LOCALLY FINSLER A-MODULES OVER LOCALLY C^* -ALGEBRAS

E. Ansari Piri¹ and R. G. Sanati²

Abstract. Suppose A is a Frechet locally C^* -algebra and B is a commutative locally C^* -algebra. In this paper, we study the notion of locally Finsler module and we show that if E is both a full locally Finsler module over A and B such that there is a map $\varphi : A \to B$ with the closed range in such a way that $ax = \varphi(a)x$ and $\varphi(\rho_A(x)) = \rho_B(x)$, then φ is a continuous and bijective *-homomorphism. Moreover, we show that if $\varphi(A)$ is of the second category in B, or the locally Finsler seminorms on E are symmetric, then φ is *-isomorphism of locally C^* -algebras.

AMS Mathematics Subject Classification (2000): 46L08 (should be 2010) Key words and phrases: *-isomorphism; locally Finsler A-module; locally C^* -algebra

1. Introduction

In the basic paper [5] M. S. Moslehian shows the following result:

"Let *E* be both full Hilbert *C*^{*}-module on *C*^{*}-algebras *A* and *B* and let $\varphi : A \to B$ be a map such that $ax = \varphi(a)x$ and $\varphi(\langle x, y \rangle_A) = \langle x, y \rangle_B$, then φ is *-isomorphism of *C*^{*}-algebras."

A similar result was proved by M. Amyari and A. Niknam in [1] for a full Finsler C^* -module E which is both an A-module and a B- module. In 1988, Phillips introduced the Hilbert locally C^* -modules as a generalization of Hilbert C^* -modules, when the inner product takes values in a locally C^* -algebra rather than a C^* -algebra, where a locally C^* -algebra is a complete Hausdorff *-algebra whose topology is determined by a family of C^* -seminorms.

We recall that a family \mathcal{P} of submultiplicative seminorms on a *-algebra A is called C*-family, if

(i) $p(xx^*) = p(x)^2$ for each $p \in \mathcal{P}$. (ii) $p(x) = p(x^*)$ for each $p \in \mathcal{P}$.

In 2007, M. Joita extended the above mentioned result for full Hilbert locally C^* -modules E and F on locally C^* -algebras A and B, respectively. In this paper we introduce the concept of locally Finsler A-module and obtain the same results for a full locally Finsler module such as E.

Through this section A, \mathcal{P} and E denote an arbitrary locally C^* -algebra, separating family of C^* -seminorms on A generating the topology on A and a left A-module, respectively.

 $^{^1\}mathrm{Faculty}$ of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran, e-mail: e_ansari@guilan.ac.ir

 $^{^2\}mathrm{Faculty}$ of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran, e-mail: re_gaba64@guilan.ac.ir

Definition 1.1. The A-valued map $\rho_A : E \to A^+$ is called locally Finsler seminorm if

(i) For each $p \in \mathcal{P}$, $\bar{p} : E \to \mathbb{R}^+$ with $\bar{p}(x) = p(\rho_A(x))^{1/2}$ is a seminorm on E. (ii) $\rho_A(ax) = a\rho_A(x)a^*$ for each $a \in A$ and $x \in E$.

Definition 1.2. If *E* possesses a locally Finsler seminorm, then *E* is called a pre-Finsler *A*-module. Moreover, if *E* is complete with respect to the topology of the family of Finsler seminorms $\mathcal{P}_{\mathcal{E}} = \{\bar{p}\}_{p \in \mathcal{P}}$, then *E* is called a locally Finsler *A*-module.

Definition 1.3. A locally Finsler seminorm ρ_A on E is called symmetric if for each $a \in A$ and $x \in E$, $\rho_A(ax) = \rho_A(a^*x)$.

It is clear that if A is commutative, then every locally Finsler seminorm is symmetric.

Lemma 1.4. Let E be a Finsler A-module and $\bar{p}(x) = p(\langle x, x \rangle)^{1/2}$, for each $x \in E$ and $p \in \mathcal{P}$. Then $\bar{p}(ax) \leq p(a)\bar{p}(x)$.

Proof. Let $p \in \mathcal{P}$. Then we have

$$\bar{p}(ax)^2 = p(\rho_A(ax)) = p(a\rho_A(x)a^*) \le p(a)p(\rho_A(x))p(a^*) = p(a)^2\bar{p}(x)^2.$$
Follows that $\bar{p}(ax) \le p(a)\bar{p}(x)$

It follows that $\bar{p}(ax) \leq p(a)\bar{p}(x)$.

2. Full locally Finsler A-module

In this section we study the full locally Finsler A-modules. Through this section we suppose that $\{p_j\}_{j\in J}$ is a family of separating C^* - seminorms on A and $U_j = \{a \in A; p_j(a) \leq 1\}$.

Definition 2.1. A locally Finsler A-module E is called full if the linear span of the set $\{\rho_A(x); x \in E\}$ is dense in A.

Definition 2.2. A locally C^* -algebra A is called Frechet locally C^* -algebra, if its topology is generated by a countable separating family of C^* -seminorms.

Lemma 2.3. Let E be a full locally Finsler A-module on a locally C^{*}-algebra A and $a \in A$. If $\rho_A(ax) = 0$ for each $x \in E$, then a = 0.

Proof. Let $\rho_A(ax) = 0$ or equivalently $a\rho_A(x)a^* = 0$ for all $x \in E$. For $b \in A$, the fullness of E implies that there exists a net $\{b_\alpha\}_\alpha$ in A such that $b = \lim_\alpha b_\alpha$ and each b_α is of the following form

$$\sum_{i=1}^{k_{\alpha}} \lambda_{i,\alpha} \rho_A(x_{i,\alpha}) \quad (x_{i,\alpha} \in E \text{ and } \lambda_{i,\alpha} \in \mathbb{C}).$$

Now we have

$$aba^* = \lim_{\alpha} ab_{\alpha}a^* = \lim_{\alpha} \left(a\sum_{i=1}^{k_{\alpha}} \lambda_{i,\alpha}\rho_A(x_{i,\alpha})a^*\right) = \lim_{i=1}^{k_{\alpha}} \lambda_{i,\alpha}a\rho_A(x_{i,\alpha})a^* = 0.$$

Hence for $b = a^*a$ we have $p_j(a)^4 = p_j(aa^*)^2 = p_j(aa^*(aa^*)^*) = 0$, which implies a = 0.

As an immediate consequence of this lemma, we have the next corollary:

Corollary 2.4. Let E be a full locally Finsler A-module on a locally C^* -algebra A and $a \in A$. Then a = 0 iff ax = 0 for all $x \in E$.

The following result is due to Phillips [6, Proposition 5.2].

Lemma 2.5. Let $\varphi : A \to B$ be a *-homomorphism from a Frechet locally C^* -algebra A into a locally C^* -algebra B. Then φ is continuous.

Now we are ready to prove the main result of this paper.

Theorem 2.6. Let *E* be both a full Finsler module on a Frechet locally C^* -algebra *A* and on a commutative locally C^* -algebra *B*. Let $\varphi : A \to B$ be a map with closed range such that $ax = \varphi(a)x$ and $\varphi(\rho_A(x)) = \rho_B(x)$, where $a \in A, x \in E$. Then φ is a bijective continuous *-homomorphism.

Proof. Since $(\varphi(ab) - \varphi(a)\varphi(b))x = ((ab)x - a(bx)) = 0$, by Corollary 2.4 $\varphi(ab) = \varphi(a)\varphi(b)$. Similarly, $\varphi(\lambda a + b) = \lambda\varphi(a) + \varphi(b)$. Therefore φ is a homomorphism. To show that φ preserves involution, suppose $a \in A$. For $x \in E$ we have, $\rho_A(ax) = a\rho_A(x)a^*$. So

$$\rho_B(ax) = \varphi(\rho_A(ax)) = \varphi(a\rho_A(x)a^*) = \varphi(a)\rho_B(x)\varphi(a^*).$$

But $\rho_B(ax) = \rho_B(\varphi(a)x) = \varphi(a)\rho_B(x)\varphi(a)^*$. Therefore, we have

$$\varphi(a)\rho_B(x)(\varphi(a)^* - \varphi(a^*)) = 0.$$

A similar argument for $\rho_A(a^*x)$ implies that

$$\varphi(a^*)\rho_B(x)(\varphi(a)-\varphi(a^*)^*)=0.$$

Since the family of C^* -seminorms on B is separating, we have

$$(\varphi(a)^* - \varphi(a^*))\rho_B(x)\varphi(a^*)^* = (\varphi(a^*)\rho_B(x)(\varphi(a) - \varphi(a^*)^*))^* = 0$$

Now commutativity of B implies that

$$\varphi(a^*)^* \rho_B(x)(\varphi(a)^* - \varphi(a^*)) = 0$$

Therefore

$$\rho_B((\varphi(a) - \varphi(a^*)^*)x) = (\varphi(a) - \varphi(a^*)^*)\rho_B(x)(\varphi(a)^* - \varphi(a^*))$$

= $\varphi(a)\rho_B(x)(\varphi(a)^* - \varphi(a^*)) -$
 $\varphi(a^*)^*\rho_B(x)(\varphi(a)^* - \varphi(a^*)) = 0.$

Using Lemma 2.3, $\varphi(a^*) = \varphi(a)^*$. Hence φ preserves * and so it is continuous by Lemma 2.5. Now let $\varphi(a) = 0$, then $\varphi(a)x = 0$ for every $x \in E$ which implies that ax = 0 for each $x \in E$. Corollary 2.4 shows that a = 0 and so φ is one to one. Suppose that $b \in B$. There is a net $\{b_{\alpha}\}_{\alpha}$ in B such that $b_{\alpha} \longrightarrow b$ and each b_{α} is of the form $\sum_{i=1}^{k_{\alpha}} \lambda_{i,\alpha} \rho_B(x_{i,\alpha})$, in which $\lambda_{i,\alpha} \in \mathbb{C}$ and $x_{i,\alpha} \in E$. Consider $a_{\alpha} = \sum_{i=1}^{k_{\alpha}} \lambda_{i,\alpha} \rho_A(x_{i,\alpha})$. Clearly, $\varphi(a_{\alpha}) = b_{\alpha}$, so $\varphi(a_{\alpha}) \longrightarrow b$. But the range of φ is closed, hence φ is surjective. Therefore φ is a bijective continuous *-homomorphism. \Box **Corollary 2.7.** Let E, A, B and φ be as in Theorem 2.6 such that $\varphi(A)$ is of the second category in B. Then φ is a *-isomorphism of locally C^* -algebras. In particular, if B is a Frechet locally C^* -algebra, then φ is a *-isomorphism.

Proposition 2.8. Let *E* be both full locally Finsler module on Frechet locally C^{*}-algebras *A* and *B* such that ρ_B , ρ_A are symmetric. Then φ is a *-isomorphism of locally C^{*}-algebras.

Proof. We only prove the *-preserving of φ . Let $a \in A$ and $x \in E$. As in Theorem 2.6, we have

$$\varphi(a)\rho_B(x)(\varphi(a)^* - \varphi(a^*)) = 0 = \varphi(a^*)\rho_B(x)(\varphi(a) - \varphi(a^*)^*).$$

But,

$$\begin{aligned} \varphi(a^*)\rho_B(x)(\varphi(a) - \varphi(a^*)^*) &= \varphi(\rho_A(a^*x)) - \rho_B(\varphi(a^*)x) \\ &= \varphi(\rho_A(ax)) - \rho_B(\varphi(a^*)^*x) \\ &= (\varphi(a) - \varphi(a^*)^*)\rho_B(x)\varphi(a^*). \end{aligned}$$

Hence, $(\varphi(a) - \varphi(a^*)^*)\rho_B(x)\varphi(a^*) = 0$. It follows that

$$\varphi(a^*)^* \rho_B(x)(\varphi(a)^* - \varphi(a^*)) = 0.$$

Thus, $\rho_B((\varphi(a) - \varphi(a^*)^*)x) = 0$. Now we have $\varphi(a)^* = \varphi(a^*)$ by Lemma 2.3.

In [1], an example is given to show that we can not drop the fullness of E in Theorem 2.6.

Remark 2.9. Theorem 2.6 shows that, we can substitute the condition $\|\rho_A(x)\| = \|\rho_B(x)\|$ of the main Theorem in [1] by commutativity of B (or symmetry of ρ_A , ρ_B) and obtain the same result.

Proposition 2.10. Let E, A, B and φ be as in Theorem 2.6. Then the topology of the family of seminorms $Q_{\mathcal{E}}$ on E is weaker than the topology of the family of seminorms $\mathcal{P}_{\mathcal{E}}$ on E.

Proof. We show that the identity map from $(E, \mathcal{P}_{\mathcal{E}})$ onto $(E, \mathcal{Q}_{\mathcal{E}})$ is continuous. Let $q \in \mathcal{Q}_{\mathcal{E}}$. Since $\varphi : A \to B$ is continuous, there is $p_q \in \mathcal{P}_{\mathcal{E}}$ such that

$$q(\varphi(a)) \le p_q(a) \qquad (a \in A).$$

Let $x \in E$. Then we have

$$\bar{q}(x)^2 = q(\rho_B(x)) = q(\varphi(\rho_A(x))) \le p_q(\rho_A(x)) = \bar{p_q}(x).$$

So, $\bar{q}(x) \leq \bar{p}_q(x)$ and this completes the proof.

Corollary 2.11. Let E, A, B and φ be as in Theorem 2.6. Moreover, if B is Frechet, then $\mathcal{P}_{\mathcal{E}}$ and $\mathcal{Q}_{\mathcal{E}}$ induce the same topology on E.

Proof. It is enough to show that the identity map from $(E, \mathcal{P}_{\mathcal{E}})$ onto $(E, \mathcal{Q}_{\mathcal{E}})$ is a homeomorphism. But this is obvious by the previous proposition.

Acknowledgement

The authors would like to thank the referee for valuable suggestions and comments.

References

- Amyari, M., Niknam, A., A note on Finsler modules. Bull. Iran Math. Soc. 29 (2003), 77-81.
- [2] Bakić, D., Guljaš, B., On a class of module maps of Hilbert C^{*}-modules. Math. Commun. 7 (2002), 177-192.
- [3] Inoue, A., Locally C*-algebra. Mem. Fac. Kyushu. Univ. Ser. A 25 (1971), 197-235.
- [4] Joiţa, M., A note about full Hilbert modules over Frechet locally C^{*}-algebras. Novi Sad J. Math. 37 (2007), 27-32.
- [5] Moslehian, M. S., On full Hilbert C^{*}-modules. Bull. Malays. Math. Sci. Soc. 24 (2001), 45-47.
- [6] Phillips, N. C., Inverse limits of C*-algebras. J. Operator Theory 19 (1988), 159-195.
- [7] Tagavih, A., Modules with seminorms which take values in a C*-algebra. Int. J. Math. Anal. 3 (2009), 1917-1922.
- [8] Wegge-Olsen, N. E., K-theory and C^* -algebras. OUP, 1993.

Received by the editors August 8, 2011