ZK(ei/\e1)=(n—|—1)a—|—b
2<i<n+1<j<2n+1 2<i<n+1

Then (vi) — (v) implies:

a+b—c=27(Ly) —27(L3) = 7(L3) = 7(L3) + %(a +b—oc).

In a similar way, by summing the equation 1) with all the equations from 3)
to n+1) we have:

(vid) 27(L4) + Z K(e; Nej) *ZK(Q‘ Nez) =na+b
1<i<n+1<j<2n+1 1<i<n+1
Also, by summing the remaining equations we have:

(viid) 2r(Ly)+ Y K(eine)— Y KlesNex)=(n+1)a+c
1<i<n+1<j<2n+1 1<i<n+1

Then (viii) — (vii) implies:

a—b+c=27(Ly) —27(Ly) = 7(Ly) = 7(Lg) + 3(a — b+ c).
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"2) < 1)”. Let p € M and {ey,...,en,€nt1, ..., €2n+1} be an orthonormal
frame of T, M such that U = e; and V = es.

Let L = Sp({ent2,-.-s€an+1}) and Lo = Sp({ea, ..., ent1})-

Then L+ = Sp({e1,...,ent1}) and L(J)' = Sp({e1, ent2, .., €2ns1}). Thus:

Ricle1) = [K(ex ANea)+ K(ep A 63) +...+K(eg Aept1)] +
+[K (61 Aent2) + (61 A €ant1)]
= [r(L* ZK ei Nej) + [T(Lg) — Z K(e; Nej)]
2<i<j<n+1 n+2<i<j<2n+1

— [r(L) + s+ b+ o) — (Lo + [F(Lo) +

X S(a+b=c) = 7(L)

= a-+b.

In a similar way one can prove that Ric(es)= a + ¢ and Ric(e;) = a for

all i € {3,...,2n + 1}. We define now the 1-forms A(X) = ¢(X,U), B(X) =
g9(X,V) such that A(U) = B(V') = 1 and we consider the following (0, 2)-tensor
P(X,Y) = ag(X,Y)+ bA(X)A(Y)+ ¢B(X)B(Y). Then Ric(X,X) = P(X, X)
for every X € T'(TM). Because the tensors Ric and P are symmetric, it follows
that Ric(X,Y) = P(X,Y) for every X,Y € I'(TM) and then M is a generalized
quasi-Einstein manifold. O

We give the particular version for dimension three.

Theorem 2.2. Let M be a Riemannian 3-manifold. Then the following condi-
tions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y) = ag(X,Y) +
bA(X)A(Y )+ ¢B(X)B(Y) for every X, Y € T'(T M), where a,b, ¢ are real scalars
and A, B are non-zero 1-forms on M such that A(X) = ¢g(X,U), B(X) =
g(X, V), g(U, V) = 0 for all vector field X € T'(TM), U,V being unit vector
fields.

2) a) 7(L1) = 3(a+ b+ c), where Ly = Sp({U,V}),

b) (L) = 2(a+b—c), where Ly is a 2-plane section orthogonal to V,
¢) 7(L3) = 2(a — b+ c), where Ly is a 2-plane section orthogonal to U.

Proof. Similar to that of Theorem 2.1. O

We can state now the even dimension version of Theorem 2.1. from above.

Theorem 2.3. Let M be a Riemannian (2n)-manifold, n > 2. Then the fol-
lowing conditions are equivalent:

1) M is a generalized quasi-Einstein manifold with Ric(X,Y) = ag(X,Y) +
bA(X)A(Y)+ cB(X)B(Y) for every X,Y € I'(T M) where a,b, c are real scalars
and A, B are non-zero 1-forms on M such that A(X) = g(X,U), B(X) =
g(X, V), g(U, V) = 0 for all vector field X € T'(T'M), U,V being unit vector
fields.
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2) a) T(L{) = 7(L1) + 3 (b+¢) for any n-plane section Ly C T,M such that
U7 Vv ¢ Lla
b) 7(Ly) = 7(L2) — (b + ¢) for any n-plane section Ly C T,M such
that U,V € Lo,
¢) 7(Lg) = 7(L3) + 3(b — ¢) for any n-plane section Ly C T,M such
that U ¢ Ll, Ve L37
d) 7(L3) = 7(Ls) + 3(=b + ) for any n-plane section Ly C T,M such
that U € L4,V ¢ Ly,
where L+ denotes the orthogonal complement of L in T,M for every p € M.

Proof. Similar to that of Theorem 2.1. O
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