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SEQUENCE SPACES DEFINED BY A SEQUENCE OF

MODULUS FUNCTIONS
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Abstract. In the present paper we introduce some strongly convergent
difference sequence spaces defined by a sequence of modulus functions
F = (fk). We also study some topological properties and inclusion rela-
tions between these spaces.
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1. Introduction and Preliminaries

Let Λ = (λn) be a non-decreasing sequence of positive real numbers tending
to infinity and λ1 = 1 and λn+1 ≤ λn + 1. The generalized de la Valle-Poussin
means is defined by tn(x) = 1

λn

∑
k∈In

xk, where In = [n − λn + 1, n]. A se-
quence x = (xk) is said to be (V, λ)-summable to a number L if tn(x) → L as
n → ∞ see [18]. If λn = n, then the (V, λ)-summability is reduced to ordinary
(C, 1)-summability. A sequence x = (xk) is said to be strongly (V, λ)-summable
to a number L if tn(|x− L|) → 0 as n → ∞.
Let A = (ank) be an infinite matrix of complex numbers. We write Ax =
(An(x))

∞
n=1 if An(x) =

∑∞
k=1 ankxk converges for each n ∈ N. Spaces of

strongly summable sequences were studied by Kuttner [17], Maddox [19] and
others. The class of sequences which are strongly Cesaro summable with re-
spect to a modulus was introduced by Maddox [20] as an extension of the
definition of strongly Cesaro summable sequences. Connor [8] extended fur-
ther this definition to a definition of strongly A-summability with respect to a
modulus when A is a non-negative regular matrix.

Let w be the set of all sequences, real or complex numbers and l∞, c and c0
be respectively the Banach spaces of bounded, convergent and null sequences
x = (xk) normed by ||x|| = supk |xk|, where k ∈ N, the set of positive integers.

The notion of difference sequence spaces was introduced by Kızmaz [15],
who studied the difference sequence spaces l∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Çolak [11] by introducing the spaces l∞(∆n),
c(∆n) and c0(∆

n). Let w be the space of all complex or real sequences x = (xk)
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and let m, s be non-negative integers, then for Z = l∞, c, c0 we have sequence
spaces

Z(∆m
s ) = {x = (xk) ∈ w : (∆m

s xk) ∈ Z},

where ∆m
s x = (∆m

s xk) = (∆m−1
s xk−∆m−1

s xk+1) and ∆0
sxk = xk for all k ∈ N,

which is equivalent to the following binomial representation

∆m
s xk =

m∑
v=0

(−1)v
(

m
v

)
xk+sv.

Taking s = 1, we get the spaces which were studied by Et and Çolak [11].
Taking m = s = 1, we get the spaces which were introduced and studied by
Kızmaz [15].

The difference space bvp consisting of all sequences x = (xk) such that
(xk − xk−1) ∈ ℓp is studied in the case 1 ≤ p ≤ ∞ by Başar and Altay [4] and
in the case 0 < p < 1 by Altay and Başar [2], respectively. Later, Altay [1]
extended the space bvp to the mth order difference space ℓp(∆

(m)).
A modulus function is a function f : [0,∞) → [0,∞) such that

1. f(x) = 0 if and only if x = 0,

2. f(x+ y) ≤ f(x) + f(y) for all x ≥ 0, y ≥ 0,

3. f is increasing

4. f is continuous from right at 0.

It follows that f must be continuous everywhere on [0,∞). The modulus
function may be bounded or unbounded. For example, if we take f(x) =
x

x+1 , then f(x) is bounded. If f(x) = xp, 0 < p < 1, then the modulus
f(x) is unbounded. Subsequently, modulus functions have been discussed in
[3, 22, 24, 25, 27] and many others.

Let X be a linear metric space. A function p : X → R is called paranorm,
if

1. p(x) ≥ 0, for all x ∈ X,

2. p(−x) = p(x), for all x ∈ X,

3. p(x+ y) ≤ p(x) + p(y), for all x, y ∈ X,

4. if (λn) is a sequence of scalars with λn → λ as n → ∞ and (xn) is a
sequence of vectors with p(xn − x) → 0 as n → ∞, then p(λnxn −λx) →
0 as n → ∞.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm
and the pair (X, p) is called a total paranormed space. It is well known that
the metric of any linear metric space is given by some total paranorm (see [30,
Theorem 10.4.2, P-183]).

Let A = (ank) be an infinite matrix of complex numbers, u = (uk) be a
sequence of strictly positive real numbers, p = (pk) be a bounded sequence
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of positive real numbers such that 0 < h = inf
k
pk ≤ pk ≤ sup

k
pk = H < ∞.

F = (fk) also be a sequence of modulus functions. Now we define the following
sequence spaces:

V λ
1 [A,∆m

s , u, p, F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥)

]pk

λn
= 0, for some L

}
,

V λ
0 [A,∆m

s , u, p, F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]pk

λn
= 0

}
and

V λ
∞[A,∆m

s , u, p, F ] =
{
x = (xk) ∈ w :

sup
n

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]pk

λn
< ∞

}
,

where Ak(∆
m
s xk) =

∑∞
k=1 ank∆

m
s xk for all n ∈ N.

If F (x) = x, we get

V λ
1 [A,∆m

s , u, p] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

]pk

λn
= 0, for some L

}
,

V λ
0 [A,∆m

s , u, p] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

]pk

λn
= 0

}
and

V λ
∞[A,∆m

s , u, p] =
{
x = (xk) ∈ w :

sup
n

∑
k∈In

uk

[
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

]pk

λn
< ∞

}
.
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If p = (pk) = 1, ∀k ∈ N, we have

V λ
1 [A,∆m

s , u, F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥)

]
λn

= 0, for some L
}
,

V λ
0 [A,∆m

s , u, F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]
λn

= 0
}

and

V λ
∞[A,∆m

s , u, F ] =
{
x = (xk) ∈ w :

sup
n

∑
k∈In

uk

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]
λn

< ∞
}
.

If we take p = (pk) = 1 and u = (uk) = 1, ∀k ∈ N, we have

V λ
1 [A,∆m

s , F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

[
fk(∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥)

]
λn

= 0, for some L
}
,

V λ
0 [A,∆m

s , F ] =
{
x = (xk) ∈ w :

lim
n→∞

∑
k∈In

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]
λn

= 0
}

and

V λ
∞[A,∆m

s , F ] =
{
x = (xk) ∈ w :

sup
n

∑
k∈In

[
fk(∥Ak(∆

m
s xk), z1, . . . , zn−1∥)

]
λn

< ∞
}
.

If we take F (x) = f(x), u = (uk) = 1, s = 0, ∥., . . . , .∥ = 1, then the above
spaces reduce to V λ

1 [A,∆m, p, f ], V λ
0 [A,∆m, p, f ] and V λ

∞[A,∆m, p, f ] which
were studied by Ayhan Esi and Ayten Esi [10], and if we take m = 0 we
get the spaces V λ

1 [A, p, f ], V λ
0 [A, p, f ] and V λ

∞[A, p, f ] which were studied by
Bilgin and Altun [5]. Throughout the paper Z will denote one of the notations
0, 1 or ∞.

The following inequality will be used throughout the paper. If 0 < h =
inf pk ≤ pk ≤ sup pk = H, D = max(1, 2H−1) then

(1.1) |ak + bk|pk ≤ D{|ak|pk + |bk|pk}
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for all k and ak, bk ∈ C. Also, |a|pk ≤ max(1, |a|H) for all a ∈ C.
In the present paper we introduce the sequence spaces defined by a sequence

of modulus function F = (fk). We study some topological properties and prove
some inclusion relations between these spaces.

2. Main Results

In this section we examine some topological properties of V λ
Z [A,∆m

s , u, p, F ]
spaces and investigate some inclusion relations between these spaces.

Theorem 2.1. Let F = (fk) be a sequence of modulus functions, u = (uk)
be any sequence of strictly positive real numbers and p = (pk) be a bounded
sequence of positive real numbers. Then V λ

Z [A,∆m
s , u, p, F ] is a linear space

over the field C of complex numbers.

Proof. Let x = (xk), y = (yk) ∈ V λ
0 [A,∆m

s , u, p, F ] and α, β ∈ C. Then there
exists integers Mα and Nβ such that |α| ≤ Mα and |β| ≤ Nβ . By using in-
equality (1.1) and the properties of modulus function, we have

∑
k∈In

uk

[
fk

(
∥

∞∑
k=1

ank(∆
m
s (αxk + βyk)), z1, . . . , zn−1∥

)]pk

λn

≤
∑
k∈In

uk

[
fk

(
∥

∞∑
k=1

αank∆
m
s xk +

∞∑
k=1

βank∆
m
s yk, z1, . . . , zn−1∥

)]pk

λn

≤ D
∑
k∈In

uk

[
Mαfk

(
∥

∞∑
k=1

ank∆
m
s xk, z1, . . . , zn−1∥

)]pk

λn

+ D
∑
k∈In

uk

[
Nβfk

(
∥

∞∑
k=1

ank∆
m
s yk, z1, . . . , zn−1∥

)]pk

λn

≤ DMH
α

∑
k∈In

uk

[
fk

(
∥

∞∑
k=1

ank∆
m
s xk, z1, . . . , zn−1∥

)]pk

λn

+ DNH
β

∑
k∈In

uk

[
fk

(
∥

∞∑
k=1

ank∆
m
s yk, z1, . . . , zn−1∥

)]pk

λn

→ 0 as n → ∞.

This proves that V λ
0 [A,∆m

s , u, p, F ] is a linear space. Similarly, we can prove
that V λ

1 [A,∆m
s , u, p, F ] and V λ

∞[A,∆m
s , u, p, F ] are linear spaces.
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Theorem 2.2. Let F = (fk) be a sequence of modulus functions. Then we
have

V λ
0 [A,∆m

s , u, p, F ] ⊂ V λ
1 [A,∆m

s , u, p, F ] ⊂ V λ
∞[A,∆m

s , u, p, F ].

Proof. The inclusion V λ
0 [A,∆m

s , u, p, F ] ⊂ V λ
1 [A,∆m

s , u, p, F ] is obvious. Now,
let x = (xk) ∈ V λ

1 [A,∆m
s , u, p, F ] such that x = (xk) → L(V λ

1 [A,∆m
s , u, p, F ]).

By using inequality (1.1), we have

sup
n

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

)]pk

λn

= sup
n

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L+ L, z1, . . . , zn−1∥

)]pk

λn

≤ D sup
n

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

+ D sup
n

∑
k∈In

uk

[
fk

(
∥L, z1, . . . , zn−1∥

)]pk

λn

≤ D sup
n

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

+ Dmax{fk(∥L, z1, . . . , zn−1∥)h, fk(∥L, z1, . . . , zn−1∥)H}
< ∞.

Hence x = (xk) ∈ V λ
∞[A,∆m

s , u, p, F ]. This proves that V λ
1 [A,∆m

s , u, p, F ] ⊂
V λ
∞[A,∆m

s , u, p, F ]. This completes the proof of the theorem.

Theorem 2.3. Let F = (fk) be a sequence of modulus functions and p =
(pk) ∈ l∞. Then V λ

0 [A,∆m
s , u, p, F ] is a paranormed space with the paranorm

defined by

g(x) = sup
n

( ∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

)]pk

λn

) 1
M

,

where M = max(1, sup
k

pk).

Proof. Clearly g(−x) = g(x). It is trivial that ∆m
s xk = 0 for x = 0. Hence

we get g(0) = 0. Since pk

M ≤ 1 and M ≥ 1, using Minkowski’s inequality and
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definition of modulus function, for each x, we have

( ∑
k∈In

uk

[
fk

(
||Ak(∆

m
s (xk + yk)), z1, . . . , zn−1||

)]pk

λn

) 1
M

≤
(∑
k∈In

uk

[
fk

(
||Ak(∆

m
s xk), z1, . . . , zn−1||

)
+fk

(
||Ak(∆

m
s yk), z1, . . . , zn−1||

)]pk

λn

) 1
M

≤
( ∑

k∈In

uk

[
fk

(
||Ak(∆

m
s xk), z1, . . . , zn−1||

)]pk

λn

) 1
M

+
( ∑

k∈In

uk

[
fk

(
||Ak(∆

m
s yk), z1, . . . , zn−1||

)]pk

λn

) 1
M

Now it follows that g is subadditive. Finally, to check the continuity of multi-
plication, let us take any complex number α. By the definition of the modulus
function F, we have

g(αx) = sup
n

( ∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s αxk), z1, . . . , zn−1∥

)]pk

λn

) 1
M

≤ K
H
M g(x)

where K = 1+ [|α|] ([|α|] denotes the integer part of α). Since F is a sequence
of modulus function, we have x → 0 implies g(αx) → 0. Similarly, x → 0
and α → 0 implies g(αx) → 0. Finally, we have fixed x and α → 0 implies
g(αx) → 0. This completes the proof.

Theorem 2.4. Let F = (fk) be a sequence of modulus functions. Then

V λ
Z [A,∆m

s , u, p] ⊂ V λ
Z [A,∆m

s , u, p, F ].

Proof. Let x = (xk) ∈ V λ
1 [A,∆m

s , u, p] and ϵ > 0. We can choose 0 < δ < 1
such that fk(t) < ϵ for every t ∈ [0,∞) with 0 ≤ t ≤ δ. Then, we can write
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∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

=
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥≤δ

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

+
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>δ

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

≤ max{fk(ϵ)h, fk(ϵ)H}

+ max{1, (2fk(1)δ−1)H}
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>δ

uk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)pk

λn
.

Therefore, x = (xk) ∈ V λ
1 [A,∆m

s , u, p, F ]. This completes the proof of the
theorem. Similarly, we can prove the other cases.

Theorem 2.5. Let F = (fk) be a sequence of modulus functions. If lim
t→∞

fk(t)

t
=

s > 0, then V λ
Z [A,∆m

s , u, p] = V λ
Z [A,∆m

s , u, p, F ].

Proof. The proof is easy, so we omit it.

Theorem 2.6. t Let 0 < pk ≤ qk for all k ∈ N and let ( qkpk
) be bounded. Then

V λ
Z [A,∆m

s , u, q, F ] ⊂ V λ
Z [A,∆m

s , u, p, F ].

Proof. Let x = (xk) ∈ V λ
Z [A,∆m

s , u, q, F ]. Let

tk = uk

[
fk

(
||Ak(∆

m
s xk)− L, z1, . . . , zn−1||

)]qk
and λk = (pk

qk
) for all k ∈ N so that 0 < λ ≤ λk ≤ 1. Define the sequences (uk)

and (vk) as follows:

For tk ≥ 1, let uk = tk and vk = 0 and for tk < 1, let uk = 0 and vk = tk.

Then clearly for all k ∈ N, we have tk = uk + vk, tλk

k = uλk

k + vλk

k ,

uλk

k ≤ uk ≤ tk and vλk

k ≤ vλk . Therefore

1

λn

∑
k∈In

tλk

k ≤ 1

λn

∑
k∈In

tk + [
1

λn

∑
k∈In

vk]
λ.

Hence x = (xk) ∈ V λ
Z [A,∆m

s , u, p, F ]. Thus

V λ
Z [A,∆m

s , u, q, F ] ⊆ V λ
Z [A,∆m

s , u, p, F ].

This completes the proof of the theorem.
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Corollary 2.7. Let F = (fk) be a sequence of modulus functions. Then the
following relation holds:

(a) If 0 < inf
k
pk ≤ 1 for all k ∈ N, then V λ

Z [A,∆m
s , u, F ] ⊂ V λ

Z [A,∆m
s , u, p, F ].

(b) If 1 ≤ pk ≤ sup
k

pk = H < ∞ for all k ∈ N, then

V λ
Z [A,∆m

s , u, p, F ] ⊂ V λ
Z [A,∆m

s , u, F ].

Proof. (a) It follows from Theorem 2.6 with qk = 1 for all k ∈ N.
(b) It follows from Theorem 2.6 with pk = 1 for all k ∈ N.

Theorem 2.8. Let F = (fk) be a sequence of modulus functions. If 0 <
inf
k
pk ≤ pk ≤ sup

k
pk = H < ∞. Then V λ

Z [A,∆m
s , u, p, F ] = V λ

Z [A,∆m
s , u, F ].

Proof. It is easy to prove so we omit it.

Theorem 2.9. Let F = (fk) be a sequence of modulus functions and p = (pk)
be a bounded sequence of strictly positive real numbers. Let m ≥ 1 be a fixed
integer, then V λ

Z [A,∆m−1
s , u, p, F ] ⊂ V λ

Z [A,∆m
s , u, p, F ].

Proof. The proof of the inclusion follows from the following inequality

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

)]pk

λn

≤ D
∑
k∈In

uk

[
fk

(
∥Ak(∆

m−1
s xk), z1, . . . , zn−1∥

)]pk

λn

+ D
∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk), z1, . . . , zn−1∥

)]pk

λn
.

3. Statistical Convergence

The notion of statistical convergence of sequences was introduced by Fast
[13], Buck [6], and Schoenberg [28] independently. It is also found in Zygmund
[31]. Later on it was studied from sequence space point of view and linked
with summability theory by Fridy [14], Connor [8], Salat [26], Maddox [21],
Kolk [16], Rath and Tripathy [23], Tripathy [29], and many others. The notion
depends on the density of subsets of the set N of natural numbers. A subset

E of N is said to have density δ(E) if δ(E) = lim
n→∞

1

n

n∑
k=1

χE(k) exists, where

χE is the characteristic function of E.
A complex number sequence x = (xk) is said to be statistically convergent

to the number L if for every ϵ > 0, lim
n→∞

|K(ϵ)|
n

= 0, where |K(ϵ)| denotes the
number of elements in the set K(ϵ) = {k ∈ N : |xk − L| ≥ ϵ}.
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A complex number sequence x = (xk) is said to be strongly generalized
difference Sλ(A,∆m

s )-statistically convergent to the number L if for every

ϵ > 0, lim
n→∞

1

λn
|KA(∆m

s , ϵ)| = 0, where |KA(∆m
s , ϵ)| denotes the number of

elements in the set KA(∆m
s , ϵ) = {k ∈ In : |Ak(∆

m
s xk) − L| ≥ ϵ}. The set

of all strongly generalized difference statistically convergent sequences is de-
noted by Sλ(A,∆m

s ). If m = 0,∆ = 0, Sλ(A,∆m
s ) reduces to Sλ(A) which

was defined and studied by Bilgin and Altun [5]. If A is identity matrix, and
λn = n, s = 0, Sλ(A,∆m

s ) reduces to Sλ(∆m), which was defined and studied
by Et and Nuray [12]. If m = 0, s = 0, and λn = n, Sλ(A,∆m

s ) reduces to SA,
which was defined and studied by Esi [9]. If m = 0, s = 0, A is identity matrix
and λn = n, strongly generalized difference Sλ(A,∆m

s )-statistically convergent
sequences reduces to ordinary statistical convergent sequences.

Theorem 3.1. Let F = (fk) be a sequence of modulus functions. Then

V λ
1 [A,∆m

s , u, p, F ] ⊂ Sλ(A,∆m
s ).

Proof. Let x = (xk) ∈ V λ
1 [A,∆m

s , u, p, F ]. Then

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

≥
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>S

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

≥
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>S

uk

[
fk(ϵ)

]pk

λn

≥
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>S

min
(
fk(ϵ)

h, fk(ϵ)
H
)

≥ min
(
fk(ϵ)

h, fk(ϵ)
H
) 1

λn
|KA(∆m

s , ϵ)|.

Hence x = (xk) ∈ Sλ(A,∆m
s ).

Theorem 3.2. Let F = (fk) be a bounded sequence of modulus functions.
Then

V λ
1 [A,∆m

s , u, p, F ] = Sλ(A,∆m
s ).

Proof. By Theorem 3.1, it is sufficient to show that

V λ
1 [A,∆m

s , u, p, F ] ⊃ Sλ(A,∆m
s ).

Let x = (xk) ∈ Sλ(A,∆m
s ). Since F = (fk) is bounded, so there exists an

integer K > 0 such that fk(∥Ak(∆
m
s xk) − L, z1, . . . , zn−1∥) ≤ K. Then for a
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given ϵ > 0, we have

∑
k∈In

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

=
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥≤S

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

+
∑

k∈In, ∥Ak(∆m
s xk)−L,z1,...,zn−1∥>S

uk

[
fk

(
∥Ak(∆

m
s xk)− L, z1, . . . , zn−1∥

)]pk

λn

≤ max
(
fk(ϵ)

h, fk(ϵ)
H
)
+KH 1

λn
|KA(∆m

s , ϵ)|.

Taking the limit as ϵ → 0 and n → ∞, it follows that

x = (xk) ∈ V λ
1 [A,∆m

s , u, p, F ].

This completes the proof of the theorem.
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