SOME STRONGLY CONVERGENT DIFFERENCE SEQUENCE SPACES DEFINED BY A SEQUENCE OF MODULUS FUNCTIONS

Kuldip Raj ${ }^{\text {D }}$ and Sunil K. Sharma ${ }^{\text {D }}$

Abstract

In the present paper we introduce some strongly convergent difference sequence spaces defined by a sequence of modulus functions $F=\left(f_{k}\right)$. We also study some topological properties and inclusion relations between these spaces.

AMS Mathematics Subject Classification (2010): 40A05, 40C05, 46A45.
Key words and phrases: modulus function, statistical convergence, paranorm space.

1. Introduction and Preliminaries

Let $\Lambda=\left(\lambda_{n}\right)$ be a non-decreasing sequence of positive real numbers tending to infinity and $\lambda_{1}=1$ and $\lambda_{n+1} \leq \lambda_{n}+1$. The generalized de la Valle-Poussin means is defined by $t_{n}(x)=\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} x_{k}$, where $I_{n}=\left[n-\lambda_{n}+1, n\right]$. A sequence $x=\left(x_{k}\right)$ is said to be (V, λ)-summable to a number L if $t_{n}(x) \rightarrow L$ as $n \rightarrow \infty$ see [IL]]. If $\lambda_{n}=n$, then the (V, λ)-summability is reduced to ordinary $(C, 1)$-summability. A sequence $x=\left(x_{k}\right)$ is said to be strongly (V, λ)-summable to a number L if $t_{n}(|x-L|) \rightarrow 0$ as $n \rightarrow \infty$.
Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers. We write $A x=$ $\left(A_{n}(x)\right)_{n=1}^{\infty}$ if $A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. Spaces of strongly summable sequences were studied by Kuttner [17], Maddox [19] and others. The class of sequences which are strongly Cesaro summable with respect to a modulus was introduced by Maddox [20] as an extension of the definition of strongly Cesaro summable sequences. Connor [8] extended further this definition to a definition of strongly A-summability with respect to a modulus when A is a non-negative regular matrix.

Let w be the set of all sequences, real or complex numbers and l_{∞}, c and c_{0} be respectively the Banach spaces of bounded, convergent and null sequences $x=\left(x_{k}\right)$ normed by $\|x\|=\sup _{k}\left|x_{k}\right|$, where $k \in \mathbb{N}$, the set of positive integers.

The notion of difference sequence spaces was introduced by Kızmaz [I5], who studied the difference sequence spaces $l_{\infty}(\Delta), c(\Delta)$ and $c_{0}(\Delta)$. The notion was further generalized by Et and Çolak [II] by introducing the spaces $l_{\infty}\left(\Delta^{n}\right)$, $c\left(\Delta^{n}\right)$ and $c_{0}\left(\Delta^{n}\right)$. Let w be the space of all complex or real sequences $x=\left(x_{k}\right)$

[^0]and let m, s be non-negative integers, then for $Z=l_{\infty}, c, c_{0}$ we have sequence spaces
$$
Z\left(\Delta_{s}^{m}\right)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta_{s}^{m} x_{k}\right) \in Z\right\}
$$
where $\Delta_{s}^{m} x=\left(\Delta_{s}^{m} x_{k}\right)=\left(\Delta_{s}^{m-1} x_{k}-\Delta_{s}^{m-1} x_{k+1}\right)$ and $\Delta_{s}^{0} x_{k}=x_{k}$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation
$$
\Delta_{s}^{m} x_{k}=\sum_{v=0}^{m}(-1)^{v}\binom{m}{v} x_{k+s v}
$$

Taking $s=1$, we get the spaces which were studied by Et and Çolak [II]. Taking $m=s=1$, we get the spaces which were introduced and studied by Kızmaz [IT.].

The difference space $b v_{p}$ consisting of all sequences $x=\left(x_{k}\right)$ such that $\left(x_{k}-x_{k-1}\right) \in \ell_{p}$ is studied in the case $1 \leq p \leq \infty$ by Başar and Altay [4$]$ and in the case $0<p<1$ by Altay and Başar [[2], respectively. Later, Altay [\mathbb{I}] extended the space $b v_{p}$ to the m th order difference space $\ell_{p}\left(\Delta^{(m)}\right)$.

A modulus function is a function $f:[0, \infty) \rightarrow[0, \infty)$ such that

1. $f(x)=0$ if and only if $x=0$,
2. $f(x+y) \leq f(x)+f(y)$ for all $x \geq 0, y \geq 0$,
3. f is increasing
4. f is continuous from right at 0 .

It follows that f must be continuous everywhere on $[0, \infty)$. The modulus function may be bounded or unbounded. For example, if we take $f(x)=$ $\frac{x}{x+1}$, then $f(x)$ is bounded. If $f(x)=x^{p}, 0<p<1$, then the modulus $f(x)$ is unbounded. Subsequently, modulus functions have been discussed in [3, [22, [24, [25, [27] and many others.

Let X be a linear metric space. A function $p: X \rightarrow \mathbb{R}$ is called paranorm, if

1. $p(x) \geq 0$, for all $x \in X$,
2. $p(-x)=p(x)$, for all $x \in X$,
3. $p(x+y) \leq p(x)+p(y)$, for all $x, y \in X$,
4. if $\left(\lambda_{n}\right)$ is a sequence of scalars with $\lambda_{n} \rightarrow \lambda$ as $n \rightarrow \infty$ and $\left(x_{n}\right)$ is a sequence of vectors with $p\left(x_{n}-x\right) \rightarrow 0$ as $n \rightarrow \infty$, then $p\left(\lambda_{n} x_{n}-\lambda x\right) \rightarrow$ 0 as $n \rightarrow \infty$.

A paranorm p for which $p(x)=0$ implies $x=0$ is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [30, Theorem 10.4.2, P-183]).

Let $A=\left(a_{n k}\right)$ be an infinite matrix of complex numbers, $u=\left(u_{k}\right)$ be a sequence of strictly positive real numbers, $p=\left(p_{k}\right)$ be a bounded sequence
of positive real numbers such that $0<h=\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$. $F=\left(f_{k}\right)$ also be a sequence of modulus functions. Now we define the following sequence spaces:
$V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]=\left\{x=\left(x_{k}\right) \in w:\right.$

$$
\left.\lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}=0 \text {, for some } L\right\},
$$

$V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]=\left\{x=\left(x_{k}\right) \in w:\right.$

$$
\left.\lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}=0\right\}
$$

and

$$
\begin{aligned}
& V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}<\infty\right\},
\end{aligned}
$$

where $A_{k}\left(\Delta_{s}^{m} x_{k}\right)=\sum_{k=1}^{\infty} a_{n k} \Delta_{s}^{m} x_{k}$ for all $n \in \mathbb{N}$.
If $F(x)=x$, we get

$$
\begin{aligned}
& V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right]^{p_{k}}}{\lambda_{n}}=0, \text { for some } L\right\}, \\
& V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right]^{p_{k}}}{\lambda_{n}}=0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
&\left.\sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right]^{p_{k}}}{\lambda_{n}}<\infty\right\} .
\end{aligned}
$$

If $p=\left(p_{k}\right)=1, \forall k \in \mathbb{N}$, we have

$$
\begin{aligned}
& V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}=0, \text { for some } L\right\}, \\
& V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \\
& \left.\lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}=0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}<\infty\right\}
\end{aligned}
$$

If we take $p=\left(p_{k}\right)=1$ and $u=\left(u_{k}\right)=1, \forall k \in \mathbb{N}$, we have

$$
\begin{aligned}
& V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}=0, \text { for some } L\right\}, \\
& V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \lim _{n \rightarrow \infty} \sum_{k \in I_{n}} \frac{\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}=0\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, F\right]=\left\{x=\left(x_{k}\right) \in w:\right. \\
& \left.\quad \sup _{n} \sum_{k \in I_{n}} \frac{\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]}{\lambda_{n}}<\infty\right\} .
\end{aligned}
$$

If we take $F(x)=f(x), u=\left(u_{k}\right)=1, s=0,\|., \ldots,\|=$.1 , then the above spaces reduce to $V_{1}^{\lambda}\left[A, \Delta^{m}, p, f\right], V_{0}^{\lambda}\left[A, \Delta^{m}, p, f\right]$ and $V_{\infty}^{\lambda}\left[A, \Delta^{m}, p, f\right]$ which were studied by Ayhan Esi and Ayten Esi [III], and if we take $m=0$ we get the spaces $V_{1}^{\lambda}[A, p, f], V_{0}^{\lambda}[A, p, f]$ and $V_{\infty}^{\lambda}[A, p, f]$ which were studied by Bilgin and Altun [5]. Throughout the paper Z will denote one of the notations 0,1 or ∞.

The following inequality will be used throughout the paper. If $0<h=$ $\inf p_{k} \leq p_{k} \leq \sup p_{k}=H, D=\max \left(1,2^{H-1}\right)$ then

$$
\begin{equation*}
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\} \tag{1.1}
\end{equation*}
$$

for all k and $a_{k}, b_{k} \in \mathbb{C}$. Also, $|a|^{p_{k}} \leq \max \left(1,|a|^{H}\right)$ for all $a \in \mathbb{C}$.
In the present paper we introduce the sequence spaces defined by a sequence of modulus function $F=\left(f_{k}\right)$. We study some topological properties and prove some inclusion relations between these spaces.

2. Main Results

In this section we examine some topological properties of $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ spaces and investigate some inclusion relations between these spaces.

Theorem 2.1. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions, $u=\left(u_{k}\right)$ be any sequence of strictly positive real numbers and $p=\left(p_{k}\right)$ be a bounded sequence of positive real numbers. Then $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ is a linear space over the field \mathbb{C} of complex numbers.

Proof. Let $x=\left(x_{k}\right), y=\left(y_{k}\right) \in V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ and $\alpha, \beta \in \mathbb{C}$. Then there exists integers M_{α} and N_{β} such that $|\alpha| \leq M_{\alpha}$ and $|\beta| \leq N_{\beta}$. By using inequality $(\mathbb{L}$) and the properties of modulus function, we have

$$
\begin{aligned}
& \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|\sum_{k=1}^{\infty} a_{n k}\left(\Delta_{s}^{m}\left(\alpha x_{k}+\beta y_{k}\right)\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \leq \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|\sum_{k=1}^{\infty} \alpha a_{n k} \Delta_{s}^{m} x_{k}+\sum_{k=1}^{\infty} \beta a_{n k} \Delta_{s}^{m} y_{k}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \leq D \sum_{k \in I_{n}} \frac{u_{k}\left[M_{\alpha} f_{k}\left(\left\|\sum_{k=1}^{\infty} a_{n k} \Delta_{s}^{m} x_{k}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& +D \sum_{k \in I_{n}} \frac{u_{k}\left[N_{\beta} f_{k}\left(\left\|\sum_{k=1}^{\infty} a_{n k} \Delta_{s}^{m} y_{k}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \leq D M_{\alpha}^{H} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|\sum_{k=1}^{\infty} a_{n k} \Delta_{s}^{m} x_{k}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& +D N_{\beta}^{H} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|\sum_{k=1}^{\infty} a_{n k} \Delta_{s}^{m} y_{k}, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \rightarrow \quad 0 \text { as } n \rightarrow \infty \text {. }
\end{aligned}
$$

This proves that $V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ is a linear space. Similarly, we can prove that $V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ and $V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ are linear spaces.

Theorem 2.2. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. Then we have

$$
V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]
$$

Proof. The inclusion $V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ is obvious. Now, let $x=\left(x_{k}\right) \in V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ such that $x=\left(x_{k}\right) \rightarrow L\left(V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]\right)$. By using inequality (1.1), we have

$$
\begin{aligned}
& \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad=\sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L+L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad \leq D \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad+D \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad \leq D \sup _{n} \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad+D \max \left\{f_{k}\left(\left\|L, z_{1}, \ldots, z_{n-1}\right\|\right)^{h}, f_{k}\left(\left\|L, z_{1}, \ldots, z_{n-1}\right\|\right)^{H}\right\} \\
& \quad<\infty .
\end{aligned}
$$

Hence $x=\left(x_{k}\right) \in V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$. This proves that $V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset$ $V_{\infty}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$. This completes the proof of the theorem.

Theorem 2.3. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions and $p=$ $\left(p_{k}\right) \in l_{\infty}$. Then $V_{0}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$ is a paranormed space with the paranorm defined by

$$
g(x)=\sup _{n}\left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}}
$$

where $M=\max \left(1, \sup _{k} p_{k}\right)$.
Proof. Clearly $g(-x)=g(x)$. It is trivial that $\Delta_{s}^{m} x_{k}=0$ for $x=0$. Hence we get $g(0)=0$. Since $\frac{p_{k}}{M} \leq 1$ and $M \geq 1$, using Minkowski's inequality and
definition of modulus function, for each x, we have

$$
\begin{aligned}
& \left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m}\left(x_{k}+y_{k}\right)\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}} \\
& \quad \leq\left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)+f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} y_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}} \\
& \quad \leq\left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}} \\
& \quad+\left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} y_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}}
\end{aligned}
$$

Now it follows that g is subadditive. Finally, to check the continuity of multiplication, let us take any complex number α. By the definition of the modulus function F, we have

$$
\begin{aligned}
g(\alpha x) & =\sup _{n}\left(\sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} \alpha x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}}\right)^{\frac{1}{M}} \\
& \leq K^{\frac{H}{M}} g(x)
\end{aligned}
$$

where $K=1+[|\alpha|]([|\alpha|]$ denotes the integer part of $\alpha)$. Since F is a sequence of modulus function, we have $x \rightarrow 0$ implies $g(\alpha x) \rightarrow 0$. Similarly, $x \rightarrow 0$ and $\alpha \rightarrow 0$ implies $g(\alpha x) \rightarrow 0$. Finally, we have fixed x and $\alpha \rightarrow 0$ implies $g(\alpha x) \rightarrow 0$. This completes the proof.

Theorem 2.4. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. Then

$$
V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right] \subset V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] .
$$

Proof. Let $x=\left(x_{k}\right) \in V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right]$ and $\epsilon>0$. We can choose $0<\delta<1$ such that $f_{k}(t)<\epsilon$ for every $t \in[0, \infty)$ with $0 \leq t \leq \delta$. Then, we can write

$$
\begin{aligned}
& \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad=\sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\| \leq \delta} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad+\quad \sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>\delta} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad \leq \max \left\{f_{k}(\epsilon)^{h}, f_{k}(\epsilon)^{H}\right\} \\
& \quad+\max \left\{1,\left(2 f_{k}(1) \delta^{-1}\right)^{H}\right\} \sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>\delta} \frac{u_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)^{p_{k}}}{\lambda_{n}}
\end{aligned}
$$

Therefore, $x=\left(x_{k}\right) \in V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$. This completes the proof of the theorem. Similarly, we can prove the other cases.

Theorem 2.5. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. If $\lim _{t \rightarrow \infty} \frac{f_{k}(t)}{t}=$ $s>0$, then $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p\right]=V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$.

Proof. The proof is easy, so we omit it.
Theorem 2.6. t Let $0<p_{k} \leq q_{k}$ for all $k \in \mathbb{N}$ and let $\left(\frac{q_{k}}{p_{k}}\right)$ be bounded. Then

$$
V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, q, F\right] \subset V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] .
$$

Proof. Let $x=\left(x_{k}\right) \in V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, q, F\right]$. Let

$$
t_{k}=u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{q_{k}}
$$

and $\lambda_{k}=\left(\frac{p_{k}}{q_{k}}\right)$ for all $k \in \mathbb{N}$ so that $0<\lambda \leq \lambda_{k} \leq 1$. Define the sequences $\left(u_{k}\right)$ and $\left(v_{k}\right)$ as follows:

For $t_{k} \geq 1$, let $u_{k}=t_{k}$ and $v_{k}=0$ and for $t_{k}<1$, let $u_{k}=0$ and $v_{k}=t_{k}$.
Then clearly for all $k \in \mathbb{N}$, we have $t_{k}=u_{k}+v_{k}, \quad t_{k}^{\lambda_{k}}=u_{k}^{\lambda_{k}}+v_{k}^{\lambda_{k}}$, $u_{k}^{\lambda_{k}} \leq u_{k} \leq t_{k}$ and $v_{k}^{\lambda_{k}} \leq v_{k}^{\lambda}$. Therefore

$$
\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} t_{k}^{\lambda_{k}} \leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} t_{k}+\left[\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} v_{k}\right]^{\lambda}
$$

Hence $x=\left(x_{k}\right) \in V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$. Thus

$$
V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, q, F\right] \subseteq V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]
$$

This completes the proof of the theorem.

Corollary 2.7. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. Then the following relation holds:
(a) If $0<\inf _{k} p_{k} \leq 1$ for all $k \in \mathbb{N}$, then $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right] \subset V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$.
(b) If $1 \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$ for all $k \in \mathbb{N}$, then

$$
V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right] .
$$

Proof. (a) It follows from Theorem [2.6] with $q_{k}=1$ for all $k \in \mathbb{N}$.
(b) It follows from Theorem [2.6] with $p_{k}=1$ for all $k \in \mathbb{N}$.

Theorem 2.8. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. If $0<$ $\inf _{k} p_{k} \leq p_{k} \leq \sup _{k} p_{k}=H<\infty$. Then $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]=V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, F\right]$.

Proof. It is easy to prove so we omit it.
Theorem 2.9. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions and $p=\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers. Let $m \geq 1$ be a fixed integer, then $V_{Z}^{\lambda}\left[A, \Delta_{s}^{m-1}, u, p, F\right] \subset V_{Z}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$.

Proof. The proof of the inclusion follows from the following inequality

$$
\begin{aligned}
& \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad \leq D \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m-1} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad+D \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right), z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} .
\end{aligned}
$$

3. Statistical Convergence

The notion of statistical convergence of sequences was introduced by Fast [13], Buck [6], and Schoenberg [28] independently. It is also found in Zygmund [3I]. Later on it was studied from sequence space point of view and linked with summability theory by Fridy [14], Connor [Z], Salat [26], Maddox [201], Kolk [[6]], Rath and Tripathy [23]], Tripathy [[29], and many others. The notion depends on the density of subsets of the set N of natural numbers. A subset E of N is said to have density $\delta(E)$ if $\delta(E)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \chi_{E}(k)$ exists, where χ_{E} is the characteristic function of E.

A complex number sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number L if for every $\epsilon>0, \lim _{n \rightarrow \infty} \frac{|K(\epsilon)|}{n}=0$, where $|K(\epsilon)|$ denotes the number of elements in the set $K(\epsilon)=\left\{k \in \mathbb{N}:\left|x_{k}-L\right| \geq \epsilon\right\}$.

A complex number sequence $x=\left(x_{k}\right)$ is said to be strongly generalized difference $S^{\lambda}\left(A, \Delta_{s}^{m}\right)$-statistically convergent to the number L if for every $\epsilon>0, \lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}}\left|K A\left(\Delta_{s}^{m}, \epsilon\right)\right|=0$, where $\left|K A\left(\Delta_{s}^{m}, \epsilon\right)\right|$ denotes the number of elements in the set $K A\left(\Delta_{s}^{m}, \epsilon\right)=\left\{k \in I_{n}:\left|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L\right| \geq \epsilon\right\}$. The set of all strongly generalized difference statistically convergent sequences is denoted by $S^{\lambda}\left(A, \Delta_{s}^{m}\right)$. If $m=0, \Delta=0, S^{\lambda}\left(A, \Delta_{s}^{m}\right)$ reduces to $S^{\lambda}(A)$ which was defined and studied by Bilgin and Altun [5]. If A is identity matrix, and $\lambda_{n}=n, s=0, S^{\lambda}\left(A, \Delta_{s}^{m}\right)$ reduces to $S^{\lambda}\left(\Delta^{m}\right)$, which was defined and studied by Et and Nuray [โ2]. If $m=0, s=0$, and $\lambda_{n}=n, S^{\lambda}\left(A, \Delta_{s}^{m}\right)$ reduces to S_{A}, which was defined and studied by Esi [$\mathbb{Y}]$. If $m=0, s=0, A$ is identity matrix and $\lambda_{n}=n$, strongly generalized difference $S^{\lambda}\left(A, \Delta_{s}^{m}\right)$-statistically convergent sequences reduces to ordinary statistical convergent sequences.

Theorem 3.1. Let $F=\left(f_{k}\right)$ be a sequence of modulus functions. Then

$$
V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \subset S^{\lambda}\left(A, \Delta_{s}^{m}\right)
$$

Proof. Let $x=\left(x_{k}\right) \in V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]$. Then

$$
\begin{aligned}
& \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \geq \sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>S} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \geq \sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>S} \frac{u_{k}\left[f_{k}(\epsilon)\right]^{p_{k}}}{\lambda_{n}} \\
& \geq \sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>S} \\
& \geq \min \left(f_{k}(\epsilon)^{h}, f_{k}(\epsilon)^{H}\right) \frac{1}{\lambda_{n}}\left|K A\left(\Delta_{s}^{m}, \epsilon\right)\right| .
\end{aligned}
$$

Hence $x=\left(x_{k}\right) \in S^{\lambda}\left(A, \Delta_{s}^{m}\right)$.
Theorem 3.2. Let $F=\left(f_{k}\right)$ be a bounded sequence of modulus functions. Then

$$
V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right]=S^{\lambda}\left(A, \Delta_{s}^{m}\right)
$$

Proof. By Theorem [3.D, it is sufficient to show that

$$
V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] \supset S^{\lambda}\left(A, \Delta_{s}^{m}\right)
$$

Let $x=\left(x_{k}\right) \in S^{\lambda}\left(A, \Delta_{s}^{m}\right)$. Since $F=\left(f_{k}\right)$ is bounded, so there exists an integer $K>0$ such that $f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right) \leq K$. Then for a
given $\epsilon>0$, we have

$$
\begin{aligned}
& \sum_{k \in I_{n}} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& =\sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\| \leq S} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad+\sum_{k \in I_{n},\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|>S} \frac{u_{k}\left[f_{k}\left(\left\|A_{k}\left(\Delta_{s}^{m} x_{k}\right)-L, z_{1}, \ldots, z_{n-1}\right\|\right)\right]^{p_{k}}}{\lambda_{n}} \\
& \quad \leq \quad \max \left(f_{k}(\epsilon)^{h}, f_{k}(\epsilon)^{H}\right)+K^{H} \frac{1}{\lambda_{n}}\left|K A\left(\Delta_{s}^{m}, \epsilon\right)\right| .
\end{aligned}
$$

Taking the limit as $\epsilon \rightarrow 0$ and $n \rightarrow \infty$, it follows that

$$
x=\left(x_{k}\right) \in V_{1}^{\lambda}\left[A, \Delta_{s}^{m}, u, p, F\right] .
$$

This completes the proof of the theorem.

Acknowledgement

The authors thank the referee for his valuable suggestions that improved the presentation of the paper.

References

[1] Altay, B., On the space of p-summable difference sequences of order m, $(1 \leq p<\infty)$. Stud. Sci. Math. Hungar. 43(4) (2006), 387-402.
[2] Altay, B., Başar, F., The fine spectrum and the matrix domain of the difference operator Δ on the sequence space $\ell_{p},(0<p<1)$. Commun. Math. Anal. 2(2) (2007), 1-11.
[3] Altınok, H., Altın, Y., Işık, M., The sequence space $B v_{\sigma}(M, P, Q, S)$ on seminormed spaces. Indian J. Pure Appl. Math. 39(1) (2008), 49-58.
[4] Basar, F., Altay, B., On the space of sequences of p-bounded variation and related matrix mappings. Ukranian Math. J. 55(1) (2003), 136-147.
[5] Bilgin, T., Altun, Y., Strongly (V^{λ}, A, p)-summable sequence spaces defined by a modulus. Math. Model. Anal. 12 (2004), 419-424.
[6] Buck, R. C., Generalized asymptotic density. Am. J. Math. 75 (1953), 335-346.
[7] Bilgen, T., On statistical convergence. An. Univ. Timisoara Ser. Math. Inform. 32 (1994), 3-7.
[8] Connor, J., The statistical and strong p-Cesaro convergence of sequence. Analysis 8 (1998), 47-63.
[9] Esi, A., Some new sequence spaces defined by a sequence of moduli. Turk. J. Math. 21 (1997), 61-68.
[10] Esi, A., Esi, A., Strongly convergent generalized difference sequence spaces defined by a modulus. Acta Univ. Apulensis, Math. Inform. 22 (2010), 113122.
[11] Et, M., Çolak, R., On some generalized difference sequence spaces. Soochow J. Math. 21 (1995), 377-386.
[12] Et, M., Nuray, F., Δ^{m} - statistical convergence. Indian J. Pure Appl. Math. 32 (2001), 961-969.
[13] Fast, H., Sur la convergence statistique. Colloq. Math. 2 (1951), 241-244.
[14] Fridy, J. A., On statistical convergence. Analysis 5 (1985), 301-313.
[15] Kızmaz, H., On certain sequence spaces. Can. Math. Bull. 24 (1981), 169176.
[16] Kolk, E., The statistical convergence in Banach spaces. Tartu Ülik. Toim. Mat.-Meh.-Alaseid Töid. 929 (1991), 41-52.
[17] Kuttner, B., Note on strong summability. J. London Math. Soc. 21 (1946), 118-122.
[18] Leinder, L., Über die la Vallee- Pousinche summierbarkeit allgemeiner orthoganalreihn. Acta Math. Hung. 16 (1965), 375-378.
[19] Maddox, I. J., Spaces of strongly summable sequences. Quart. J. Math. Oxford Ser. 18 (1967), 345-355.
[20] Maddox, I. J., Sequence spaces defined by a modulus. Math. Proc. Camb. Phil. Soc. 101 (1986), 161-166.
[21] Maddox, I. J., Statistical convergence in locally convex spaces. Math. Proc. Camb. Phil. Soc. 104 (1988), 141-145.
[22] Malkowsky, E., Savaş, E., Some λ-sequence spaces defined by a modulus. Arch. Math. Brno 36 (2000), 219-228.
[23] Rath, D., Tripathy, B. C., On statistically convergent and statistically Cauchy sequences. Indian J. Pure Appl. Math. 25 (1994), 381-386.
[24] Raj, K., Sharma, S. K., Difference sequence spaces defined by sequence of modulus function. Proyecciones J. Math. 30 (2011), 189-199.
[25] Raj, K., Sharma, S. K., Some difference sequence spaces defined by sequence of modulus function. Int. J. Math. Arch. 2 (2011), 236-240.
[26] Salat, T., On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150.
[27] Savaş, E., On some generalized sequence spaces defined by a modulus. Indian J. Pure Appl. Math. 30 (1999), 459-464.
[28] Schoenberg, I. J., The integrability of certain functions and related summability methods. Amer. Math. Monthly 66 (1959), 361-375.
[29] Tripathy, B. C., Matrix transformation between some classes of sequences. J. Math. Anal. Appl. 2 (1997), 448-450.
[30] Wilansky, A., Summability through Functional Analysis. Mathematics Studies 85, Amsterdam-New York-Oxford: North- Holland, 1984.
[31] Zygmund, A., Trignometric Series, Vol. II. Cambridge, 1993.
Received by the editors August 4, 2011

[^0]: ${ }^{1}$ School of Mathematics, Shri Mata Vaishno Devi University, Katra - 182320, J\&K, INDIA, e-mail: kuldipraj68@gmail.com
 ${ }^{2}$ School of Mathematics, Shri Mata Vaishno Devi University, Katra - 182320, J\&K, INDIA, e-mail: sunilksharma42@yahoo.co.in

