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EXTENSION OF RIDGELET TRANSFORM TO
TEMPERED BOEHMIANS

R. Roopkumar1

Abstract. We extend the ridgelet transform to the space of tempered
Boehmians consistent with the ridgelet transform on the space of tem-
pered distributions. We also prove that the extended ridgelet transform
is continuous, linear, bijection and the extended adjoint ridgelet trans-
form is also linear and continuous.
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1. Introduction

We denote by the set of all natural numbers, non-negative integers, real
numbers and complex numbers respectively by N, N0, R and C. We also denote
by S (R2) the Fréchet space of rapidly decreasing complex valued functions on
R2 and S ′(R2) by the space of all tempered distributions on R2 with weak∗

topology.
Let ψ ∈ S (R) be a real valued function satisfying the admissibility condi-

tion
∞∫

−∞

|ψ̂(ξ)|2/|ξ|2 dξ = 1.

For each (a, b, θ) ∈ Y = R+ × R× [0, 2π], the ridgelet is defined by

ψa,b,θ(x) = ψa,b,θ(x1, x2) = ψ

(
x1 cos θ + x2 sin θ − b

a

)
, ∀(x1, x2) ∈ R2.

The ridgelet transform [2, 25] of a square integrable function f on R2 is defined
by

(1) (Rf)(a, b, θ) =

∫
R2

f(x)ψa,b,θ(x) dx, ∀(a, b, θ) ∈ Y.

and adjoint ridgelet transform of a suitable function on Y is defined by

(2) (R∗F )(x) =

∞∫
0

∞∫
−∞

2π∫
0

F (a, b, θ)ψa,b,θ(x)
da

a4
db dθ
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and it is proved in [2] that the composition (R∗ ◦R) of R and R∗ is the identity
operator on L 2(R2).

Next, the ridgelet transform is consistently extended to the context of square
integrable Boehmians [18] and studied. Though the space of square integrable
Boehmians properly contains L 2(R2), it neither contains the tempered distri-
butions nor contained in the tempered distributions. Later, in [24] the distribu-
tional ridgelet transform R : S ′(R2) → S ′(Y) and the distributional adjoint
ridgelet transform R∗ : S ′(Y) → S ′(R2) are defined by

⟨Ru, F ⟩ = ⟨u,R∗F ⟩, ∀F ∈ S (Y),

⟨R∗Λ, f⟩ = ⟨Λ, Rf⟩, ∀f ∈ S (R2),

where S (Y) is the space consisting of all smooth functions on Y, with

Qk,α;l,β;m(F ) = sup
(a,b,θ)∈Y

|akblDα
aD

β
bD

m
θ F (a, b, θ)| < +∞, ∀k, α, l, β,m ∈ N0.

To extend the ridgelet transform further, we consider the space of tem-
pered Boehmians which properly contains both the space of square integrable
Boehmians and the space of tempered distributions.

2. Boehmian space

Motivated from the Boehme’s regular operators [1], the concept of Boehmi-
ans is first introduced by J. Mikusiński and P. Mikusiński [5]. Later, many
Boehmian spaces have been constructed to extend various integral transforms
[3, 4, 7–10, 13–23, 26]

In this section, first we recall the construction of an abstract Boehmian
space from [11] and tempered Boehmians [8] which is slightly modified in [9, 15]
in two different ways. Next, we prove the auxiliary results required to construct
the required Boehmian space which will be the range of the ridgelet transform
on the tempered Boehmians.

To construct a Boehmian space, we need G, (S,⊙), • and ∆, where G is a
sequential-convergence linear space [27, p. 6], (S,⊙) is a commutative semi-
group and • : G× S → G satisfying the following conditions.

Let α, β ∈ G, ζ, ξ ∈ S and c ∈ C be arbitrary.
1. (α+ β) • ζ = α • ζ + β • ζ;
2. (cα) • ξ = c(α • ξ);
3. α • (ζ ⊙ ξ) = (α • ζ) • ξ;
4. If αn → α as n→ ∞ in G and ξ ∈ S then αn • ξ → α • ξ as n→ ∞,

and ∆ is a collection of the sequences from S satisfying
(a) If (ξn), (ζn) ∈ ∆ then (ξn ⊙ ζn) ∈ ∆.
(b) If α ∈ G and (ξn) ∈ ∆, then α • ξn → α in G as n→ ∞.

Let A denote the collection of all pairs of sequences ((αn), (ξn)), where
αn ∈ G, ∀n ∈ N and (ξn) ∈ ∆ satisfying the property

(3) αn • ξm = αm • ξn, ∀ m,n ∈ N.
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Each element of A is called a quotient and is denoted by αn

ξn
. Define a relation

∼ on A by

(4)
αn

ξn
∼ βn
ζn

if αn • ζm = βm • ξn, ∀ m,n ∈ N.

It is easy to verify that ∼ is an equivalence relation on A and hence it decom-
poses A into disjoint equivalence classes. Each equivalence class is called a

Boehmian and is denoted by
[
αn

ξn

]
. The collection of all Boehmians is denoted

by B = B(G, (S,⊙), •,∆). Every element α of G is identified uniquely as a

member of B by
[
α•ξn
ξn

]
, where (ξn) ∈ ∆ is arbitrary. In this case, we say that

X represents α and we denote this by X ∈ G.
The set B becomes a vector space with addition and scalar multiplication

defined as follow.

(i)
[
αn

ξn

]
+
[
βn

ζn

]
=

[
αn•ζn+βn•ξn)

ξn⊙ζn

]
.

(ii) c
[
αn

ξn

]
=

[
cαn

ξn

]
.

The operation • can be extended to B × S by the following definition.

Definition 1. If X =
[
αn

ξn

]
∈ B and ζ ∈ S, then X • ζ =

[
αn•ζ
ξn

]
.

Now we recall the notions of convergence on B from [6].

Definition 2 (δ-Convergence). We say that Xn
δ→ X as n→ ∞ in B if there

exists (ξn) such that Xn • ξk ∈ G, ∀n, k ∈ N, X • ξk ∈ G,∀k ∈ N and for each
k ∈ N,

Xn • ξk → X • ξk as n→ ∞ in G.

The following lemma gives an equivalent statement for δ-convergence.

Lemma 3. Xn
δ→ X as n → ∞ if and only if there exist αn,k, αk ∈ G and

(ξk) ∈ ∆ such that Xn =
[
αn,k

ξk

]
, X =

[
αk

ξk

]
and for every k ∈ N,

αn,k → αk as n→ ∞ in G.

Definition 4 (∆-Convergence). We say that Xn
∆→ X as n→ ∞ in B if there

exists (ξn) such that (Xn −X) • ξn ∈ G, ∀n ∈ N, and

(Xn −X) • ξn → 0 as n→ ∞ in G.

The space of tempered Boehmians is introduced by P. Mikusiński [8] as
B(I , (D , ∗), ∗,∆0), where I is the space of all continuous functions on Rn with
polynomial growth, D is the space of all smooth functions on Rn with compact
supports, ∗ is the usual convolution between suitable real valued functions
defined by

(5) (f ∗ g)(x) =
∫
Rn

f(x− y)g(y) dy, ∀x ∈ Rn,

and ∆0 is the collection of all sequences (ϕk) satisfying the following conditions:
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(1)
∫
Rn

ϕk(x) dx = 1,∀k ∈ N.

(2)
∫
Rn

|ϕk(x)| dx ≤M, ∀k ∈ N, for some M > 0.

(3) If s(ϕk) = sup{x ∈ Rn : ϕk(x) ̸= 0}, then s(ϕk) → 0 as k → ∞.

In [15], the tempered Boehmians is slightly changed by replacing I by the
space S ′ of tempered distributions. This change does not alter the set but
it may increase the number of representatives of each Boehmian in the new
setup. This changed version of tempered Boehmians is successfully used to
extend Fourier transform [15], Radon transform [16] and Wavelet transform
[21]. In this paper we also prefer to use the tempered Boehmians defined in
[15] as B1 = B(S ′(R2), (D(R2), ∗), ∗,∆0), where ∗ is defined by

for ν ∈ S ′(R2) and ϕ ∈ D(R2), (ν ∗ ϕ)(f) = ν(f ∗ ϕ̌), ∀f ∈ S (R2),

where ϕ̌(x) = ϕ(−x), ∀x ∈ R2 and f ∗ ϕ̌ is the the usual convolution of f and
ϕ̌.

Remark 5. Since the convolution on D ′(R2) × D(R2) is consistent with the
usual convolution defined in (5), it is customary to use the same notation for
both convolutions.

Definition 6 ([18]). For F ∈ S (Y) and ϕ ∈ D(R2) define

(F ⋆ ϕ)(a, b, θ) =

∫
R2

F (a, b− x · eiθ, θ)ϕ(x) dx, ∀(a, b, θ) ∈ Y,

where x · eiθ = x1 cos θ + x2 sin θ.

Theorem 7 ([18]). If f ∈ S (R2) and ϕ ∈ D(R2), then R(f ∗ ϕ) = (Rf) ⋆ ϕ.

Definition 8. For Λ ∈ S ′(Y) and ϕ ∈ D(R2) define

(Λ⊗ ϕ)(F ) = Λ(F ⋆ ϕ̌), ∀F ∈ S (Y).

To facilitate the understanding, we recall the multi-variate Faa di Bruno
formula for the nth derivative of a composite function with a vector argument
[12], which will be applied in the proof of the following lemma. If h(t) =
f [x1(t), x2(t)] and n ∈ N, then

Dn
t h(t) =

∑
0

∑
1

· · ·
∑
m

m!
m∏
r=1

(r!)kr

m∏
r=1

qr,1qr,2

∂jf

∂xp1

1 ∂x
p2

2

×
m∏
r=1

(x
(r)
1 )qr,1(x

(r)
2 )qr,2 ,

where the respective sums are over all nonnegative integer solutions of the
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Diophantine equations, as follows∑
0

−→ k1 + 2k2 + · · ·+mkm = m,∑
1

−→ q1,1 + q1,2 = k1,∑
2

−→ q2,1 + q2,2 = k2,

...∑
m

−→ qm,1 + qm,2 = km,

p1 = q1,1 + q2,1 + · · · + qm,1, p2 = q1,2 + q2,2 + · · · + qm,2 and k = p1 + p2 =
k1 + k2 · · ·+ km.

Lemma 9. Let ϕ ∈ D(R2).

(i) If F ∈ S (Y), then F ⋆ ϕ ∈ S (Y),

(ii) If Fn → 0 as n→ ∞ in S (Y), then Fn ⋆ ϕ→ 0 as n→ ∞ in S (Y),

(iii) If Λ ∈ S ′(Y), then Λ⊗ ϕ ∈ S ′(Y).

Proof. Let supp ϕ ⊂ K for some compact subset K of R2 and M = sup
x∈K

|x|.

For k, , α, β,m ∈ N0,∣∣∣akblDα
aD

β
bD

m
θ ((F ⋆ ϕ)(a, b, θ))

∣∣∣
=

∣∣∣∣∣∣akblDα
aD

β
bD

m
θ

∫
K

F (a, b− x · eiθ, θ)ϕ(x)dx

∣∣∣∣∣∣
≤
∫
K

∣∣∣akblDα
aD

β
bD

m
θ F (a, b− x · eiθ, θ)ϕ(x)

∣∣∣ dx
≤
∫
K

∣∣∣∣∣∣∣∣a
kbl

∑
0

· · ·
∑
m

m!
m∏
r=1

(r!)kr

m∏
r=1

qr,1qr,2

∂jG

∂gp1

1 ∂g
p2

2

×
m∏
r=1

(g
(r)
1 )qr,1(g

(r)
2 )qr,2

∣∣∣∣∣∣∣∣ |ϕ(x)|dx
where G(g1, g2) = (Dα

aD
β
b F )(a, g1, g2), g1(θ) = b−x·eiθ, g2(θ) = θ, ∀θ ∈ [0, 2π].

Since g
(r)
1 is a linear combination of x1, x2 with coefficients from {± cos θ,

± sin θ} and g
(r)
2 ∈ {θ, 1, 0}, we have∣∣∣(g(r)1 )qr,1(g

(r)
2 )qr,2

∣∣∣ ≤ (2M)qr,1(2π)qr,2 .
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Thus the last term is dominated by

(2M)qr,1(2π)qr,2
∫
K

∑
0

∑
1

· · ·
∑
m

m!
m∏
r=1

(r!)kr

m∏
r=1

qr,1qr,2∣∣∣akbl(Dα
aD

β+p1

b Dp2

θ F )(a, b− x · eiθ, θ)
∣∣∣ |ϕ(x)| dx

Since for each x ∈ K,

|bl| ≤ (|b− x · eiθ|+ |x · eiθ|)l ≤

{
2l−1(|b− x · eiθ|l + (2M)l) for l ≥ 1

1 for l = 0,

we have

Qk,α;l,β;m(F ⋆ ϕ)

≤ (2M)qr,1(2π)qr,2
∑
0

∑
1

· · ·
∑
m

m!
m∏
r=1

(r!)kr

m∏
r=1

qr,1qr,2

∫
K

|ϕ(x)| dx

(
2l−1Qk,α;l,β+p1;p2(F ) + ((2M)l + 1)Qk,α;0,β+p1;p2(F )

)
< +∞(6)

Thus, F ⋆ ϕ ∈ S (Y).
We get the statement (ii) of this lemma as an immediate consequence of

the estimate (6). To prove the statement (iii) of this lemma, let F1, F2 ∈ S (Y)
and c1, c2 ∈ C be arbitrary. Then, we have

(Λ⊗ ϕ)(c1F1 + c2F2) = Λ((c1F1 + c2F2) ⋆ ϕ̌)

= c1Λ(F1 ⋆ ϕ̌) + c2Λ(F2 ⋆ ϕ̌)

= c1(Λ⊗ ϕ)(F1) + c2(Λ⊗ ϕ)(F2).

Let Fn → 0 as n → ∞ in S (Y). From the statement (ii) of this lemma, we
get Fn ⋆ ϕ̌ → 0 as n → ∞ in S (Y). Since Λ ∈ S ′(Y) and it is continuous
on S (Y), it follows that (Λ⊗ ϕ)(Fn) = Λ(Fn ⋆ ϕ̌) → 0 as n → ∞. Therefore,
Λ⊗ ϕ ∈ S ′(Y).

Lemma 10. If Λ1,Λ2 ∈ S ′(Y), ϕ ∈ D(R2) and c ∈ C, then

(i) (Λ1 + Λ2)⊗ ϕ = Λ1 ⊗ ϕ+ Λ2 ⊗ ϕ,

(ii) (cΛ1)⊗ ϕ = c(Λ1 ⊗ ϕ).

Proof of this lemma is straightforward.

Lemma 11. Let ϕ1, ϕ2 ∈ D(R2).

(i) If F ∈ S (Y), then F ⋆ (ϕ1 ∗ ϕ2) = (F ⋆ ϕ1) ⋆ ϕ2,

(ii) If Λ ∈ S ′(Y), then Λ⊗ (ϕ1 ∗ ϕ2) = (Λ⊗ ϕ1)⊗ ϕ2.
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Proof. Let a, b, θ ∈ Y be arbitrary. By applying Fubini’s theorem, we get

(F ⋆ (ϕ1 ∗ ϕ2))(a, b, θ) =

∫
R2

F (a, b− x · eiθ, θ)
∫
R2

ϕ1(x− y)ϕ2(y) dy dx

=

∫
R2

∫
R2

F (a, b− x · eiθ, θ)ϕ1(x− y) dxϕ2(y) dy

=

∫
R2

∫
R2

F (a, b− (z+ y) · eiθ, θ)ϕ1(z) dzϕ2(y) dy

=

∫
R2

∫
R2

F (a, (b− z · eiθ)− y · eiθ, θ)ϕ1(z) dzϕ2(y) dy

=

∫
R2

(F ⋆ ϕ1)(a, b− z · eiθ, θ)ϕ2(y) dy

= ((F ⋆ ϕ1) ⋆ ϕ2)(a, b, θ).

Let F ∈ S (Y) be arbitrary.

(Λ⊗ (ϕ1 ∗ ϕ2))(F ) = Λ(F ⋆ (ϕ1 ∗ ϕ2)̌)
= Λ(F ⋆ (ϕ̌1 ∗ ϕ̌2))
= Λ(F ⋆ (ϕ̌2 ∗ ϕ̌1)) (since ∗ is commutative on D(R2))

= Λ((F ⋆ ϕ̌2) ⋆ ϕ̌1) (by using previous lemma)

= (Λ⊗ ϕ1)(F ⋆ ϕ̌2) = ((Λ⊗ ϕ1)⊗ ϕ2)(F ).

Lemma 12. Let If F ∈ S (Y), Λ ∈ S ′(Y) and ϕ ∈ D(R2). Then,

(i) R∗(F ⋆ ϕ) = R∗F ∗ ϕ,

(ii) R∗(Λ⊗ ϕ) = R∗Λ ∗ ϕ.

Proof. For each x ∈ R2, by using Fubini’s theorem, we get

R∗(F ⋆ ϕ)(x) =

∫
Y

(F ⋆ ϕ)(a, b, θ)ψa,b,θ(x)dµ

=

∫
Y

ψa,b,θ(x)

∫
R2

F (a, b− y · eiθ, θ)ϕ(y)dydµ.

=

∫
R2

ϕ(y)dy

∫
Y

F (a, b− y · eiθ, θ)ψa,b,θ(x)dµ

=

∫
R2

ϕ(y)dy

2π∫
0

∞∫
−∞

∞∫
0

F (a, b− y · eiθ, θ)ψ
(
x · eiθ − b

a

)
da

a4
db
dθ

4π
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=

∫
R2

ϕ(y)dy

2π∫
0

∞∫
−∞

∞∫
0

F (a, c, θ)ψ

(
(x− y) · eiθ − c

a

)
da

a4
dc
dθ

4π

=

∫
R2

(R∗F )(x− y)ϕ(y)dy

= (R∗F ∗ ϕ)(x)

For f ∈ S (R2),

R∗(Λ⊗ ϕ)(f) = (Λ⊗ ϕ)(Rf) = Λ(Rf ⋆ ϕ̌)

= Λ(R(f ∗ ϕ̌)) = R∗Λ(f ∗ ϕ̌)
= (R∗Λ ∗ (f ∗ ϕ̌)̌)(0) = (R∗Λ ∗ (f̌ ∗ ϕ))(0)
= (R∗Λ ∗ (ϕ ∗ f̌))(0) = (R∗Λ ∗ ϕ) ∗ f̌)(0)
= (R∗Λ ∗ ϕ)(f).

Hence the lemma follows.

Theorem 13 (Convolution Theorem). If ν ∈ S ′(R2) and ϕ ∈ D(R2), then
R(ν ∗ ϕ) = Rν ⊗ ϕ.

Proof. Let F ∈ S (Y) be arbitrary.

R(ν ∗ ϕ)(F ) = (ν ∗ ϕ)(R∗F ) = ((ν ∗ ϕ) ∗ (R∗F )̌)(0)

= ν ∗ (ϕ ∗ (R∗F )̌)(0) = ν ∗ ((R∗F )̌ ∗ ϕ)(0)
= ν(R∗F ∗ ϕ̌) = ν(R∗(F ⋆ ϕ̌))

= Rν(F ⋆ ϕ̌) = (Rν ⊗ ϕ)(F ).

Then, we have the following corollary.

Corollary 14. If Λ ∈ R(S (R2)) and ϕ ∈ D(R2), then Λ⊗ ϕ ∈ R(S (R2)).

Lemma 15. If Λn → Λ as n → ∞ in S ′(Y) and ϕ ∈ D(R2), then Λn ⊗ ϕ →
Λ⊗ ϕ as n→ ∞ in S ′(Y).

Proof. Let F ∈ S (Y) be arbitrary. Then, by assumption, we have

Λn(F ) → Λ(F ) as n→ ∞ in C.

Now, (Λ ⊗ ϕ)(F ) = Λn(F ⋆ ϕ̌) → Λ(F ⋆ ϕ̌) = (Λ ⊗ ϕ)(F ) as n → ∞, since
F ⋆ ϕ̌ ∈ S (Y), by Lemma 9.

In the following lemma, by “Λn → Λ as n → ∞ in R(S ′(R2))”, we mean
that Λn ∈ R(S ′(R2)), ∀n ∈ N, Λ ∈ R(S ′(R2)) and Λn → Λ as n → ∞ in
S ′(Y).

Theorem 16. If Λ ∈ R(S ′(R2)) and (ϕn) ∈ ∆0, then Λ⊗ϕn → Λ as n→ ∞
in R(S ′(R2)).
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Proof. From Λ ∈ R(S ′(R2)), there exists ν ∈ S ′(R2) such that Λ = Rν. It
has been proved in [15, Lemma 3.5], that if ν ∈ S ′(R2) and (ϕn) ∈ ∆0, then
ν ∗ϕn → ν as n→ ∞ in S ′(R2). Since Λ⊗ϕn = Rν⊗ϕn = R(ν ∗ϕn) and R :
S ′(R2) → S ′(Y) is continuous ([24, Theorem 4.5]), we have Λ⊗ϕn → Rν = Λ
as n→ ∞ in S ′(Y). By using Corollary, we have Λ⊗ϕn ∈ R(S ′(R2)), ∀n ∈ N.
Thus, we get Λ⊗ ϕn → Λ as n→ ∞ in R(S ′(R2)).

Thus the Boehmian space B2 = B(R(S ′(R2)), (D , ⋆),⊗,∆0) has been
constructed.

3. Extended ridgelet transform

Before defining the extended ridgelet transform, we consider the following.
If νn

ϕn
is a quotient in the context of B1, then we have νn ∈ S ′(R2), ∀n ∈ N,

(ϕn) ∈ ∆0 and

νn ∗ ϕm = νm ∗ ϕn, ∀m,n ∈ N.

By applying the ridgelet transform R : S ′(R2) → S ′(Y) on both sides of the
above equation and by invoking the Convolution Theorem (Theorem 13), we
get

Rνn ⊗ ϕm = Rνm ⊗ ϕn, ∀m,n ∈ N.

Therefore, Rνn

ϕn
is a quotient in the context of B2 and hence it represents a

Boehmian in B2. Moreover, if νn

ϕn
∼ µn

δn
, then we have

νn ∗ δm = µm ∗ ϕn, ∀m,n ∈ N.

Again, by using the same technique, we get

Rνn ⊗ δm = Rµm ⊗ ϕn, ∀m,n ∈ N.

Thus Rνn

ϕn
∼ Rµn

δn
. With these observations, if we let R

[
νn

ϕn

]
=

[
Rνn

ϕn

]
, then R

is a well defined map from B1 into B2. We call R : B1 → B2 the extended
ridgelet transform.

Lemma 17. The extended ridgelet transform R : B1 → B2 is consistent with
the distributional ridgelet transform R : S ′(R2) → S ′(Y).

Proof. Let ν ∈ S ′(R2) be arbitrary. Then the tempered Boehmian represent-

ing ν is given by
[
ν∗ϕk

ϕk

]
for any (ϕk) ∈ ∆0. Therefore, by using Theorem 13,

we get

R

[
ν ∗ ϕk
ϕk

]
=

[
R(ν ∗ ϕk)

ϕk

]
=

[
Rν ⊗ ϕk

ϕk

]
,

which is the Boehmian in B2 representing Rν. Hence R : B1 → B2 is consis-
tent with R : S ′(R2) → S ′(Y).

Theorem 18. The extended ridgelet transform R : B1 → B2 is a linear map.
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Proof. By using the linearity of R : S ′(R2) → S ′(Y) and Theorem 13, the
proof follows immediately.

Theorem 19. The extended ridgelet transform R : B1 → B2 is injective.

Proof. Let
[
νn

ϕn

]
,
[
µn

δn

]
∈ B1 be such that R

[
νn

ϕn

]
= R

[
µn

δn

]
. Then we have[

Rνn

ϕn

]
=

[
Rµn

δn

]
. This implies that

Rνn ⊗ δm = Rµm ⊗ ϕn, ∀m,n ∈ N.

Then, by using the convolution theorem, we get

R(νn ∗ δm) = R(µm ∗ ϕn), ∀m,n ∈ N.

By applying the distributional adjoint ridgelet transform R∗ : S (Y) → S (R2)
on both sides, we get

νn ∗ δm = µm ∗ ϕn, ∀m,n ∈ N,

because R∗ ◦ R is identity on S (R2). See [24].
Therefore, νn

ϕn
and µn

δn
represent the same Boehmian in B1. In other words,[

νn

ϕn

]
=

[
µn

δn

]
. Hence, the theorem follows.

Theorem 20. The extended ridgelet transform R : B1 → B2 is surjective.

Proof. Let
[
Λn

ϕn

]
∈ B2 be arbitrary. Then Λn ∈ R(S (R2)), ∀n ∈ N, (ϕn) ∈ ∆0

and
Λn ⊗ ϕm = Λm ⊗ ϕn, ∀m,n ∈ N.

Since Λn = Rνn for some νn ∈ S ′(R2), ∀n ∈ N. Therefore, by using the
convolution theorem, we get

R(νn ∗ ϕm) = R(νm ∗ ϕn), ∀m,n ∈ N.

Again, by applying R∗ on both sides and by using the fact that R∗ ◦ R is
identity on S (R2), we get

νn ∗ ϕm = νm ∗ ϕn, ∀m,n ∈ N.

Therefore, νn

ϕn
is a quotient and hence

[
νn

ϕn

]
∈ B1. Obviously, we have R

[
νn

ϕn

]
=[

Λn

ϕn

]
. Hence, the theorem follows.

Theorem 21. The extended ridgelet transform R : B1 → B2 is continuous
with respect to δ-convergence.

Proof. Let Xn
δ→ X as n→ ∞ in B1. Then by Lemma 3, there exist νn,k, νk ∈

S ′(R2), n, k ∈ N and (ϕk) ∈ ∆0 such that

Xn =

[
νn,k
ϕk

]
, X =

[
νk
ϕk

]
and νn,k → νk as n→ ∞ in S ′(R2).
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Since the distributional ridgelet transform R : S ′(R2) → S ′(Y) is continuous,
we have

Rνn,k → Rνk as n→ ∞ in S ′(Y) and hence in R(S ′(R2)).

Since

RXn =

[
Rνn,k
ϕk

]
and RX =

[
Rνk
ϕk

]
,

again, by using Lemma 3, we get

RXn
δ→ RX as n→ ∞ in B2.

Hence the theorem.

Theorem 22. If X ∈ B2 and ϕ ∈ D(R2), then R(X ∗ ϕ) = RX ⊗ ϕ.

Proof. LetX =
[
νk

ϕk

]
∈ B1 and ϕ ∈ D(R2). Then by definition, X∗ϕ =

[
νk∗ϕ
ϕk

]
.

Since X ∗ ϕ ∈ B1, we can apply R on X ∗ ϕ and by using Theorem 13, we get

R(X ∗ ϕ) =
[
R(νk ∗ ϕ)

ϕk

]
=

[
Rνk ⊗ ϕ

ϕk

]
=

[
Rνk
ϕk

]
⊗ ϕ = RX ⊗ ϕ.

Theorem 23. The extended ridgelet transform R : B1 → B2 is continuous
with respect to ∆-convergence.

Proof. If Xn
∆→ X as n→ ∞ in B1, then there exist νn ∈ S ′(R2), n ∈ N and

(ϕk) ∈ ∆0 such that (Xn − X) ∗ ϕn = νn, ∀n ∈ N and νn → 0 as n → ∞ in
S ′(R2). Since

(RXn − RX)⊗ ϕn = R(Xn −X)⊗ ϕn (by Theorem 18)

= R((Xn −X) ∗ ϕn) (by Theorem 22)

= Rνn

= Rνn (by Theorem 17)

we have RXn
∆→ RX as n→ ∞ in B2.

Definition 24. We define the extended adjoint ridgelet transform R∗ : B2 →
B1 by R∗

[
Λn

ϕn

]
=

[
R∗Λn

ϕn

]
, where R∗ : S ′(Y) → S ′(R2). See [24].

Lemma 25. The map R∗ : B2 → B1 is well defined.

We call R∗ : B2 → B1 the extended adjoint ridgelet transform.

Lemma 26. The extended adjoint ridgelet transform R∗ : B2 → B1 is consis-
tent with the distributional adjoint ridgelet transform R∗ : S ′(Y) → S ′(R2).

Theorem 27. The extended adjoint ridgelet transform R∗ : B2 → B1 is
linear.
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Theorem 28. If Y ∈ B2 and ϕ ∈ D(R2), then R∗(Y ⊗ ϕ) = R∗Y ∗ ϕ.

Theorem 29. The extended adjoint ridgelet transform R∗ : B2 → B1 is
continuous with respect to δ-convergence and ∆-convergence.

Since the above theorems are analogous to the corresponding results of the
extended ridgelet transform, we prefer to omit the details.

Theorem 30. The composition R∗ ◦R of extended ridgelet transform and the
extended adjoint ridgelet transform is identity on B1.

Proof. Let
[
νn

ϕn

]
∈ B1 be arbitrary. Then

(R∗ ◦ R)

[
νn
ϕn

]
= R∗

[
Rνn
ϕn

]
=

[
R∗ ◦ Rνn

ϕn

]
=

[
νn
ϕn

]
,

since R∗ ◦ R is identity on S ′(R2). See [24].
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