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Abstract

One-dimensional convection-diffusion problem with interior layers ca-
used by the discontinuity of data is considered. Though standard Galerkin
finite element method (FEM) generates oscillations in the numerical so-
lutions, we prove its convergence in the ε-weighted norm of the first order
on a class of layer-adapted meshes. We use streamline-diffusion finite ele-
ment method (SDFEM) in order to stabilize Galerkin FEM and prove
ε-uniform convergence of the second order.
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1 Introduction

On the interval Ω = (0, 1), a one-dimensional convection-diffusion equation
with a discontinuous source term is considered. The source term has a jump
discontinuity at an interior point d of the domain. A discontinuity is also allowed
in the convection coefficient at the same point. If we introduce the notation
Ω1 = (0, d) and Ω2 = (d, 1), then the considered problem is: find a function
u ∈ C2(Ω1 ∪ Ω2) ∩ C1(Ω) such that

(1)


Lu := −εu′′ + bu′ = f on Ω1 ∪ Ω2,

u(0) = u(1) = 0,

|[b](d)| ≤ C, |[f ](d)| ≤ C,

where 0 < ε ≪ 1 is a perturbation parameter, d is an ε-independent point and
C is a generic constant independent of ε and a discretization mesh. The jump
of a function g at d is denoted with [g](d) = g(d+)− g(d−).

Convection-diffusion problems with sufficiently smooth data have been exa-
mined by many authors; see for instance [2], [4], [5] and references therein. For
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such problems, a boundary layer appears in the solution near the point x = 1.
Here, due to the discontinuity of the functions b and f , the solution of the
problem (1) has an additional interior layer near the point x = d.

The problem of this type, but with a layer in the vicinity of x = 0, is
examined in [3]. In that paper, an ε-uniformly convergent method of the first
order is constructed. This method involves a piecewise-uniform Shishkin mesh,
which is fitted to the interior and boundary layers, and the standard upwind
finite difference scheme.

Here we extend the analysis from [6] and [7], where in (1), the function b
is continuous and the right-hand side has a point source. Similarly to [6] and
[7], we use a class of layer-adapted meshes and prove the robust first-order of
accuracy for the standard Galerkin finite element method and the second order
for the streamline diffusion FEM. We remark that these estimates directly hold
for the continuous b as well.

Throughout the paper we assume that b and f are sufficiently smooth on
Ω \ {d} and

(2) b(x) ≥ β > 0, −b′(x)/2 ≥ γ > 0, x ∈ Ω \ {d}.

2 Solution Decomposition

In order to construct layer-adapted meshes and perform error analysis, we need
a priori information on the behavior of the solution u of the problem (1) and
its derivatives.

When b and f in (1) are sufficiently smooth functions, the properties of
the corresponding solution are introduced in [5]. Here we have the following
theorem.

Theorem 2.1. Solution u of (1) can be decomposed as u = S + E, where for
k = 0, 1, . . . , q it holds

(3) |S(k)(x)| ≤ C, x ∈ Ω1 ∪ Ω2,

(4) |E(k)(x)| ≤

{
Cε−ke−β(d−x)/ε, x ∈ Ω1,

Cε−ke−β(1−x)/ε, x ∈ Ω2,

and the maximal order q depends on the smoothness of the functions b and f
on Ω \ {d}.
Proof. The proof can be easily derived following the arguments from [4, Section
3.4] and [7, Theorem 2.3.1].

3 Layer-adapted meshes

For discretization of the domain we use a class of piecewise-uniform meshes
of Shishkin type which are fitted to the layers at x = d and x = 1. More on
layer-adapted meshes for singularly perturbed problems can be found in [4].
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Let N > 4 be an even integer and set

λ1 = min

{
d

2
,
τ

β
ε lnN

}
, λ2 = min

{
1− d

2
,
τ

β
ε lnN

}
, τ ≥ 1.

Assumption 1. We assume that λ1 = λ2 = λ = τ/β ε lnN , since otherwise N
is exponentially large relative to ε, which is rare in practice.

We construct the discretization mesh such that it is equidistant on Ωc and
gradually subdivided it on Ωf , where Ωc = (0, d − λ) ∪ (d, 1 − λ) and Ωf =
(d− λ, d) ∪ (1− λ, 1). The mesh transition points are defined to be

xN
4
= d− λ, xN

2
= d, x 3N

4
= 1− λ.

As a result of the existence of additional interior layer at the point x = d,
we need two mesh generating functions ϕ1 and ϕ2. The functions ϕ1 and ϕ2 are
both continuous, piecewise continuously differentiable, strictly decreasing with
the properties

ϕ1(1/4) = lnN, ϕ1(1/2) = 0, ϕ2(3/4) = lnN, ϕ2(1) = 0.

The mesh characterizing functions are defined by ψk = e−ϕk , k = 1, 2.

Remark 3.1. In numerical experiments (Section 8) we shall use standard Shi-
shkin (S-) mesh, Bakhvalov-Shishkin (BS-) and modified Bakhvalov-Shishkin
(mBS-) mesh. One can find the corresponding mesh characterizing functions
in [7]. Here we just mention that the values for max |ψ′| (ψ = ψk, k = 1, 2) for
those specially chosen meshes are

• S-mesh: max |ψ′| = C lnN ,

• BS-mesh, mBS-mesh: max |ψ′| = C.

The term max |ψ′| appears further in the results on the interpolation error (The-
orem 4.1), as well as in the error bounds for the Galerkin FEM (Theorem 4.2)
and SDFEM (Theorems 7.1 and 7.2).

The points xi of the layer-adapted discretization mesh ΩN
ε are given by

(5) xi =



4(d− λ)ti, i ∈ I1 ∪ {0} =
{
1, . . . , N4

}
∪ {0},

d− τε
β ϕ1(ti), i ∈ I2 =

{
N
4 + 1, . . . , N2

}
,

d+ 4(1− d− λ)
(
ti − 1

2

)
, i ∈ I3 =

{
N
2 + 1, . . . , 3N4

}
,

1− τε
β ϕ2(ti), i ∈ I4 =

{
3N
4 + 1, . . . , N

}
,

with ti = i/N , i = 0, 1, . . . , N .

Assumption 2. Assume that the mesh generating functions satisfy

N−1 max |ϕ′| ≤ C,

with the appropriate function ϕ = ϕk, k = 1, 2.
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Figure 1: Numerical solution of the problem −10−3u′′+u′ = δ0.5, u(0) = u(1) =
0 depicted outside the layers, obtained with the Galerkin FEM on S-mesh with
N = 26

4 The Galerkin Finite Element Method

We start our investigation with the variational formulation of problem (1)

(6) find u ∈ V = H1
0 (Ω) such that a(u, v) = l(v) for all v ∈ V,

where
a(v, w) = (εv′, w′) + (bv′, w), l(w) = (f, w), v, w ∈ V,

and (·, ·) denotes the inner product in L2(Ω). Since a is a continuous, coer-
cive bilinear form and l is a continuous linear functional, there exists a unique
solution u of (6) by the Lax-Milgram theorem.

Let ΩN = {x0, x1, . . . , xN}, N ∈ N, be an arbitrary mesh on the domain Ω
with hi = xi − xi−1 the local mesh step size. Let {φi : 0 ≤ i ≤ N} be the set of
standard piecewise linear hat functions that satisfy φi(xj) = δij . Let the finite
element space be Vh = span{φ0, φ1, . . . , φN}.

The discrete problem which defines conforming FEM for problem (1) is

(7) find uh ∈ Vh ⊂ V such that a(uh, vh) = l(vh) for all vh ∈ Vh.

This method is called the Galerkin finite element method (FEM). Again the
Lax-Milgram theorem guarantees the exsistence of a unique solution of problem
(7).

According to the numerical results (see Figure 1), the Galerkin FEM applied
to (1) produces oscillatory numerical solution, even if we use a layer-adapted
mesh. The oscillations are a direct outcome of the instability of the Galerkin
FEM. However, the results in Table 1 show the second order of convergence of
the Galerkin FEM on S-mesh. Therefore, we choose streamline-diffusion finite
element method (see Section 5) in order to stabilize the Galerkin FEM. In the
sequel, we first study the convergence of the Galerkin FEM on the layer-adapted
mesh (5). For that purpose we introduce the estimates for the interpolation error
in L∞-norm.
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Table 1: L∞-norm of the discrete error EN , order of convergence pN and
Shishkin order of convergence pNS for the problem −10−3u′′ + u′ = δ0.5,
u(0) = u(1) = 0 (Galerkin FEM, S-mesh)

N EN pN pNS N EN pN pNS

16 0.070040 1.43969 2.1232 512 0.000296 1.70172 2.00682

32 0.025820 1.55343 2.10787 1024 0.000091 1.72896 2.00451

64 0.008796 1.59322 2.04887 2048 0.000027 1.75013 2.00381

128 0.002915 1.62864 2.01725 4096 0.000008 1.76754 2.00504

256 0.000942 1.66817 2.00969 8192 0.000002 - -

Theorem 4.1. Suppose that Assumptions 1 and 2 are satisfied. Then the linear
interpolant uI ∈ Vh of the function u on mesh (5) with τ ≥ 2 satisfies

|u(x)− uI(x)| ≤

 CN−2 max |ψ′|2, x ∈ Ωf ,

CN−2, x ∈ Ωc,

ε|(u− uI)′(x)| ≤

 CN−1 max |ψ′|, x ∈ Ωf ,

CN−2, x ∈ Ωc.

Proof. Follows from the arguments of Theorem 2.3.2 from [7].

Let us introduce the ε-weighted H1-norm

∥v∥2ε := ε∥v′∥2L2(Ω) + ∥v∥2L2(Ω), ∥v∥2L2(Ω) =

∫
Ω

v(x)2 dx.

The second assumption in (2) ensures that the bilinear form a is coercive
with respect to the energy norm.

Theorem 4.2. Suppose that the mesh generating and mesh characterizing func-
tions in (5) with τ ≥ 2 satisfy Assumption 2 and

(8) max |ψ′| ln1/2N ≤ CN.

Then

∥u− uh∥ε ≤ CN−1 max |ψ′|

for the error of the Galerkin FEM.

Proof. Let η = u−uI i χ = uI −uh. Using the technique from [5] and Theorem
4.1 we get

(9) ∥η∥ε ≤ CN−1 max |ψ′|.
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To bound χ we use coercivity of a with respect to ∥ · ∥ε, the Galerkin or-
thogonality property and integration by parts:

min{1, γ}∥χ∥2ε ≤ a(χ, χ) = −a(η, χ) = −(εη′, χ′) + (b′η, χ) + (bη, χ′).

For the first term, integration by parts gives

(εη′, χ′) = ε

N∑
k=1

∫ xk

xk−1

η′χ′ dx = ε

N∑
k=1

(
ηχ′
∣∣∣xk

xk−1

−
∫ xk

xk−1

ηχ′′ dx

)
= 0,

since η(xk−1) = η(xk) = 0 and χ is a linear function. For the second term, it
holds

(b′η, χ) ≤ C

∫
Ω

|ηχ| dx ≤ C∥η∥L2(Ω)∥χ∥L2(Ω) ≤ C∥η∥ε∥χ∥ε.

The third term is bounded using Hölder’s inequality

(bη, χ′) ≤ C
(
∥η∥L∞(0,d−λ)∥χ′∥L1(0,d−λ) + ∥η∥L∞(d−λ,d)∥χ′∥L1(d−λ,d)

+ ∥η∥L∞(d,1−λ)∥χ′∥L1(d,1−λ) + ∥η∥L∞(1−λ,1)∥χ′∥L1(1−λ,1)

)
.

On (0, d− λ), analogously on (d, 1− λ), we get

∥χ′∥L1(0,d−λ) =

N/4∑
k=1

∫ xk

xk−1

|χ′| dx ≤ C

N/4∑
k=1

1

hk

∫ xk

xk−1

|χ| dx

= CN

∫ d−λ

0

|χ| dx ≤ CN

√∫ d−λ

0

12 dx

√∫ d−λ

0

χ2 dx

= CN
√
d− λ ∥χ∥L2(0,d−λ) ≤ CN∥χ∥ε.

On (d− λ, d), analogously on (1− λ, 1), we get

∥χ′∥L1(d−λ,d) ≤

√∫ d

d−λ

12 dx

√∫ d

d−λ

(χ′)2 dx

= C
√
ε
√
lnN∥χ′∥L2(d−λ,d)

≤ C
√
lnN∥χ∥ε,

where we have used the Cauchy-Schwarz inequality and λ = Cε lnN. These
bounds yield

min{1, γ}∥χ∥ε ≤ C
(
∥η∥ε +N∥η∥L∞(Ωc) +

√
lnN∥η∥L∞(Ωf )

)
.

Then, from Theorem 4.1 and (9) we get

∥χ∥ε ≤ C
(
N−1 max |ψ′|+N−1 +N−2 max |ψ′|2

√
lnN

)
.

From the inequality (8) we get

(10) ∥χ∥ε ≤ CN−1 max |ψ′|.

Using a triangle inequality, (9) and (10), we complete the proof.
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Theorem 4.2 proves that the Galerkin FEM for the problem (1) on layer-
adapted meshes of Shishkin type (5) has the first order of convergence with
respect to the ε-weighted energy norm.

5 Streamline-diffusion Finite Element Method

Our aim is to create a method that is more stable than the Galerkin FEM when
applied to (1). The idea is to add weighted residuals to the Galerkin FEM. Such
method is called the streamline-diffusion finite element method (SDFEM).

The discrete problem of SDFEM for problem (1) is

(11) find uh ∈ Vh ⊂ V such that ah(uh, vh) = lh(vh) for all vh ∈ Vh,

where

ah(vh, wh) = (εv′h, w
′
h) + (bv′h, wh) +

N∑
k=1

∫ xk

xk−1

δk(−εv′′h + bv′h)bw
′
h dx,

lh(wh) = (f, wh) +

N∑
k=1

∫ xk

xk−1

δkfbw
′
h dx.

Here, δi ∈ R+, i = 1, 2, . . . , N, is called the streamline-diffusion parameter
(SD-parameter).

We define a streamline-diffusion norm (SD-norm) in the following way

∥v∥2SD = ε∥v′∥2L2(Ω) + γ∥v∥2L2(Ω) +

N∑
k=1

∫ xk

xk−1

δkb
2(v′)2 dx, v ∈ V.

The bilinear form ah is coercive and continuous with respect to the SD-norm.
Therefore, there exists a unique solution of problem (11) by the Lax-Milgram
theorem.

Take Vh to be the space of piecewise linear functions on an arbitrary mesh
ΩN , N ∈ N. Then, the SDFEM reduces to the scheme

(12)

 LNui := −ε(D+ui −D−ui) + αiD
+ui + βiD

−ui = lh(φi),

u0 = uN = 0,

where ui = uh(xi), i = 1, 2, . . . , N − 1 and

D+ui =
ui+1 − ui
hi+1

, D−ui =
ui − ui−1

hi
,

αi = hi+1

∫ xi+1

xi

(bφ′
i+1φi+δi+1b

2φ′
i+1φ

′
i) dx, βi = hi

∫ xi

xi−1

(bφ′
iφi+δib

2φ′
iφ

′
i) dx.
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Denote b̄ = ∥b∥L∞(Ω\{d}). Now we are studying properties of the matrix

A = [aij ] = [ah(φj , φi)] which corresponds to the scheme (12). By choosing the
SD-parameter to be

(13) δi = 0, if hi ≤
2ε

b̄
,

(14) δi = −

(∫ xi

xi−1

bφ′
iφi−1 dx

)(∫ xi

xi−1

b2φ′
iφ

′
i−1 dx

)−1

, if hi >
2ε

b̄
.

we get that A is an L-matrix. It can be easily shown that x = [1, . . . , 1]T is
a majorizing element for the matrix A, i.e. A is an inverse-monotone matrix.
Hence, A is an M -matrix.

Considering the behavior of hi on the mesh of Shishkin type (5), we obtain

(15) δi ≤ CN−1, i = 1, 2, . . . , N.

6 Discrete Green’s Functions

In this section we study the discrete Green’s functions for (12). One can define a
discrete Green’s function λj by ah(φi, λ

j) = δij , i = 0, 1, . . . , N, where δij is the
Kronecker symbol. Their existence follows from the coercivity of the bilinear
form ah.

Write (12) in the form
− ε

~i
(pi+1D

+ui − piD
−ui) + ri

ui − ui−1

~i
+ qiui = lih,

u0 = uN = 0,

with the appropriate right-hand side lih and coefficients pi, qi and ri which have
the following properties

(16) pi ≥ p > 0, qi ≥ 0, ri ≥ r > 0.

It can be easily shown that for difference scheme (12) we have

pi = 1− αi−1

ε
, qi = 0, ri =

αi−1 + βi
hi

.

Lemma 6.1. If the conditions

(17) ε < min{d, 1− d}b̄N−1,

(18) N−1 max |ϕ′| ≤ 2β

τ b̄
(1− p),

are satisfied for some 0 < p < 1, then pi ≥ p > 0, ri ≥ β > 0.
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Proof. Let i ∈ I1 ∪ I3. From (17) we get

hi = 4(d− λ)(ti − ti−1) =
4

N
(d− λ) ≥ 2dN−1 >

2ε

b̄
, i ∈ I1,

hi = 4(1− d− λ)(ti − ti−1) =
4

N
(1− d− λ) ≥ 2(1− d)N−1 >

2ε

b̄
, i ∈ I3.

According to the choice (14) of parameters δi, we have αi−1 = 0. Hence pi =
1 > p > 0.

Let i ∈ I2 ∪ I4. From (18) we get

hi =
τε

β
(ϕ(ti−1)− ϕ(ti)) ≤

τε

β
N−1 max |ϕ′| ≤ 2ε

b̄
(1− p) ≤ 2ε

b̄
.

Now δi = 0 and

pi = 1− αi−1

ε
≥ 1− hi

2ε
b̄ ≥ 1− τ b̄

2β
N−1 max |ϕ′| ≥ p > 0.

Finally we get

ri ≥
β

h2i

∫ xi

xi−1

(xi − x) dx+
β

h2i

∫ xi

xi−1

(x− xi−1) dx = β > 0,

that completes the proof.

When the conditions (16) are satisfied, we can use Lemma 5.2 and 5.3 from
[1] to conclude

(19) ∥λi∥L∞(Ω) ≤ C, ∥(λi)′∥L1(Ω) ≤ C.

Remark 6.1. The bound (17) does not constitute a major restriction, since we
already have ε ≤ CN−1 from Assumption 1.

Remark 6.2. For S- and mBS-mesh (18) holds true, but it is not valid for BS-
mesh. However, the numerical results in Section 8 show ε-uniform convergence
of second order for SDFEM on the BS-mesh.

Remark 6.3. Following the steps in the proof of the previous lemma, we conclude
that if i ∈ I1 ∪ I3 then δi ≤ CN−1. Also, we have δi = 0 for i ∈ I2 ∪ I4.

7 Error analysis for SDFEM

The SDFEM is a consistent method. Hence, the error at the arbitrary mesh
point is

u(xi)− uh(xi) = ah(u
I − u, λi), xi ∈ ΩN

ε .

Theorem 7.1. Let u and uh be solutions of problems (1) and (11), respectively,
and let assumptions from Lemma 6.1 hold true. Then on the layer-adapted (5)
with τ ≥ 2, the error at the mesh points has the property

(20) |u(xi)− uh(xi)| ≤ CN−2 max |ψ′|2, xi ∈ ΩN
ε .
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Proof. Let xi be an arbitrary mesh point. Using definition of the bilinear form
ah and properties of the linear interpolant uI we get

ah(u
I − u, λi) = ε

∫ 1

0

(uI − u)′(λi)′ dx+

∫ 1

0

b(uI − u)′λi dx

+
N∑

k=1

∫ xk

xk−1

εδku
′′b(λi)′ dx+

N∑
k=1

∫ xk

xk−1

δkb
2(uI − u)′(λi)′ dx.(21)

For the first term on the right-hand side in (21), we obtain

(22) ε

∫ 1

0

(uI − u)′(λi)′ dx = 0,

where we have used integration by parts, uI(xi) = u(xi), i = 0, 1, . . . , N, and
(λi)′′ = 0. For the second term, the integration by parts gives

∣∣∣∣∫ 1

0

b(uI − u)′λi dx

∣∣∣∣ =

∣∣∣∣∣−
N∑

k=1

∫ xk

xk−1

(uI − u)(b′λi + b(λi)′) dx

∣∣∣∣∣
≤ C∥u− uI∥L∞(Ω)

(
∥λi∥L∞(Ω) + ∥(λi)′∥L1(Ω)

)
≤ C∥u− uI∥L∞(Ω).(23)

For the third term in (21), we use the decomposition u = S +E from Theorem
2.1. For the regular component, we obtain∣∣∣∣∣

N∑
k=1

∫ xk

xk−1

εδkS
′′b(λi)′ dx

∣∣∣∣∣ ≤ CεN−1∥S′′∥L∞(Ω)∥(λ
i)′∥L1(Ω) ≤ CεN−1,

where we have applied (15) and (19). Using the properties of SD-parameters δi
from Remark 6.3 and smoothness of the function b, we get∣∣∣∣∣

N∑
k=1

∫ xk

xk−1

εδkE
′′b(λi)′ dx

∣∣∣∣∣ ≤
≤ CεN−1

N/4∑
k=1

∫ xk

xk−1

|E′′||(λi)′| dx+

3N/4∑
k=N/2+1

∫ xk

xk−1

|E′′||(λi)′| dx

 .

The local mesh step size hi can be bounded with hi ≥ 2max{d, 1 − d}N−1,
i ∈ I1 ∪ I3. Hence, the functions λi ∈ Vh have the property

|(λi)′(x)| = 1

hk
|λi(xk)− λi(xk−1)| ≤ CN∥λi∥L∞(Ω) ≤ CN,
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for all x ∈ [xk−1, xk] ⊂ Ωc. Using the previous estimates and (4), we get∣∣∣∣∣
N∑

k=1

∫ xk

xk−1

εδkE
′′b(λi)′ dx

∣∣∣∣∣
≤ Cε

N/4∑
k=1

∫ xk

xk−1

|E′′| dx+

3N/4∑
k=N/2+1

∫ xk

xk−1

|E′′| dx


≤ Cε−1

N/4∑
k=1

∫ xk

xk−1

e−β(d−x)/ε dx+

3N/4∑
k=N/2+1

∫ xk

xk−1

e−β(1−x)/ε dx


= C

N/4∑
k=1

e−β(d−x)/ε
∣∣∣xk

xk−1

+

3N/4∑
k=N/2+1

e−β(1−x)/ε
∣∣∣xk

xk−1


≤ CN−τ .

Finally, for the third term in (21) we obtain

(24)

∣∣∣∣∣
N∑

k=1

∫ xk

xk−1

εδku
′′b(λi)′ dx

∣∣∣∣∣ ≤ C(εN−1 +N−τ ).

It remains to estimate the last sum in (21). We get∣∣∣∣∣
N∑

k=1

∫ xk

xk−1

δkb
2(uI − u)′(λi)′ dx

∣∣∣∣∣ =

∣∣∣∣∣−
N∑

k=1

∫ xk

xk−1

δk(u
I − u)(b2(λi)′)′ dx

∣∣∣∣∣
≤ CN−1∥u− uI∥L∞(Ω),(25)

where we have used integration by parts and properties of δi, b and λ
i. Collecting

(22)-(25) and using assumptions ε ≤ CN−1 and τ ≥ 2 we get

|u(xi)− uh(xi)| = |ah(uI − u, λi)|

≤ C
(
εN−1 +N−τ + ∥u− uI∥L∞(Ω)

)
≤ CN−2 max |ψ′|2.

A direct consequence of Remark 3.1 when applied to (20) is the following
corollary.

Colorallary 7.1. The SDFEM when applied to (1) is of second order of accu-
racy on the BS- and mBS-mesh, and of almost second order of convergence on
the S-mesh.

We can now state the main result on the ε-uniform error estimate for SDFEM
applied to (1) on the discretization mesh (5).
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Theorem 7.2. Let u and uh be solutions of the problems (1) and (11), respec-
tively, and let assumptions from Lemma 6.1 hold true. Then, on the mesh (5)
with τ ≥ 2, the error u− uh has the property

|u(x)− uh(x)| ≤ CN−2 max |ψ′|2, x ∈ Ω.

Proof. Using the technique from [7], one can prove the following estimate

|u(x)− uh(x)| ≤ ∥u− uI∥L∞[xi−1,xi] + max
0≤i≤N

|uh(xi)− u(xi)|, x ∈ [xi−1, xi].

Using Theorems 4.1 and 7.1 we complete the proof.

Colorallary 7.2. Let u and uh be solutions of the problems (1) and (11),
respectively, and let assumptions from Lemma 6.1 hold true. Then for x ∈ Ω
we have

|u(x)− uh(x)| ≤

{
CN−2 ln2N, on S-mesh,

CN−2, on BS- and mBS-mesh.

8 Numerical results

In this section we experimentally verify the assertion of Theorem 7.1.
For two test problems, in Tables 2-3 we present maximum pointwise errors

EN given with

EN = max
ε

max
xi∈ΩN

ε

|u(xi)− uh(xi)| ,

where ε = 10−2, . . . , 10−9 and τ = 2. We also compute the rates of convergence
using the standard formula

pN = log2(E
N/E2N ),

and the Shishkin-rate of convergence for the S-mesh

pNS =
ln(EN/E2N )

ln(2 lnN/ ln(2N))
.

Test problem 1. Let

(26)

 −εu′′(x) + b(x)u′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,

where

b(x) =

 1, x ≤ 0.5,

4, x > 0.5,
and f(x) =

 0.7, x ≤ 0.5,

−0.6, x > 0.5.
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Figure 2: The exact solution of problem (26)

The exact solution is

u(x) =



7x

10
+
e−

d
ε

(
e

x
ε − 1

) (
(12− 68d+ 17ε) e

4d
ε − 17εe

4
ε

)
20
(
e

4
ε − 4e

3d
ε + 3e

4d
ε

) , x ≤ 0.5,

1

20

3− 3x+

(
e

4
ε − e

4x
ε

)(
e

d
ε (−3 + 17d− 17ε) + 17ε

)
−4e

4d
ε + 3e

5d
ε + e

4+d
ε

, x > 0.5,

presented in Figure 2. This problem is solved numerically using the SDFEM
and the layer-adapted mesh (5). Table 2 verifies the convergence results.

Table 2: Discrete norm EN and the rates of convergence pN , pNS for problem
(26)

S-mesh BS-mesh mBS-mesh

N EN pN pNS EN pN EN pN

64 0.008796 1.59322 2.04887 0.002401 2.08593 0.001854 1.94409

128 0.002915 1.62864 2.01725 0.000059 2.00786 0.000482 1.93552

256 0.000942 1.66817 2.00969 0.000149 1.99353 0.000126 1.95156

512 0.000296 1.70172 2.00682 0.000037 1.99462 0.000032 1.96006

1024 0.000091 1.72896 2.00451 0.000009 1.99756 0.000008 1.96587

2048 0.000027 1.75013 2.00381 0.000002 1.99785 0.000002 1.96786

4096 0.000008 1.76754 2.00504 5 × 10−7 1.99542 5 × 10−7 1.95857

8192 0.000002 - - 1 × 10−7 - 1 × 10−7 -
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Figure 3: The exact solution of problem (27)

Test problem 2. Consider the second example

(27)

 −εu′′(x) + u′(x) = f(x), x ∈ (0, 1),

u(0) = u(1) = 0,

where

f(x) =


−9, x ≤ 1

3
,

9(x− 1)2, x >
1

3
.

The exact solution is

u(x) =


−9x+ εC1 e

x/ε + C2, x ≤ 1

3
,

3x3 + 9x2(ε− 1) + 9x(1− 2ε+ 2ε2) + εC3 e
x/ε + C4, x >

1

3
,

depicted in Figure 3, where

C1 =
19 + 9

(
13e

2
3ε − 9

)
ε− 108e

2
3ε ε2 + 162

(
e

2
3ε − 1

)
ε3

9
(
e

1
ε − 1

)
ε

,

C2 = −εC1,

C3 =
e−

1
3ε

(
9ε(13− 12ε+ 18ε2) + e

1
3ε (19− 81ε− 162ε3)

)
9
(
e

1
ε − 1

)
ε

,

C4 =
1

9
(e

1
ε − 1)−1

(
27(1− 3ε+ 6ε2)− 9e

2
3ε ε(13− 12ε+ 18ε2)

+ 2e
1
ε (−23 + 81ε− 81ε2 + 81ε3)

)
.
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Table 3: Discrete norm EN and rates of convergence pN , pNS for problem (27)

S-mesh BS-mesh mBS-mesh

N EN pN pNS EN pN EN pN

64 0.018001 1.58798 2.04182 0.002663 1.97212 0.003459 1.92682

128 0.005987 1.61993 2.00646 0.000678 1.98738 0.000909 1.93882

256 0.001948 1.66264 2.0021 0.000171 1.99402 0.000237 1.95054

512 0.000065 1.69703 1.99988 0.000042 1.9971 0.000061 1.95987

1024 0.000189 1.72488 1.99993 0.000010 1.99857 0.000015 1.96674

2048 0.000057 1.74887 1.99989 0.000002 1.9993 0.000004 1.97128

4096 0.000017 1.75893 1.9997 6 × 10−7 1.99976 1 × 10−7 1.97382

8192 0.000005 - - 1 × 10−7 - 2 × 10−7 -

Numerical results for this problem are presented in Table 3, which are in
agreement with the theoretical results from Section 7.
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