SOME INEQUALITIES ON INVARIANT SUBMANIFOLDS IN QUATERNION SPACE FORMS

S.S. Shukla¹ and Pawan Kumar Rao²

Abstract. We establish some inequalities for invariant submanifolds involving totally real sectional curvature and the scalar curvature in a quaternion space form. The equality cases are also discussed.

AMS Mathematics Subject Classification (2010): 53C40 Key words and phrases: Invariant submanifold, quaternion space form, scalar curvature

1. Introduction

Perhaps one of the most significant aspects of submanifold theory is that which deals with the relations between the main extrinsic invariants and the main intrinsic invariants of a submanifold. B.Y. Chen [3] introduced a series of invariants on a Kaehler manifold and established several general inequalities involving these invariants for Kaehler submanifolds in complex space forms. In [5] authors established similar inequalities for invariant submanifolds in locally conformal almost cosymplectic manifolds. In the present paper, we study invariant submanifolds in a quaternion space form.

2. Preliminaries

Let \tilde{M} be a 4*m*-dimensional Riemannian manifold with metric tensor *g*. Then \tilde{M} is said to be a quaternion Kaehlerian manifold, if there exists a 3dimensional vector bundle *E* consisting of tensors of type (1, 1) with local basis of almost Hermitian structures J_1, J_2 and J_3 such that [1]

(a)
$$J_1^2 = -I, J_2^2 = -I, J_3^2 = -I$$

 $J_1J_2 = -J_2J_1 = J_3, J_2J_3 = -J_3J_2 = J_1, J_3J_1 = -J_1J_3 = J_2$

where I denotes the identity tensor field of type (1,1) on \tilde{M} .

(b) for any local cross-section J of E and any vector X tangent to \tilde{M} , $\tilde{\nabla}_X J$ is also a local cross-section of E, where $\tilde{\nabla}$ denotes the Riemannian connection on \tilde{M} .

The condition (b) is equivalent to the following condition:

 $^{^1 \}rm Department$ of Mathematics, University of Allahabad, Allahabad, U.P., India-211002, e-mail: ssshukla_au@rediffmail.com

²Department of Mathematics, University of Allahabad, Allahabad, U.P., India-211002, e-mail: babapawanrao@rediffmail.com

(c) there exist the local 1-forms p, q and r such that

$$\begin{split} \tilde{\nabla}_X J_1 &= r(X)J_2 - q(X)J_3, \\ \tilde{\nabla}_X J_2 &= -r(X)J_1 + p(X)J_3, \\ \tilde{\nabla}_X J_3 &= q(X)J_1 - p(X)J_2. \end{split}$$

Now, let X be a unit vector tangent to the quaternion manifold \tilde{M} , then X, J_1X, J_2X and J_3X form an orthonormal frame. We denote by Q(X) the 4-plane spanned by them and call Q(X) the quaternion section determined by X. For any orthonormal vectors X, Y tangent to \tilde{M} , the plane $X \wedge Y$ spanned by X, Y is said to be totally real if Q(X) and Q(Y) are orthogonal. Any plane in a quaternion section is called a quaternion plane. The sectional curvature of a quaternion plane is called a quaternion sectional curvature. A quaternion manifold is called a quaternion space form if its quaternion sectional curvatures are equal to a constant.

Let $\tilde{M}(c)$ be a 4*m*-dimensional quaternion space form of constant quaternion sectional curvature *c*. The curvature tensor of $\tilde{M}(c)$ has the following expression [4]:

$$(2.1) \qquad \tilde{R}(X,Y)Z = \frac{c}{4} \{g(Y,Z)X - g(X,Z)Y \\ + g(J_1Y,Z)J_1X - g(J_1X,Z)J_1Y + 2g(X,J_1Y)J_1Z \\ + g(J_2Y,Z)J_2X - g(J_2X,Z)J_2Y + 2g(X,J_2Y)J_2Z \\ + g(J_3Y,Z)J_3X - g(J_3X,Z)J_3Y + 2g(X,J_3Y)J_3Z \},$$

for any vector fields X, Y, Z tangent to \tilde{M} . The equation (2.1) can be written as:

(2.2)
$$\tilde{R}(X,Y)Z = \frac{c}{4} \{g(Y,Z)X - g(X,Z)Y + \sum_{i=1}^{3} [g(J_iY,Z)J_iX - g(J_iX,Z)J_iY + 2g(X,J_iY)J_iZ]\},$$

for any vector fields X, Y, Z tangent to \tilde{M} .

Let M be an n-dimensional submanifold of a 4m-dimensional quaternion space form $\tilde{M}(c)$. For each $\pi \subset T_p M$, $p \in M$, we denote $K(\pi)$ the sectional curvature of the plane section π . Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis of the tangent space $T_p M$. Then, the scalar curvature τ of M is defined by [3]

(2.3)
$$\tau = \sum_{i < j} K(e_i, e_j), \quad i, j = 1, \dots, n,$$

where $K(e_i, e_j)$ is the sectional curvature of the section spanned by e_i and e_j .

A plane section $\pi \subset T_p M$ is called totally real if $J_i \pi$, i = 1, 2, 3 is perpendicular to π . For each real number k we define an invariant δ_k^r by

(2.4)
$$\delta_k^r(p) = \tau(p) - k \inf K^r(p), \quad p \in M,$$

where $\inf K^r(p) = \inf_{\pi^r} \{K(\pi^r)\}$ and π^r runs over all totally real plane sections in $T_p M$ [3].

The first Chen invariant can be introduced as

(2.5)
$$\delta_M(p) = \tau(p) - (\inf K)(p).$$

Let L be a subspace of T_pM of dim $l \ge 2$ and $\{e_1, \ldots, e_l\}$ an orthonormal basis of L. Then, the scalar curvature $\tau(L)$ of the l-plane section L, by [7], is:

(2.6)
$$\tau(L) = \sum_{\alpha < \beta} K(e_{\alpha}, e_{\beta}), \quad \alpha, \ \beta = 1, \dots, l.$$

Given an orthonormal basis $\{e_1, \ldots, e_n\}$ of the tangent space T_pM , denote $\tau_{1,\ldots,l}$ the scalar curvature of the *l*-plane section spanned by e_1, \ldots, e_l . The scalar curvature $\tau(p)$ of M at p is nothing but the scalar curvature of the tangent space of M at p and if L is a 2-plane section, $\tau(L)$ is nothing but the sectional curvature K(L) of L.

Now, for an integer $k \ge 0$, denote by S(n, k) the finite set which consists of k-tuples (n_1, \ldots, n_k) of integers ≥ 2 satisfying $n_1 < n$ and $n_1 + \ldots + n_k \le n$. Let denote by S(n) the set of k-tuples with $k \ge 0$ for fixed n. For each k-tuples $(n_1, \ldots, n_k) \in S(n)$, a Riemannian invariant is defined by

(2.7)
$$\delta(n_1, \dots, n_k) = \tau(p) - S(n_1, \dots, n_k)(p),$$

where

(2.8)
$$S(n_1, ..., n_k) = \inf\{\tau(L_1) + ..., + \tau(L_k)\}.$$

 L_1, \ldots, L_k run over all k mutually orthogonal subspaces of T_pM such that $\dim L_j = n_j, j = 1, \ldots, k$.

This invariant is different from ours $\delta_k^r(p)$ and it was studied in [8] for certain submanifolds of quaternionic space forms.

For a submanifold M in a quaternion space form $\tilde{M}(c)$, we denote by g the metric tensor of $\tilde{M}(c)$ as well as that induced on M. Let ∇ be the induced covariant differentiation on M. The Gauss and Weingarten formulae for M are given respectively by

(2.9)
$$\nabla_X Y = \nabla_X Y + h(X, Y)$$

and

(2.10)
$$\tilde{\nabla}_X V = -A_V X + \nabla_X^{\perp} V,$$

for any vector fields X, Y tangent to M and any vector field V normal to M, where h, A_V and ∇^{\perp} are the second fundamental form, the shape operator in the direction of V and the normal connection, respectively. The second fundamental form and the shape operator are related by

(2.11)
$$g(h(X,Y),V) = g(A_VX,Y).$$

For the second fundamental form h, we define the covariant differentiation $\tilde{\nabla}$ with respect to the connection in $TM \oplus T^{\perp}M$ by

(2.12)
$$(\tilde{\nabla}_X h)(Y,Z) = \nabla_X^{\perp} h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$

for any vector fields X, Y, Z tangent to M.

The Gauss, Codazzi and Ricci equations of M are given by [2]

(2.13)
$$R(X, Y, Z, W) = \tilde{R}(X, Y, Z, W) + g(h(X, W), h(Y, Z)) - g(h(X, Z), h(Y, W)),$$

(2.14)
$$(R(X,Y),Z)^{\perp} = (\tilde{\nabla}_X h)(Y,Z) - (\tilde{\nabla}_Y h)(X,Z),$$

(2.15)
$$\tilde{R}(X,Y,V,\eta) = R^{\perp}(X,Y,V,\eta) - g([A_V,A_{\eta}]X,Y),$$

for any vector fields X, Y, Z, W tangent to M and V, η normal to M, where R and are R^{\perp} are the curvature tensors with respect to ∇ and ∇^{\perp} respectively.

The mean curvature vector H(p) at p of M is defined by [6]

(2.16)
$$H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i),$$

where n denotes the dimension of M. If, we have

(2.17)
$$h(X,Y) = \lambda g(X,Y)H,$$

for any vector fields X, Y tangent to M, then M is called totally umbilical submanifold. In particular, if h = 0 identically, M is called a totally geodesic submanifold.

Also, we set

$$(2.18) h_{ij}^r = g(h(e_i, e_j), e_r), \ i, j \in \{1, \dots, n\}, \ r \in \{n+1, \dots, 4m\},$$

and

(2.19)
$$||h||^2 = \sum_{i,j=1}^n g(h(e_i, e_j), h(e_i, e_j)).$$

A submanifold M is said to be an invariant submanifold of a quaternion space form $\tilde{M}(c)$ if $J_i(T_pM) \subseteq T_pM$, $i = 1, 2, 3, p \in M$.

We assume that $\dim M = n$, where n = 4d.

3. Totally real sectional curvature for invariant submanifolds

Let M $(n \ge 2)$ be an invariant submanifold of a quaternion space form $\tilde{M}(c)$. We choose an orthonormal basis

$$\{e_1, \dots, e_d, \bar{e}_1 = J_i e_1, \dots, \bar{e}_d = J_i e_d\}, i = 1, 2, 3$$

for $T_p M$ and an orthonormal basis

$$\{\alpha_1, \dots, \alpha_{(m-d)}, \bar{\alpha}_1 = J_i \alpha_1, \dots, \bar{\alpha}_{(m-d)} = J_i \alpha_{(m-d)}\}, \ i = 1, 2, 3$$

for $T_p^{\perp}M$. Then with respect to such an orthonormal frame, the complex structure J_i , i = 1, 2, 3 on M is given by

$$J_{1} = \begin{pmatrix} 0 & -I_{d} & 0 & 0 \\ I_{d} & 0 & 0 & 0 \\ 0 & 0 & 0 & -I_{d} \\ 0 & 0 & I_{d} & 0 \end{pmatrix},$$

$$J_{2} = \begin{pmatrix} 0 & 0 & -I_{d} & 0 \\ 0 & 0 & 0 & -I_{d} \\ I_{d} & 0 & 0 & 0 \\ 0 & I_{d} & 0 & 0 \end{pmatrix},$$

$$J_{3} = \begin{pmatrix} 0 & 0 & 0 & -I_{d} \\ 0 & 0 & -I_{d} & 0 \\ 0 & I_{d} & 0 & 0 \\ I_{d} & 0 & 0 & 0 \end{pmatrix},$$

where I_d denotes an identity matrix of degree d.

Lemma 3.1. Let $M(n \ge 2)$ be an invariant submanifold in a quaternion space form $\tilde{M}(c)$. Then, we have

(3.2)
$$K(X,Y) + K(X,J_iY) = \frac{1}{4} \{ H(X+J_iY) + H(X-J_iY) + H(X+Y) + H(X+Y) - H(X) - H(Y) \},$$

 $i = 1, 2, 3,$

for all orthonormal vectors X and Y with $g(X, J_iY) = 0$, i = 1, 2, 3.

Proof. For each point $p \in M$ and any orthonormal unit tangent vectors X and Y, with $g(X, J_iY) = 0$, i = 1, 2, 3, from equation (2.2) and the Gauss equation (2.13), we have

(3.3)
$$K(X,Y) + K(X,J_iY) = \frac{c}{2} - 2 \|h(X,Y)\|^2,$$

(3.4)
$$H(X) + H(Y) = 2c - 2 \|h(X,X)\|^2 - 2 \|h(Y,Y)\|^2.$$

Lemma follows from (3.3) and (3.4).

Theorem 3.2. Let $M(n \ge 2)$ be an invariant submanifold in a quaternion space form $\tilde{M}(c)$. Then, we have

(3.5)
$$\inf K^r(p) \le \frac{c}{4}, \quad p \in M.$$

The equality in (3.5) holds at $p \in M$ if and only if p is a totally geodesic point.

Proof. For each non-zero tangent vector X to M we denote by H(X) the holomorphic sectional curvature of X i.e., H(X) is the sectional curvature of the plane section spanned by X and J_iX , i = 1, 2, 3.

Let D'M denote the unit sphere bundle of M consisting of all unit tangent vectors on M. For each $p \in M$, define

(3.6)
$$D'(p) = \{X \in T_p M | g(X, X) = 1\}$$

and

(3.7)
$$U_p = \{(X,Y) | X, Y \in D'(p), g(X,Y) = g(X,J_iY) = 0, i = 1,2,3\}.$$

Then U_p is a closed subset of $D'(p) \times D'(p)$. It can be easily seen that if $\{X, Y\}$ spans a totally real plane section, then $\{X+J_iY, X-J_iY\}$ for i = 1, 2, 3 and $\{X+Y, X-Y\}$ also span totally real plane sections.

Now, define a function $H': U_p \to \mathbb{R}$ by

(3.8)
$$H'(X,Y) = H(X) + H(Y), \quad (X,Y) \in U_p,$$

then there exists $(\bar{X}, \bar{Y}) \in U_p$, such that H'(X, Y) attains an absolute maximum value.

From (3.2), we have

(3.9)
$$K(\bar{X},\bar{Y}) + K(\bar{X},J_i\bar{Y}) \le \frac{1}{4}H'(X,Y), \quad i = 1,2,3.$$

On the other hand, for each unit tangent vector $X \in D'(p)$, it is easy to see that every holomorphic sectional curvature H(X) of a submanifold M in a quaternion space form $\tilde{M}(c)$ satisfies

In view of (3.9) and (3.10), we get

(3.11)
$$K(\bar{X}, \bar{Y}) + K(\bar{X}, J_i \bar{Y}) \le \frac{c}{2}, \quad i = 1, 2, 3,$$

which implies (3.5).

Now, if the equality case in (3.5) holds identically on M, then

(3.12)
$$K(X,Y) + K(X,J_iY) \ge 2 \text{ inf } K^r = \frac{c}{2}.$$

Therefore, from (3.3) and (3.12), we have

(3.13)
$$h(X,Y) = 0$$

for all $X, Y \in D'(p)$ with $g(X, Y) = g(X, J_iY) = 0$, i = 1, 2, 3. It follows that

(3.14)
$$h(X + J_iY, X - J_iY) = 0, \quad h(X + Y, X - Y) = 0, \quad i = 1, 2, 3,$$

this implies that h(X, X) = 0.

Since every tangent vector must lie in a totally real plane section of T_pM , we will have

(3.15)
$$h(X,Y) = 0, \text{ for all } X, Y \in T_p M.$$

Consequently the equality of (3.5) implies that p must be a totally geodesic point.

The converse is straightforward.

Theorem 3.3. Let M be an n-dimensional $(n \ge 2)$ invariant submanifold in a 4m-dimensional quaternion space form $\tilde{M}(c)$. Then

(i) for each $k \in (-\infty, 4]$, $\delta_k^r(p)$ satisfies

(3.16)
$$\delta_k^r(p) \le \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - k\frac{c}{4}, \quad p \in M$$

(ii)

(3.17)
$$\delta_k^r(p) = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - k\frac{c}{4}, \quad p \in M,$$

holds for some $k \in (-\infty, 4)$ if and only if p is a totally geodesic point. (iii) The invariant submanifold M satisfies

(3.18)
$$\delta_4^r(p) = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - c, \quad p \in M_4$$

if and only if there exists an orthonormal basis $\{e_1, ..., e_d, \bar{e}_1 = J_i e_1, ..., \bar{e}_d = J_i e_d\}, i = 1, 2, 3$ for $T_p M$ and an orthonormal basis $\{\alpha_1, ..., \alpha_{(m-d)}, \bar{\alpha}_1 = J_i \alpha_1, ..., \bar{\alpha}_{(m-d)} = J_i \alpha_{(m-d)}\},$

i = 1, 2, 3 for $T_p^{\perp}M$ such that the shape operator of M takes the following forms:

(3.19)
$$A_{\alpha_r} = \begin{pmatrix} A'_{\alpha_r} & A''_{\alpha_r} & 0\\ A''_{\alpha_r} & -A'_{\alpha_r} & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad A_{\bar{\alpha}_r} = \begin{pmatrix} -A''_{\alpha_r} & A'_{\alpha_r} & 0\\ A'_{\alpha_r} & A''_{\alpha_r} & 0\\ 0 & 0 & 0 \end{pmatrix}$$

$$(3.20) A'_{\alpha_r} = \begin{pmatrix} h_{11}^r & h_{12}^r & 0\\ h_{12}^r & -h_{11}^r & 0\\ 0 & 0 & 0 \end{pmatrix}, A''_{\alpha_r} = \begin{pmatrix} \bar{h}_{11}^r & \bar{h}_{12}^r & 0\\ \bar{h}_{12} & -\bar{h}_{11}^r & 0\\ 0 & 0 & 0 \end{pmatrix},$$

where $r \in \{n + 1,, 4m\}$.

Proof. Since an invariant submanifold $M(n \ge 2)$ of a quaternion space form $\tilde{M}(c)$ is minimal, from the Gauss equation (2.13) and (2.2), the scalar curvature τ and the second fundamental form h at p satisfies

(3.21)
$$2\tau(p) = (n^2 - n + 12d)\frac{c}{4} - \|h\|^2,$$

which implies

(3.22)
$$\tau(p) \le \frac{1}{2}(n^2 - n + 12d)\frac{c}{4}$$

with the equality holding if and only if p is a totally geodesic point.

Now, we suppose that $\pi \subset T_p M$ is a given totally real plane section. We choose an orthonormal basis $\{e_1, \ldots, e_d, \bar{e}_1 = J_i e_1, \ldots, \bar{e}_d = J_i e_d\}, i = 1, 2, 3$ for $T_p M$ and an orthonormal basis $\{\alpha_1, \ldots, \alpha_{(m-d)}, \bar{\alpha}_1 = J_i \alpha_1, \ldots, \bar{\alpha}_{(m-d)} = J_i \alpha_{(m-d)}\}, i = 1, 2, 3$ for $T_p^{\perp} M$ such that $\pi = span\{e_1, e_2\}.$

With respect to such a basis, we have (3.23)

$$A_{\alpha_r} = \begin{pmatrix} A'_{\alpha_r} & A''_{\alpha_r} & 0\\ A''_{\alpha_r} & -A'_{\alpha_r} & 0\\ 0 & 0 & 0 \end{pmatrix}, \quad A_{\bar{\alpha}_r} = \begin{pmatrix} -A''_{\alpha_r} & A'_{\alpha_r} & 0\\ A'_{\alpha_r} & A''_{\alpha_r} & 0\\ 0 & 0 & 0 \end{pmatrix}, \ r \in \{n+1, \dots, 4m\},$$

where A'_{α_r} and A''_{α_r} are $d \times d$ matrices. By (3.21) and (3.23), we have

$$\begin{aligned} -2\tau(p) + (n^2 - n + 12d)\frac{c}{4} \\ \geq & 4\sum_{r=n+1}^{4m} \{(h_{11}^r)^2 + (h_{22}^r)^2 + 2(h_{12}^r)^2 + (\bar{h}_{11}^r)^2 + (\bar{h}_{22}^r)^2 + 2(\bar{h}_{12}^r)^2 \} \\ \geq & -8\sum_{r=n+1}^{4m} \{h_{11}^r h_{22}^r - (h_{12}^r)^2 + \bar{h}_{11}^r \bar{h}_{22}^r - (\bar{h}_{12}^r)^2 \} \\ = & -8\{g(h(e_1, e_1), h(e_2, e_2)) - \|h(e_1, e_2)\|^2 \} \\ = & -8(K(\pi) - \frac{c}{4}). \end{aligned}$$

It gives

(3.24)
$$\tau(p) - 4K(\pi) \le \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - c,$$

with equality holding if

(3.25)

$$h_{11}^r + h_{22}^r = 0, h_{1j}^r = h_{2j}^r = h_{ij}^r = 0, r \in \{n+1, \dots, 4m\}, i, j \in \{3, \dots, n\}.$$

Since the inequality (3.24) holds for any totally real plane section, we get

(3.26)
$$\delta_4^r(p) = \tau(p) - 4 \inf K^r(p) \le \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - c$$

For $\lambda \in (0, \infty)$, from (3.22), we get

(3.27)
$$\lambda \tau(p) \le \frac{\lambda}{2} (n^2 - n + 12d) \frac{c}{4},$$

which, together with (3.26), proves that the inequality (3.16) is satisfied when $k \in (0, 4)$. In fact, (3.22) and (3.26) are special cases of k = 0 and k = 4

respectively. The inequality (3.16) with $k \in (-\infty, 0)$ follows from (3.5) and (3.22).

Now, if the equality (3.17) holds at p for some $k \in (-\infty, 4)$, then we have three cases:

A. k = 0, which gives

(3.28)
$$\delta_0^r(p) = \tau(p) = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4},$$

then (3.22) implies that p is a totally geodesic point.

B. $k \in (0, 4)$, then applying (3.26) and the definition of $\delta_k^r(p)$, we have

(3.29)

$$\delta_{k}^{r}(p) = \tau(p) - k \text{ inf } K^{r}(p)$$

$$= (1 - \frac{k}{4})\delta_{0}^{r}(p) + \frac{k}{4}\delta_{4}^{r}(p)$$

$$\leq \frac{1}{2}(n^{2} - n + 12d)\frac{c}{4} - k\frac{c}{4},$$

which implies, in particular that

$$\tau(p) = \delta_0^r(p) = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4}.$$

Therefore, p is a totally geodesic point.

C. $k \in (-\infty, 0)$, then (3.22) together with definition of $\delta_k^r(p)$ and (3.5) yield

(3.30)
$$\delta_k^r(p) = \tau(p) - k \inf K^r(p) \\ \leq \frac{1}{2} (n^2 - n + 12d) \frac{c}{4} - k \frac{c}{4}$$

In particular, this gives $\delta_0^r = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4}$. Hence, p must be a totally geodesic point. Conversely, if p is a totally geodesic point, then applying (3.5) and (3.22), we have (3.17).

Now, we assume M is an invariant submanifold of $\tilde{M}(c)$ which satisfies (3.18). Then, the inequality (3.24) becomes equality which yields (3.25). From this we conclude that the shape operators of M at p takes the form as in (3.19) with respect to some orthonormal basis (3.31)

for $T_p \tilde{M}(c)$.

Conversely, suppose that the shape operator of M at p takes the form as in (3.19) with respect to an orthonormal basis (3.31), then the inequality (3.24) becomes an equality, which, together with (3.16), gives

$$(3.32) \quad \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - c \ge \delta_4^r(p) \ge \tau(p) - 4K(\pi) = \frac{1}{2}(n^2 - n + 12d)\frac{c}{4} - c,$$

which gives (3.18).

Hence, the proof of the theorem is completed.

Acknowledgment

The authors are heartly thankful to the referees for their valuable comments and helpful suggestions towards the modification of the manuscript.

References

- Barros, M., Chen, B.Y., Urbano, F., Quaternion CR-submanifolds of quaternion manifolds. Kodai Math. J. 4 (1981), 399-417.
- [2] Chen, B.Y., Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel) 60 (1993), 568-578.
- [3] Chen, B.Y., A series of Kaehlerian invariants and their applications to Kaehlerian geometry. Beitrage Algebra Geom. 42(2001), 165-178.
- [4] Ishihara, S., Quaternion Kaehlerian manifolds. J. Differential Geom. 9 (1974), 483-500.
- [5] Li, X., Huang, G., Xu, J., Some inequalities for submanifolds in locally conformal almost cosymplectic manifolds. Soochow J. Math. 31 (3) (2005), 309-319.
- [6] Mihai, I., Al-Solamy, F., Shahid, M.H., On Ricci curvature of a quaternion CRsubmanifold of a quaternion space form. Radovi Mathematicki 12 (2003), 91-98.
- [7] Vilcu, G.E., B.Y. Chen inequalities for slant submanifolds in quaternionic space forms. Turk. J. Math. 34 (2010), 115-128.
- [8] Yoon, D.W., A basic inequality for submanifolds in quaternion space forms. Balkan J. Geom. and Its Appl. 9 (2) (2004), 92-102.

Received by the editors July 19, 2010