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SOME STRONGLY CONVERGENT DIFFERENCE
SEQUENCE SPACES DEFINED BY A SEQUENCE OF
MODULUS FUNCTIONS

Kuldip Raj” and Sunil K. Sharma®

Abstract. In the present paper we introduce some strongly convergent
difference sequence spaces defined by a sequence of modulus functions
F = (fx). We also study some topological properties and inclusion rela-
tions between these spaces.
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1. Introduction and Preliminaries

Let A = (\,,) be a non-decreasing sequence of positive real numbers tending

to infinity and Ay =1 and A,11 < A, + 1. The generalized de la Valle-Poussin
means is defined by t,(z) = ﬁ > ker, Tk, Where I, = [n — A, + 1,n]. A se-
quence x = (xy) is said to be (V, A)-summable to a number L if ¢,(z) — L as
n — oo see [I8]. If \,, = n, then the (V, \)-summability is reduced to ordinary
(C,1)-summability. A sequence z = (xy) is said to be strongly (V, A)-summable
to a number L if ¢,(Jz — L|]) — 0 as n — co.
Let A = (ank) be an infinite matrix of complex numbers. We write Az =
(A ()52, if Ay(z) = Y7o ankay converges for each n € N. Spaces of
strongly summable sequences were studied by Kuttner [T7], Maddox [I9] and
others. The class of sequences which are strongly Cesaro summable with re-
spect to a modulus was introduced by Maddox [P0] as an extension of the
definition of strongly Cesaro summable sequences. Connor [§] extended fur-
ther this definition to a definition of strongly A-summability with respect to a
modulus when A is a non-negative regular matrix.

Let w be the set of all sequences, real or complex numbers and [, ¢ and ¢g
be respectively the Banach spaces of bounded, convergent and null sequences
x = (xy) normed by ||z|| = supy, |zk|, where k € N, the set of positive integers.

The notion of difference sequence spaces was introduced by Kizmaz [[3],
who studied the difference sequence spaces oo (A), ¢(A) and ¢o(A). The notion
was further generalized by Et and Colak [[1] by introducing the spaces I, (A™),
c¢(A™) and ¢o(A™). Let w be the space of all complex or real sequences x = (xy)
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and let m, s be non-negative integers, then for Z = I, ¢, ¢y we have sequence
spaces
Z(AT) ={x = (ap) €w: (ATxy) € Z},

where A"z = (ATxy) = (A" Lo, — AT 1y 1) and Az, =z, for all k € N,
which is equivalent to the following binomial representation

A’;”xk = Z(—l)v ( ZL > Thtsv-

v=0

Taking s = 1, we get the spaces which were studied by Et and Colak [iT].
Taking m = s = 1, we get the spaces which were introduced and studied by
Kizmaz [I5].

The difference space buv, consisting of all sequences z = (z3) such that
(xr — xK—1) € ¢, is studied in the case 1 < p < co by Bagar and Altay [4] and
in the case 0 < p < 1 by Altay and Basar [2], respectively. Later, Altay 0]
extended the space bv, to the mth order difference space £,(A(™)).

A modulus function is a function f : [0,00) — [0, 00) such that

1. f(z) =0 if and only if z = 0,

2. flx4+y) < f(z)+ f(y) for all z > 0, y > 0,
3. f is increasing

4. f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,00). The modulus
function may be bounded or unbounded. For example, if we take f(x) =
—&4, then f(z) is bounded. If f(z) = 2P, 0 < p < 1, then the modulus
f(x) is unbounded. Subsequently, modulus functions have been discussed in
[3, 22, 24, 25, 27] and many others.

Let X be a linear metric space. A function p : X — R is called paranorm,
if

1. p(z) >0, for all z € X,
2. p(—x) =p(x), for all z € X,
3. plz+y) <p(z)+ply), for all z,y € X,

4. if (A,) is a sequence of scalars with A, = A as n — oo and (z,) is a
sequence of vectors with p(z,, — ) — 0 as n — oo, then p(A,z, — Ax) —
0asn — oo.

A paranorm p for which p(x) = 0 implies z = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see [30,
Theorem 10.4.2, P-183]).

Let A = (ank) be an infinite matrix of complex numbers, u = (ug) be a
sequence of strictly positive real numbers, p = (pi) be a bounded sequence
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of positive real numbers such that 0 < h = ir]%fpk < pr <suppr = H < o0.
k

F = (f) also be a sequence of modulus functions. Now we define the following
sequence spaces:

Vf‘[A,AT,’U,,p,F] - {l’ = (Ik) cw:

Pk
w [l AL(AT @) = Loz, 2

nlggo Z . =0, for some L},
kel,

V&[A,A;n,u)p’F] = {.2? = (Jfk) cw:

Pk
ug | fe(|Ae(AT zk), 215 -5 2n1]])
Jim D [ A ] :O}

kel,

and

V;‘J[A,A;",u,p,F] = {x = (z) Ew:

Pk
we | Fe(lA(AT @), 21, 2 )]

sup Z N < oo},

where A (ATxy) = > 70 anp ATy, for all n € N.

If F(z) =z, we get

V'l)‘[A,A;”,mp] = {x = (ap) Ew:

Pk
|:||Ak(AT:L’k) - La 2Ly Zn—1||:|

Uk
lim Z =0, for some L},
n—00 An
keI,

VO A, A up) = {o = (ax) € w:

Pk
an[IARAT2), 21, 2 ]

i > ) - 0}

and

VA[A, AT u,p] = {x = (z) Ew:

. [||Ak(A;”:z:k), " ,zn_1||rk
N < oo}.

sup
" keI,
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If p= (px) = 1,Vk € N, we have
VA, A™ u, F] = {x = (23) Ew:
3 w [fk(nAk(A;nmk) L., zn,1||)}
n—oo

A
keI, "

VA, AT u, F] = {.Z‘ = (z) Ew:

Uk fk(HAk(A;nCCk),Zl,...,Zn,1||)
Y | M | =0}

kel,

=0, for some L},

Y o <oo).
If we take p = (px) = 1 and u = (ug) = 1,Vk € N, we have
VA, AL F] = {2 = (w) € w:
AUl AAT D) = L2,z )]
Jim, 2

A
kel, "

Vi [A, AT F) = {x = (zx) €w:

s {fk(||Ak(ATxki,z17...,zn1||)} :0}

kel,

=0, for some L},

and

VA A, A™, F) = {x = (z3) €w:

e | .

sup

n An
keI,
If we take F'(z) = f(z),u = (ug) =1, =0,].,...,.]| = 1, then the above
spaces reduce to VA, A™ p, f], VA, A™, p, f] and V2[A, A™, p, f] which
were studied by Ayhan Esi and Ayten Esi [[0], and if we take m = 0 we

get the spaces VA, p, f], V|4, p, f] and VL [A, p, f] which were studied by
Bilgin and Altun [5]. Throughout the paper Z will denote one of the notations
0,1 or oo.

The following inequality will be used throughout the paper. If 0 < h =
infpp, < pr <suppr = H, D = max(1,27-1) then

(1.1) |ar + bi["* < Dffag|"* + [br[*}
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for all k and ay, b, € C. Also, |a|P* < max(1,|a|?) for all a € C.

In the present paper we introduce the sequence spaces defined by a sequence
of modulus function F' = (fj). We study some topological properties and prove
some inclusion relations between these spaces.

2. Main Results

In this section we examine some topological properties of V)[4, AT, u, p, F]
spaces and investigate some inclusion relations between these spaces.

Theorem 2.1. Let F = (fi) be a sequence of modulus functions, u = (ug)
be any sequence of strictly positive real numbers and p = (pi) be a bounded
sequence of positive real numbers. Then VZ)‘ [A, AT u,p, F] is a linear space
over the field C of complex numbers.

Proof. Let z = (z1),y = (yr) € V3 A, A", u,p, F] and «, 3 € C. Then there
exists integers M, and Ng such that |a| < M, and |3| < Njz. By using in-
equality () and the properties of modulus function, we have

[ (1 2 e AT (0 + B 21, 2l ]
k=1

An

>

kel,
oo oo Phe
uy, [fk (II D ATwk + D Bank AT Yk, 21, Zn—l”)}
k=1 k=1
< ) "
kel
> Pk
Uk{Mafk(“ZankA;nwkazlwuaznflnﬂ
k=1
< D
< D). ™

kely,

i Pk
we [No i (I ank A2y, 21,20 )|

k=1
+ DY ™

keI,
o0
m Pk
Uk |:fk(” ZankAs Ty Z1y - -7271,—1“)}
H k=1
SRYD> -
kel,
o0
m Pr
w [ (I @A, 21, 2]
+ DN k=1
B Z An
kel,

— 0 asn — oo.

This proves that V5 A, A™ u,p, F] is a linear space. Similarly, we can prove
that VP [A, A™ u, p, F] and V[A, A" u, p, F] are linear spaces. O
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Theorem 2.2. Let F = (fi) be a sequence of modulus functions. Then we
have

‘/OA[A7 AT7u’p, F] C %A[A’ AT7u7p’ F} C V())g[A’ AT7u7p’ F}'
Proof. The inclusion VA, A™ u, p, F] C VA, A™ u,p, F] is obvious. Now,

let = (zx) € VA, A™, u,p, F] such that z = (x1) — L(V{'[A, A™, u, p, F)).
By using inequality (1.1), we have

i [fk<||Ak.(A;”xk), . zn_1||)rk

sup Z \

U [fk (HAk(A:;nl'k) —L+L, z,... ’Zn—1||)i|pk

= Supz \

s :fk(||Ak(A’_f:ck) L ... .,zn_1||)]""

IA

S

g
]

n An
kel,
(L 1"
Uk k( yRLly ey An—1 )}
+ Dsupz - 3
" kel, n
r Pk
we | £ (| A(AT20) = Lyz1, oz )]
< Dsupz - \
" kel, n
+ DmaX{fk(HLaZh"'7Z7L—1H)h7fk(||LaZ17~"azn—ln)H}
< 00.

Hence z = (z3) € V2 [A, A" u,p, F|. This proves that VA, A", u,p, F] C
VA[A, AT u,p, F]. This completes the proof of the theorem. O

Theorem 2.3. Let F' = (fi) be a sequence of modulus functions and p =
(pr) € loo- Then V3NA,A™ u,p, F] is a paranormed space with the paranorm
defined by

st = u [fk(||Ak<A;”xkA>,zl,...,zn1||)r’“)k11,
kel, n

where M = max(1, sup p).
k

Proof. Clearly g(—x) = g(x). It is trivial that ATz, = 0 for x = 0. Hence
we get g(0) = 0. Since &8 < 1 and M > 1, using Minkowski’s inequality and
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definition of modulus function, for each x, we have

Uk [fk(HAk(A;"(xk +Yr)), 21, - - .,zn_1||)}pk 1

(2 . )"

keln

U [fk(”Ak(A;”xk),zh . "Z"—1||)+fk<|‘Ak(A?yk),z1, N .72n_1||):|pk)1\1/[

= A
kel, n

uk[fk(||Ak(A;nxk),zl,...,z,,_lu)rk ,

(X » )"

keln

ui F(11AeAT ), 21, zll)] ™ 2

HE . )

kel,

Now it follows that ¢ is subadditive. Finally, to check the continuity of multi-
plication, let us take any complex number «. By the definition of the modulus
function F, we have

Up {f}c(HAk(A;”oz:ck), 2140, zn_1||>rk 1

» )"

glaz) = sup (D

" kel
K g()

IA

where K =1+ [|a]] ([|o|] denotes the integer part of «). Since F is a sequence
of modulus function, we have x — 0 implies g(az) — 0. Similarly, x — 0
and o — 0 implies g(axz) — 0. Finally, we have fixed z and o — 0 implies
g(ax) — 0. This completes the proof. O

Theorem 2.4. Let F = (fx) be a sequence of modulus functions. Then

VA, AT u,p] C VA AL u,p, F).

Proof. Let x = (z) € VA, A™ u,p] and € > 0. We can choose 0 < § < 1
such that f;(t) < € for every t € [0,00) with 0 <t < 4. Then, we can write
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ik [fk<\|Ak(A;"xk) L, .,zn_lu)r’“

> .

kel,

ik [fk<\|Ak(A;"xk) L, .,zn_lu)rk
Ao

Eln, |Ar (AT xr)—L 21,0, 2n-1]|<8

i [fk(nAk(A;nxk) Lo, .,zn_l||)]p’“

+ N,

kel,, ||[Ax(A™xy)—L,z1,....2n—-1]|>0

< max{f(e)", fu(e)"}

Pk
ui (| Ak(ATan) = Ly 21, 2]

+  max{1, (sz Y

kEl,, uAk(A @)=Lzt ey 21| >6 n

Therefore, * = (x;) € VA, A™ u,p, F]. This completes the proof of the
theorem. Similarly, we can prove the other cases. O

t
Theorem 2.5. Let F' = (fi) be a sequence of modulus functions. Iftlim fkT() =
e el
s> 0, then V2[A,A™ u,p| = VQ[A, A™, u,p, F].
Proof. The proof is easy, so we omit it. O

Theorem 2.6. t Let 0 < pi, < qi for all k € N and let ( ) be bounded. Then
VZIA, AL u,q F) C VZ[A, AL up, F).

Proof. Let x = (x1) € V3[A,A™, u,q, F]. Let

= e [ () ~ vzl

and Ay = (E£) for all k € N so that 0 <A < A, < 1. Define the sequences (uy)
and (vg) as follows:

For t;, > 1, let up, =t and v = 0 and for t; < 1, let uxp = 0 and v = tg.
Then clearly for all & € N, we have t = up + v, tﬁ’“ = uz’“ + v;"“
ug’“ < ug < tg and v,i"“ < v}. Therefore

e DUIESTD DD BPA

" kel, " kel " kel
Hence z = (z1) € V2[A, A™, u,p, F]. Thus
VAIA AT u,q, F] C VZ[A AT u,p, F).

This completes the proof of the theorem. O
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Corollary 2.7. Let F' = (fr) be a sequence of modulus functions. Then the
following relation holds:
(a) If0 < i%fpk <1 forallk € N, then V)[A, AT, u, F] C VA, A™ u,p, F).

(b) If 1 < pp, <suppr = H < oo for all k € N, then
k

VA, AT u,p, F] C V3 [A,A™, u, F].

Proof. (a) It follows from Theorem P with g, = 1 for all k € N.
(b) It follows from Theorem P8 with py =1 for all kK € N. O

Theorem 2.8. Let F' = (fi) be a sequence of modulus functions. If 0 <
ir]ifpk < pr <suppyp = H < co. Then VY[A, AT u,p, F] = VA, A™ u, F).

k
Proof. 1t is easy to prove so we omit it. 0

Theorem 2.9. Let F = (fi) be a sequence of modulus functions and p = (px)
be a bounded sequence of strictly positive real numbers. Let m > 1 be a fixed
integer, then V) [A, AT~ u,p, F] C V)[A, A™ u,p, F].

Proof. The proof of the inclusion follows from the following inequality

g [fk(||Ak(Agxk), P zn,1||)r"'

2 .

kel,
DY, " {fk<”Ak(A;n_lx/\kj,z1,...,zn1||>]pk
keln
+ D Z m [fk(”Ak(A;”xk/\),Zl’ N wznle)rk.
kel, "

3. Statistical Convergence

The notion of statistical convergence of sequences was introduced by Fast
[T3], Buck [6], and Schoenberg [28] independently. It is also found in Zygmund
[31]. Later on it was studied from sequence space point of view and linked
with summability theory by Fridy [i4], Connor [8], Salat [26], Maddox [21],
Kolk [i6], Rath and Tripathy [23], Tripathy [29], and many others. The notion
depends on the density of subsets of the set N of natural numbers. A subset

1 n
E of N is said to have density §(E) if §(F) = lim — ZXE(]C) exists, where
n—oo N, P
X g is the characteristic function of E.
A complex number sequence x = () is said to be statistically convergent

K
to the number L if for every € > 0, lim K ©) = 0, where | K (¢€)| denotes the
n—o00 n
number of elements in the set K(¢) = {k € N: |z, — L| > €}.
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A complex number sequence x = (xj) is said to be strongly generalized
difference S*(A, A™)-statistically convergent to the number L if for every

1
e > 0, lim )\—|KA(A;”,6)| = 0, where |[KA(A”", €)| denotes the number of
n—oo

elements in the set KA(AT e) = {k € I, : |Ap(ATzr) — L| > €}. The set
of all strongly generalized difference statistically convergent sequences is de-
noted by S*(A,A™). If m = 0,A = 0,5*(A, A™) reduces to S*(A) which
was defined and studied by Bilgin and Altun [6]. If A is identity matrix, and
An = n,s = 0,5*A, A™) reduces to S*(A™), which was defined and studied
by Et and Nuray [[2]. If m = 0,5 = 0, and A, = n, S*(A, A™) reduces to Sa,
which was defined and studied by Esi [9]. If m = 0,s =0, A is identity matrix
and \,, = n, strongly generalized difference S*(A, A™)-statistically convergent
sequences reduces to ordinary statistical convergent sequences.

Theorem 3.1. Let F = (fi) be a sequence of modulus functions. Then
VlA[A7 A;n’ u, p, F] C S)\(A, AT)

Proof. Let x = (x3) € VP [A, A" u, p, F]. Then

u [fk(HAk(Ag”:ck) L, .. .,zn_1||)rk

2 .

kel,

w [fk(nAk(Angk) L., zn_1||>rk
o

>
k€I, ||Ax(Amzr)—L,21,. 0 2n—1]|>8
Pk
w[fi(e)]
An

>
ke[n; HAk(A';":Dk)—L,Zl,.‘.72’”71 ”>S

> Ininr(fk(G)h’fk(G)I{>

ke€ln, |Ak(ATwg)—Lz1,0 020 -1[>S

> min (fk(e)h,fk(e)H>$|KA(A;",e)|.

Y

Hence z = (z1) € S*(A,A™). O

Theorem 3.2. Let F = (fi) be a bounded sequence of modulus functions.
Then

VlA[A7 ATa u, p, F] = S)\(A7 A:’n)
Proof. By Theorem B, it is sufficient to show that
Vl)\[Av A;na u, p, F] ) S)\(Av AT)

Let + = (1) € SMA,A™). Since F' = (fz) is bounded, so there exists an
integer K > 0 such that fi(||Ax(ATag) — L,21,...,2,—1]]) < K. Then for a
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given € > 0, we have

g [fk(nAk(A;nxk) L. zn,1||)r’°

2 .

kely

" [fk<||Ak(A;”xk) L. zn,1||)r’“

— Z ™

keIna HAk(A:,nEk:)_Lyzl7--<7Z77,71HSS

Uk {fk<||Ak(A;"xk) —L,2,..., zn,1||)}pk

+ > ™

kel,, [[Ax(ATxy)—L,z1,...,2n—1]|>S

< max ()", ful) + K7 L[ KAAT, O

Taking the limit as € — 0 and n — oo, it follows that

x = (z1) € VQ[A, A™, u, p, F].

This completes the proof of the theorem. O
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