HANKEL DETERMINANT FOR p-VALENT STARLIKE AND CONVEX FUNCTIONS OF ORDER α

D. Vamshee Krishna ${ }^{\square}$ and T. Ramreddy ${ }^{\text {D }}$

Abstract

The objective of this paper is to obtain an upper bound to the second Hankel determinant $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for p-valent starlike and convex functions of order α, using Toeplitz determinants.

AMS Mathematics Subject Classification (2010): 30C45, 30C50
Key words and phrases: Analytic function, p-valent starlike and convex functions, upper bound, second Hankel functional, positive real function, Toeplitz determinants

1. Introduction

Let A_{p} (p is a fixed integer ≥ 1) denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

in the open unit disc $E=\{z:|z|<1\}$ with $p \in N=\{1,2,3, \ldots\}$. Let S be the subclass of $A_{1}=A$, consisting of univalent functions.

In 1976, Noonan and Thomas [13]] defined the $q^{\text {th }}$ Hankel determinant of f for $q \geq 1$ and $n \geq 1$, which is stated by

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{1.2}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

This determinant has been considered by several authors. For example, Noor [14] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for the functions in S with a bounded boundary. Ehrenborg [4] studied the Hankel determinant of exponential polynomials. The Hankel transform of an integer sequence and some of its properties were discussed by Layman in [9]. One can easily observe that the Fekete-Szegö functional is $H_{2}(1)$. Fekete-Szegö then further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real and $f \in \mathrm{~S}$. Ali [z] found sharp bounds on the first four coefficients and sharp estimate for the Fekete-Szegö functional $\left|\gamma_{3}-t \gamma_{2}^{2}\right|$, where t is real, for the inverse function of f defined as $f^{-1}(w)=w+\sum_{n=2}^{\infty} \gamma_{n} w^{n}$

[^0]to the class of strongly starlike functions of order $\alpha(0<\alpha \leq 1)$ denoted by $\widetilde{S T}(\alpha)$. For our discussion in this paper, we consider the Hankel determinant in the case of $q=2$ and $n=2$, known as second Hankel determinant
\[

\left|$$
\begin{array}{ll}
a_{2} & a_{3} \tag{1.3}\\
a_{3} & a_{4}
\end{array}
$$\right|=\left|a_{2} a_{4}-a_{3}^{2}\right|
\]

Janteng, Halim and Darus [8$]$ have considered the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ and found a sharp bound for the function f in the subclass RT of S , consisting of functions whose derivative has a positive real part studied by Mac Gregor [III]. In their work, they have shown that if $f \in \mathrm{RT}$ then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{4}{9}$. They [7] also obtained the second Hankel determinant and sharp bounds for the familiar subclasses of S, namely, starlike and convex functions denoted by ST and CV and showed that $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$ and $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$ respectively. Mishra and Gochhayat [II] have obtained the sharp bound to the non-linear functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the class of analytic functions denoted by $R_{\lambda}(\alpha, \rho)(0 \leq \rho \leq$ $\left.1,0 \leq \lambda<1,|\alpha|<\frac{\pi}{2}\right)$, by making use of the fractional differential operator due to Owa and Srivastava [15]. They have shown that, if $f \in R_{\lambda}(\alpha, \rho)$ then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\frac{(1-\rho)^{2}(2-\lambda)^{2}(3-\lambda)^{2} \cos ^{2} \alpha}{9}\right\}
$$

Murugusundaramoorthy and Magesh [[I2] have obtained a sharp upper bound for the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the function $f \in R(\alpha)$, where

$$
R(\alpha)=\left[f(z) \in A: \operatorname{Re}\left\{(1-\alpha) \frac{f(z)}{z}+\alpha f^{\prime}(z)\right\}>0, \alpha>0, \forall z \in E\right]
$$

They have shown that if $f \in R(\alpha)$ then $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\frac{4}{(1+2 \alpha)^{2}}\right\}$. Recently, Al-Refai and Darus [3] have obtained a sharp upper bound to the second Hankel determinant $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for the functions in the class denoted by $R_{\alpha, \beta}(\lambda, \rho)(0 \leq$ $\alpha<1,0 \leq \beta<1,-\frac{\pi}{2}<\lambda<\frac{\pi}{2}$ and $0 \leq \rho \leq 1$), defined as

$$
R_{\alpha, \beta}(\lambda, \rho)=\left[f(z) \in A: \operatorname{Re}\left\{e^{i \lambda} \frac{\Theta^{\alpha, \beta} f(z)}{z}\right\}>\rho \cos \lambda, \quad \forall z \in E\right],
$$

where $\Theta^{\alpha, \beta}$ is the generalized Owa-Srivastava differential operator. They have shown that if $f \in R_{\alpha, \beta}(\lambda, \rho)$ then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\frac{(1-\rho)^{2}(2-\alpha)^{2}(3-\alpha)^{2}(2-\beta)^{2}(3-\beta)^{2} \cos ^{2} \lambda}{324}\right\}
$$

Very recently, Abubaker and Darus [T] have obtained a sharp upper bound to the non-linear functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for a new subclass of analytic functions denoted by $R_{\alpha, \mu}(\sigma, \rho)\left(0 \leq \mu \leq \alpha \leq 1, \rho, \sigma \in N_{0}\right)$, defined as

$$
R_{\alpha, \mu}(\sigma, \rho)=\left[f(z) \in A: \operatorname{Re}\left\{\left(D_{\alpha, \mu}^{\sigma, \rho} f(z)\right)^{\prime}\right\}>0, \text { forall } \mathrm{z} \in E\right]
$$

by making use of the linear differential operator $D_{\alpha, \mu}^{\sigma, \rho}$, defined by them. In their work they have shown that

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left\{\frac{16}{9(1+\rho)^{2} 2(1+\rho)^{2}(1+2 \alpha-2 \mu+6 \alpha \mu)^{2 \sigma}}\right\}
$$

Motivated by the above mentioned results obtained by different authors in this direction, in this paper, we obtain an upper bound to the functional $\mid a_{p+1} a_{p+3}-$ $a_{p+2}^{2} \mid$ for the function f belonging to p-valent starlike and convex functions, defined as follows.

Definition 1.1. A function $f(z) \in A_{p}$ is said to be p-valent starlike function $\left(\frac{f(z)}{z} \neq 0\right)$, if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{p f(z)}\right\}>0, \quad \forall z \in E \tag{1.4}
\end{equation*}
$$

The set of all these functions is denoted by $S T_{p}$. It is observed that for $p=1$, $S T_{p}$ reduces to ST .

Definition 1.2. A function $f(z) \in A_{p}$ is said to be p-valent convex function, if it satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{1}{p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>0, \quad \forall z \in E \tag{1.5}
\end{equation*}
$$

The class of all these functions is denoted by $C V_{p}$. It is observed that for $\mathrm{p}=1$, we obtain $C V_{1}=C V$.

Definition 1.3. A function $f(z) \in A_{p}$ is said to be p-valent starlike function of order $\alpha(0 \leq \alpha<p)\left(\frac{f(z)}{z} \neq 0\right)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad \forall z \in E \tag{1.6}
\end{equation*}
$$

The class of all these functions was introduced by Goodman [5] and denoted by $S T_{p}(\alpha)$. It is observed that for $\mathrm{p}=1, S T_{p}(\alpha)$ reduces to $S T(\alpha)$, class of starlike functions of order $\alpha(0 \leq \alpha<1)$ and for $\mathrm{p}=1$ and $\alpha=0$, we obtain $S T_{1}(0)=S T$.
Definition 1.4. A function $f(z) \in A_{p}$ is said to be p-valent convex function of order $\alpha(0 \leq \alpha<p)$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad \forall z \in E \tag{1.7}
\end{equation*}
$$

The class of all these functions is denoted by $C V_{p}(\alpha)$. It is observed that for p $=1$, we get $C V_{p}(\alpha)=C V(\alpha)$, class of convex functions of order $\alpha(0 \leq \alpha<1)$ and for $\mathrm{p}=1$ and $\alpha=0$, we obtain $C V_{1}(0)=C V$. From the relations (1.6) and (1.7), we observe that $f(z) \in C V_{p}(\alpha)$ if and only if $\frac{z f^{\prime}(z)}{p} \in S T_{p}(\alpha)$. Further, we have $S T_{p}(\alpha) \subseteq S T_{p}(0), C V_{p}(\alpha) \subseteq C V_{p}(0)$ and $C V_{p}(\alpha) \subset S T_{p}(\alpha) \subset A_{p}$, for $0 \leq \alpha<p$.

We first state some preliminary lemmas required for proving our results.

2. Preliminary Results

Let P denote the class of functions panalytic in E for which $\operatorname{Re}\{p(z)\}>0$,

$$
\begin{equation*}
p(z)=\left(1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots\right)=\left[1+\sum_{n=1}^{\infty} c_{n} z^{n}\right], \forall z \in E \tag{2.1}
\end{equation*}
$$

Lemma 2.1 ([几6]). If $p \in \mathrm{P}$, then $\left|c_{k}\right| \leq 2$, for each $k \geq 1$.
Lemma 2.2 ([G]). The power series for p given in (2.1) converges in the unit disc E to a function in P if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, n=1,2,3 \ldots
$$

and $c_{-k}=\bar{c}_{k}$, are all non-negative. They are strictly positive except for $p(z)=$ $\sum_{k=1}^{m} \rho_{k} p_{0}\left(\exp \left(i t_{k}\right) z\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$, for $k \neq j$; in this case $D_{n}>0$ for $n<(m-1)$ and $D_{n} \doteq 0$ for $n \geq m$. This necessary and sufficient condition is due to Caratheodory and can be found in [6]

We may assume without restriction that $c_{1}>0$. On using Lemma [2. for $n=2$ and $n=3$ respectively, we get

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
\bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|=\left[8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4 c_{1}^{2}\right] \geq 0
$$

which is equivalent to

$$
\begin{gather*}
2 c_{2}=\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}, \quad \text { for some } \mathrm{x},|x| \leq 1 \tag{2.2}\\
D_{3}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} & c_{3} \\
\bar{c}_{1} & 2 & c_{1} & c_{2} \\
\bar{c}_{2} & \bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{3} & \bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|
\end{gather*}
$$

Then $D_{3} \geq 0$ is equivalent to
(2.3) $\left.\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2} \leq 2\left(4-c_{1}^{2}\right)^{2}-2\right|\left(2 c_{2}-c_{1}^{2}\right)\right|^{2}$.

From the relations (2.2) and (2.3), after simplifying, we get

$$
\begin{align*}
& 4 c_{3}=\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \tag{2.4}\\
& \text { for some real value of } z, \text { with }|z| \leq 1 .
\end{align*}
$$

3. Main Results

Theorem 3.1. If

$$
f(z) \in S T_{p}(\alpha)\left(0 \leq \alpha \leq\left(p-\frac{1}{2}\right)\right)
$$

with $p \in N$, then

$$
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq(p-\alpha)^{2} .
$$

Proof. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be in the class $S T_{p}(\alpha)$, from Definition [.3, there exists an analytic function $p \in P$ in the unit disc E with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ such that

$$
\begin{align*}
\left\{\frac{z f^{\prime}(z)-\alpha f(z)}{(p-\alpha) f(z)}\right\}=p(z) & \tag{3.1}\\
& \Rightarrow\left\{z f^{\prime}(z)-\alpha f(z)\right\}=\{(p-\alpha) f(z)\} p(z)
\end{align*}
$$

Replacing $f(z), f^{\prime}(z)$ by their equivalent p-valent expressions and the equivalent expression for $p(z)$ in series in (3.1), we have

$$
\begin{aligned}
{\left[z\left\{p z^{p-1}+\sum_{n=p+1}^{\infty} n a_{n} z^{n-1}\right\}-\alpha\left\{z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}\right\}\right] } \\
=(p-\alpha) \times\left[\left\{z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}\right\} \times\left\{1+\sum_{n=1}^{\infty} c_{n} z^{n}\right\}\right]
\end{aligned}
$$

Upon simplification, we obtain
$\left[a_{p+1} z^{p+1}+2 a_{p+2} z^{p+2}+3 a_{p+3} z^{p+3}+\ldots\right]$
$=(p-\alpha) \times\left[c_{1} z^{p+1}+\left(c_{2}+c_{1} a_{p+1}\right) z^{p+2}+\left(c_{3}+c_{2} a_{p+1}+c_{1} a_{p+2}\right) z^{p+3}+\ldots\right]$
Equating the coefficients of the like powers of z^{p+1}, z^{p+2} and z^{p+3} respectively on both sides of (3.2), we have

$$
\begin{aligned}
& {\left[a_{p+1}=(p-\alpha) c_{1} ; 2 a_{p+2}=(p-\alpha)\left\{c_{2}+c_{1} a_{p+1}\right\} ;\right.} \\
& \left.3 a_{p+3}=(p-\alpha)\left\{c_{3}+c_{2} a_{p+1}+c_{1} a_{p+2}\right\}\right]
\end{aligned}
$$

After simplifying, we get

$$
\begin{align*}
{\left[a_{p+1}=(p-\alpha) c_{1} ; a_{p+2}\right.} & =\frac{(p-\alpha)}{2}\left\{c_{2}+(p-\alpha) c_{1}^{2}\right\} \tag{3.3}\\
a_{p+3} & \left.=\frac{(p-\alpha)}{6}\left\{2 c_{3}+3(p-\alpha) c_{1} c_{2}+(p-\alpha)^{2} c_{1}^{3}\right\}\right]
\end{align*}
$$

Considering the second Hankel functional $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for the function $f \in S T_{p}(\alpha)$ and substituting the values of a_{p+1}, a_{p+2} and a_{p+3} from the
relation (3.3), we have

$$
\begin{aligned}
& \left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|= \\
& \qquad \begin{array}{r}
\left\lvert\,(p-\alpha) c_{1} \times \frac{(p-\alpha)}{6}\left\{2 c_{3}+3(p-\alpha) c_{1} c_{2}+(p-\alpha)^{2} c_{1}^{3}\right\}\right. \\
\\
\left.-\frac{(p-\alpha)^{2}}{4}\left\{c_{2}+(p-\alpha) c_{1}^{2}\right\}^{2} \right\rvert\,
\end{array}
\end{aligned}
$$

Upon simplification, we obtain

$$
\begin{equation*}
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|=\frac{(p-\alpha)^{2}}{12}\left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right| \tag{3.4}
\end{equation*}
$$

Substituting the values of c_{2} and c_{3} from (2.2) and (2.4) respectively from Lemma $\Psi 2$ in the right-hand side of (3.4), we have

$$
\begin{aligned}
& \left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right|= \\
& \begin{aligned}
& \left\lvert\, 4 c_{1} \times \frac{1}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}\right. \\
& \left.-3 \times \frac{1}{4}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}^{2}-(p-\alpha)^{2} c_{1}^{4} \right\rvert\,
\end{aligned}
\end{aligned}
$$

After simplifying, we get

$$
\begin{array}{r}
4\left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right|=\mid\left\{1-4(p-\alpha)^{2}\right\} c_{1}^{4}+8 c_{1}\left(4-c_{1}^{2}\right) z+ \tag{3.5}\\
2 c_{1}^{2}\left(4-c_{1}^{2}\right)|x|-\left(c_{1}+2\right)\left(c_{1}+6\right)\left(4-c_{1}^{2}\right) z|x|^{2} \mid
\end{array}
$$

Since $c_{1} \in[0,2]$, using the result $\left(c_{1}+a\right)\left(c_{1}+b\right) \geq\left(c_{1}-a\right)\left(c_{1}-b\right)$, where $a, b \geq 0$ in the relation (3.5), we get

$$
\begin{align*}
& 4\left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right| \leq \mid\left\{1-4(p-\alpha)^{2}\right\} c_{1}^{4}+8 c_{1}\left(4-c_{1}^{2}\right) z+ \tag{3.6}\\
& 2 c_{1}^{2}\left(4-c_{1}^{2}\right)|x|-\left(c_{1}-2\right)\left(c_{1}-6\right)\left(4-c_{1}^{2}\right) z|x|^{2} \mid
\end{align*}
$$

Choosing $c_{1}=c \in[0,2]$, applying Triangle inequality and replacing $|x|$ by μ in the right-hand side of (3.6), it reduces to

$$
\begin{align*}
& 4\left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right| \leq\left[\left\{4(p-\alpha)^{2}-1\right\} c^{4}+8 c\left(4-c^{2}\right)+\right. \tag{3.7}\\
& \left.2 c^{2}\left(4-c^{2}\right) \mu+(c-2)(c-6)\left(4-c^{2}\right) \mu^{2}\right] \\
& =F(c, \mu), \quad \text { for } \quad 0 \leq \mu=|x| \leq 1
\end{align*}
$$

where

$$
\begin{align*}
F(c, \mu)=\left[\left\{4(p-\alpha)^{2}-1\right\} c^{4}+8 c\left(4-c^{2}\right)\right. & +2 c^{2}\left(4-c^{2}\right) \mu \tag{3.8}\\
& \left.+(c-2)(c-6)\left(4-c^{2}\right) \mu^{2}\right]
\end{align*}
$$

We assume that the upper bound for (3.7) occurs at an interior point of the set $\{(\mu, c): \mu \in[0,1]$ and $c \in[0,2]\}$.

Differentiating $F(c, \mu)$ in (3.8) partially with respect to μ, we get

$$
\begin{equation*}
\frac{\partial F}{\partial \mu}=\left[2 c^{2}\left(4-c^{2}\right)+2(c-2)(c-6)\left(4-c^{2}\right) \mu\right] \tag{3.9}
\end{equation*}
$$

For $0<\mu<1$ and for fixed c with $0<c<2$, from (3.9), we observe that $\frac{\partial F}{\partial \mu}>0$. Therefore, $F(c, \mu)$ is an increasing function of μ, which contradicts our assumption that the maximum value of it occurs at an interior point of the set $\{(\mu, c): \mu \in[0,1]$ and $c \in[0,2]\}$. Also, for a fixed $c \in[0,2]$, we have

$$
\begin{equation*}
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c)(s a y) . \tag{3.10}
\end{equation*}
$$

Therefore, replacing μ by 1 in (3.8), upon simplification, we obtain

$$
\begin{equation*}
G(c)=4\left\{(p-\alpha)^{2}-1\right\} c^{4}+48 \tag{3.11}
\end{equation*}
$$

$$
\begin{align*}
& G^{\prime}(c)=16\left\{(p-\alpha)^{2}-1\right\} c^{3} \tag{3.12}\\
& G^{\prime \prime}(c)=48\left\{(p-\alpha)^{2}-1\right\} c^{2} \tag{3.13}
\end{align*}
$$

For an optimum value of $\mathrm{G}(\mathrm{c})$, consider $G^{\prime}(c)=0$. From (3.12), we get

$$
16\left\{(p-\alpha)^{2}-1\right\} c^{3}=0 . \Rightarrow\left\{(p-\alpha+1)(p-\alpha-1) c^{3}\right\}=0 .
$$

Since $\alpha<p \Rightarrow(p-\alpha+1) \neq 0$. Therefore, we must have $(p-\alpha-1) c^{3}=0$.
We now discuss the following cases.
Case 1. If $(p-\alpha)=1$ and for every $c \in[0,2]$, it is possible only when $p=1$ and $\alpha=0$, then we have $G^{\prime}(c)=o$ and $G^{\prime \prime}(c)=0$. Therefore, in this case, we get $G(c)=48$, which is a constant. For these values i.e.,for $p=1$ and $\alpha=0$, from Definition [.3], we obtain $S T_{1}(0)=S T$, for which the result can be found in [r].

Case 2. If $(p-\alpha) \neq 1$ and $c=0$, then we get $G^{\prime}(c)=o$ and $G^{\prime \prime}(c)=0$. In this case also, we obtain $G(c)=48$, which is a constant.

Therefore, From Cases 1 and 2, we conclude that the maximum value of $G(c)$ is 48 , which occurs at $c=0$. From the expression (3.11), we get

$$
\begin{equation*}
G_{\max }=G(0)=48 \tag{3.14}
\end{equation*}
$$

From (3.7) and (3.14), upon simplification, we obtain

$$
\begin{equation*}
\left|4 c_{1} c_{3}-3 c_{2}^{2}-(p-\alpha)^{2} c_{1}^{4}\right| \leq 12 \tag{3.15}
\end{equation*}
$$

From (3.4) and (3.15), after simplifying, we obtain

$$
\begin{equation*}
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq(p-\alpha)^{2} . \tag{3.16}
\end{equation*}
$$

This completes the proof of the theorem.

Remark.

1) For the choice of $p=1$, from (3.16), we get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq(1-\alpha)^{2}\left(0 \leq \alpha \leq \frac{1}{2}\right)
$$

2) By choosing $p=1 \quad$ and $\quad \alpha=0$, from (3.16), we obtain $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1$. This inequality is sharp and it coincides with the result of Janteng, Halim and Darus [7].

Theorem 3.2. If

$$
f(z) \in C V_{p}(\alpha)\left(0 \leq \alpha \leq\left(p-\frac{1}{2}\right)\right)
$$

with $p \in N$, then

$$
\begin{aligned}
& \left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq \\
& \frac{p^{2}(p-\alpha)^{2}\left[6(p+1-\alpha)^{2}+(p+1)(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}\right]}{(p+1)(p+2)^{2}(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}} .
\end{aligned}
$$

Proof. Let $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n}$ be in the class $C V_{p}(\alpha)$, from Definition [.4, there exists an analytic function $p \in P$ in the unit disc E with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ such that

$$
\begin{align*}
& \left\{\frac{\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}-\alpha f^{\prime}(z)}{(p-\alpha) f^{\prime}(z)}\right\}=p(z) \tag{3.17}\\
& \quad \Rightarrow\left\{(1-\alpha) f^{\prime}(z)+z f^{\prime \prime}(z)\right\}=(p-\alpha)\left\{f^{\prime}(z) p(z)\right\}
\end{align*}
$$

substituting the equivalent expressions for $f^{\prime}(z), f^{\prime \prime}(z)$ and $p(z)$ in series in the relation (3.17), we have

$$
\begin{aligned}
& {\left[(1-\alpha)\left\{p z^{p-1}+\sum_{n=p+1}^{\infty} n a_{n} z^{n-1}\right\}+\right.} \\
& \left.\quad z\left\{p(p-1) z^{p-2}+\sum_{n=p+1}^{\infty} n(n-1) a_{n} z^{n-2}\right\}\right] \\
& =\left[(p-\alpha)\left\{p z^{p-1}+\sum_{n=p+1}^{\infty} n a_{n} z^{n-1}\right\} \times\left\{1+\sum_{n=1}^{\infty} c_{n} z^{n}\right\}\right]
\end{aligned}
$$

After simplifying, we get

$$
\begin{align*}
& {\left[(p+1) a_{p+1} z^{p}+2(p+2) a_{p+2} z^{p+1}+3(p+3) a_{p+3} z^{p+2}+\ldots\right]} \tag{3.18}\\
& =(p-\alpha) \times\left[p c_{1} z^{p}+\left\{p c_{2}+(p+1) c_{1} a_{p+1}\right\} z^{p+1}+\right. \\
& \left.\quad\left\{p c_{3}+(p+1) c_{2} a_{p+1}+(p+2) c_{1} a_{p+2}\right\} z^{p+2}+\ldots\right]
\end{align*}
$$

Equating the coefficients of like powers of z^{p}, z^{p+1} and z^{p+2} respectively on both sides of (3.18), upon simplification, we obtain

$$
\begin{align*}
& {\left[a_{p+1}=\frac{p(p-\alpha)}{(p+1)} c_{1} ; a_{p+2}=\frac{p(p-\alpha)}{2(p+2)}\left\{c_{2}+(p-\alpha) c_{1}^{2}\right\}\right.} \tag{3.19}\\
& \left.a_{p+3}=\frac{p(p-\alpha)}{6(p+3)}\left\{2 c_{3}+3(p-\alpha) c_{1} c_{2}+(p-\alpha)^{2} c_{1}^{3}\right\}\right]
\end{align*}
$$

Substituting the values of a_{p+1}, a_{p+2} and a_{p+3} from the relation (3.19) in the second Hankel functional $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|$ for the function $f \in C V_{p}(\alpha)$, we have

$$
\begin{aligned}
& \left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|= \\
& \qquad \begin{array}{|l}
\left\lvert\, \frac{p(p-\alpha)}{(p+1)} c_{1} \times \frac{p(p-\alpha)}{6(p+3)}\left\{2 c_{3}+3(p-\alpha) c_{1} c_{2}+(p-\alpha)^{2} c_{1}^{3}\right\}\right. \\
-\frac{p^{2}(p-\alpha)^{2}}{4(p+2)^{2}}\left\{c_{2}+(p-\alpha) c_{1}^{2}\right\}^{2}
\end{array}
\end{aligned}
$$

Upon simplification, we obtain

$$
\begin{aligned}
&\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|=\frac{p^{2}(p-\alpha)^{2}}{12(p+1)(p+2)^{2}(p+3)} \times \mid 4(p+2)^{2} c_{1} c_{3}+ \\
& 6(p-\alpha) c_{1}^{2} c_{2}-3(p+1)(p+3) c_{2}^{2}-\left(p^{2}+4 p+1\right)(p-\alpha)^{2} c_{1}^{4} \mid
\end{aligned}
$$

The above expression is equivalent to

$$
\begin{align*}
\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|=\frac{p^{2}(p-\alpha)^{2}}{12(p+1)(p+2)^{2}(p+3)} \times \tag{3.20}\\
\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right|
\end{align*}
$$

where

$$
\begin{align*}
& \quad\left\{d_{1}=4(p+2)^{2} ; d_{2}=6(p-\alpha)\right. \tag{3.21}\\
& \left.d_{3}=-3(p+1)(p+3)=-3\left(p^{2}+4 p+3\right) ; d_{4}=-\left(p^{2}+4 p+1\right)(p-\alpha)^{2}\right\}
\end{align*}
$$

Substituting the values of c_{2} and c_{3} from (2.2) and (2.4) respectively from Lemma 2.2 in the right-hand side of (3.20), we have

$$
\begin{aligned}
& \left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \\
& =\left\lvert\, d_{1} c_{1} \times \frac{1}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\}+\right. \\
& \\
& \left.\quad d_{2} c_{1}^{2} \times \frac{1}{2}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}+d_{3} \times \frac{1}{4}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}^{2}+d_{4} c_{1}^{4} \right\rvert\, .
\end{aligned}
$$

After simplifying, we get

$$
\begin{align*}
& 4\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right|=\mid\left(d_{1}+2 d_{2}+d_{3}+4 d_{4}\right) c_{1}^{4} \tag{3.22}\\
& +2 d_{1} c_{1}\left(4-c_{1}^{2}\right) z+2\left(d_{1}+d_{2}+d_{3}\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x|- \\
& \quad\left\{\left(d_{1}+d_{3}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{3}\right\}\left(4-c_{1}^{2}\right)|x|^{2} z \mid
\end{align*}
$$

Using the values of d_{1}, d_{2}, d_{3} and d_{4} from the relation (3.21), upon simplification, we obtain

$$
\begin{align*}
& \left\{\left(d_{1}+2 d_{2}+d_{3}+4 d_{4}\right)=\right. \tag{3.23}\\
& \quad\left\{-4\left(p^{2}+4 p+1\right)(p-\alpha)^{2}+12(p-\alpha)+\left(p^{2}+4 p+7\right)\right\} \\
& \left.\quad d_{1}=4(p+2)^{2} ;\left(d_{1}+d_{2}+d_{3}\right)=\left(p^{2}+10 p+7-6 \alpha\right)\right\}
\end{align*}
$$

$$
\begin{align*}
\left\{\left(d_{1}+d_{3}\right) c_{1}^{2}\right. & \left.+2 d_{1} c_{1}-4 d_{3}\right\} \tag{3.24}\\
& =\left\{\left(p^{2}+4 p+7\right) c_{1}^{2}+8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\}
\end{align*}
$$

Consider

$$
\begin{aligned}
& \left\{\left(p^{2}+4 p+7\right) c_{1}^{2}+8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\} \\
& \quad=\left(p^{2}+4 p+7\right) \times\left[c_{1}^{2}+\frac{8(p+2)^{2}}{\left(p^{2}+4 p+7\right)} c_{1}+\frac{12(p+1)(p+3)}{\left(p^{2}+4 p+7\right)}\right] \\
& =\left(p^{2}+4 p+7\right) \times \\
& \quad\left[\left\{c_{1}+\frac{4(p+2)^{2}}{\left(p^{2}+4 p+7\right)}\right\}^{2}-\frac{16(p+2)^{4}}{\left(p^{2}+4 p+7\right)^{2}}+\frac{12(p+1)(p+3)}{\left(p^{2}+4 p+7\right)}\right] .
\end{aligned}
$$

Upon simplification, the above expression can also be expressed as

$$
\begin{aligned}
& \left\{\left(p^{2}+4 p+7\right) c_{1}^{2}+8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\}=\left(p^{2}+4 p+7\right) \times \\
& {\left[\left\{c_{1}+\frac{4(p+2)^{2}}{\left(p^{2}+4 p+7\right)}\right\}^{2}-\left\{\frac{2 \sqrt{p^{4}+8 p^{3}+18 p^{2}+8 p}+1}{\left(p^{2}+4 p+7\right)}\right\}^{2}\right]}
\end{aligned}
$$

$$
\begin{align*}
& \left\{\left(p^{2}+4 p+1\right) c_{1}^{2}+8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\} \tag{3.25}\\
& \quad=\left(p^{2}+4 p+7\right) \times \\
& \quad\left[c_{1}+\right. \\
& \left.\quad\left\{\frac{4(p+2)^{2}}{\left(p^{2}+4 p+7\right)}+\frac{2 \sqrt{p^{4}+8 p^{3}+18 p^{2}+8 p}+1}{\left(p^{2}+4 p+7\right)}\right\}\right] \\
& \quad \times\left[c_{1}+\left\{\frac{4(p+2)^{2}}{\left(p^{2}+4 p+7\right)}-\frac{2 \sqrt{p^{4}+8 p^{3}+18 p^{2}+8 p}+1}{\left(p^{2}+4 p+7\right)}\right\}\right]
\end{align*}
$$

Since $c_{1} \in[0,2]$, using the result $\left(c_{1}+a\right)\left(c_{1}+b\right) \geq\left(c_{1}-a\right)\left(c_{1}-b\right)$, where $a, b \geq 0$ in the right-hand side of (3.25), upon simplification, we obtain

$$
\begin{align*}
& \left\{\left(p^{2}+4 p+1\right) c_{1}^{2}+8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\} \tag{3.26}\\
& \quad \geq\left\{\left(p^{2}+4 p+1\right) c_{1}^{2}-8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\}
\end{align*}
$$

From the relations (3.24) and (3.26), we obtain

$$
\begin{align*}
& -\left\{\left(d_{1}+d_{3}\right) c_{1}^{2}+2 d_{1} c_{1}-4 d_{3}\right\} \tag{3.27}\\
& -\leq\left\{\left(p^{2}+4 p+1\right) c_{1}^{2}-8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\}
\end{align*}
$$

Substituting the calculated values from (3.23) and (3.27) in the right-hand side of the relation (3.22), we get

$$
\begin{align*}
& 4\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \tag{3.28}\\
& \leq \mid\left\{-4\left(p^{2}+4 p+1\right)(p-\alpha)^{2}+12(p-\alpha)+\left(p^{2}+4 p+7\right)\right\} c_{1}^{4} \\
& \quad+8(p+2)^{2} c_{1}\left(4-c_{1}^{2}\right) z+2\left(p^{2}+10 p+7-6 \alpha\right) c_{1}^{2}\left(4-c_{1}^{2}\right)|x| \\
& -\left\{\left(p^{2}+4 p+1\right) c_{1}^{2}-8(p+2)^{2} c_{1}+12(p+1)(p+3)\right\}\left(4-c_{1}^{2}\right)|x|^{2} z \mid
\end{align*}
$$

Choosing $c_{1}=c \in[0,2]$, applying Triangle inequality and replacing $|x|$ by μ in the right-hand side of (3.28), it reduces to

$$
\begin{align*}
& 4\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \tag{3.29}\\
& \leq\left[\left\{-4\left(p^{2}+4 p+1\right)(p-\alpha)^{2}+12(p-\alpha)+\left(p^{2}+4 p+7\right)\right\} c^{4}\right. \\
& \quad+8(p+2)^{2} c\left(4-c^{2}\right)+2\left(p^{2}+10 p+7-6 \alpha\right) c^{2}\left(4-c^{2}\right) \mu \\
& \left.+\left\{\left(p^{2}+4 p+1\right) c^{2}-8(p+2)^{2} c+12(p+1)(p+3)\right\}\left(4-c^{2}\right) \mu^{2}\right] \\
& \quad=F(c, \mu), \quad \text { for } 0 \leq \mu=|x| \leq 1
\end{align*}
$$

where

$$
\begin{align*}
& F(c, \mu) \tag{3.30}\\
& =\left[\left\{-4\left(p^{2}+4 p+1\right)(p-\alpha)^{2}+12(p-\alpha)+\left(p^{2}+4 p+7\right)\right\} c^{4}\right. \\
& \quad+8(p+2)^{2} c\left(4-c^{2}\right)+2\left(p^{2}+10 p+7-6 \alpha\right) c^{2}\left(4-c^{2}\right) \mu \\
& \left.\quad+\left\{\left(p^{2}+4 p+1\right) c^{2}-8(p+2)^{2} c+12(p+1)(p+3)\right\}\left(4-c^{2}\right) \mu^{2}\right]
\end{align*}
$$

We assume that the upper bound for (3.29) occurs at an interior point of the set $\{(\mu, c): \mu \in[0,1]$ and $c \in[0,2]\}$. Differentiating $F(c, \mu)$ in (3.30) partially with respect to μ, we get

$$
\begin{align*}
\frac{\partial F}{\partial \mu} & =\left[2\left(p^{2}+10 p+7-6 \alpha\right) c^{2}\left(4-c^{2}\right)\right. \tag{3.31}\\
& \left.+2\left\{\left(p^{2}+4 p+1\right) c^{2}-8(p+2)^{2} c+12(p+1)(p+3)\right\}\left(4-c^{2}\right) \mu\right]
\end{align*}
$$

For $0<\mu<1$, for fixed c with $0<c<2$ and $\left(0 \leq \alpha \leq\left(p-\frac{1}{2}\right)\right)$, from (3.31), we observe that $\frac{\partial F}{\partial \mu}>0$. Therefore, $F(c, \mu)$ is an increasing function of μ, which contradicts our assumption that the maximum value of it occurs at an interior point of the set $\{(\mu, c): \mu \in[0,1]$ and $c \in[0,2]\}$.

Further, for a fixed $c \in[0,2]$, we have

$$
\begin{equation*}
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c)(s a y) \tag{3.32}
\end{equation*}
$$

From the relations (3.30) and (3.32), upon simplification, we obtain

$$
\begin{align*}
& G(c)=2\left[-\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\right.\right. \tag{3.33}\\
& \left.\quad\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\} c^{4} \\
& \left.\quad+24(p+1-\alpha) c^{2}+24(p+1)(p+3)\right]
\end{align*}
$$

$$
\begin{align*}
& G^{\prime}(c)=2\left[-4\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\right.\right. \tag{3.34}\\
& \left.\left.\quad\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\} c^{3}+48(p+1-\alpha) c\right]
\end{align*}
$$

$$
\begin{align*}
& G^{\prime \prime}(c)=2\left[-12\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\right.\right. \tag{3.35}\\
& \left.\left.\quad\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\} c^{2}+48(p+1-\alpha)\right]
\end{align*}
$$

The maximum or minimum value of $G(c)$ is obtained for the values of $G^{\prime}(c)=0$. From the expression(3.34), we get

$$
\begin{align*}
& -8 c\left[\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\right.\right. \tag{3.36}\\
& \left.\left.\quad\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\} c^{2}-12(p+1-\alpha)\right]=0
\end{align*}
$$

We now discuss the following cases.
Case 1. If $c=0$, then from (3.35), we obtain

$$
G^{\prime \prime}(c)=96(p+1-\alpha)>0, \quad \text { because } \quad \alpha<p \Rightarrow(p-\alpha)>0 .
$$

Therefore, by the second derivative test, $G(c)$ has a minimum value at $c=0$, which is ruled out.

Case 2. If $c \neq 0$, then from (3.36), we obtain

$$
\begin{array}{r}
c^{2}=\left\{\frac{12(p+1-\alpha)}{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)}\right\}>0 \tag{3.37}\\
\qquad \text { for }\left(0 \leq \alpha \leq\left(p-\frac{1}{2}\right)\right)
\end{array}
$$

Using the value of c^{2} given in (3.37) in (3.35), after simplifying, we get

$$
G^{\prime \prime}(c)=-192(p+1-\alpha)>0, \quad \text { because } \quad \alpha<p \Rightarrow(p-\alpha)>0
$$

From the second derivative test, $G(c)$ has a maximum value at c, where c^{2} is given by (3.37). From the expression (3.33), we have G-maximum value at c^{2}, after simplifying, it is given by

$$
\begin{equation*}
G_{\max }=G(c)=48 \tag{3.38}
\end{equation*}
$$

$\times\left[\frac{6(p+1-\alpha)^{2}+(p+1)(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}}{\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}}\right]$.

Considering only the maximum value of $\mathrm{G}(\mathrm{c})$ at c , where c^{2} is given by (3.37). From the expressions (3.29) and (3.38), upon simplification, we obtain

$$
\begin{equation*}
\left|d_{1} c_{1} c_{3}+d_{2} c_{1}^{2} c_{2}+d_{3} c_{2}^{2}+d_{4} c_{1}^{4}\right| \leq 12 \tag{3.39}
\end{equation*}
$$

$$
\times\left[\frac{6(p+1-\alpha)^{2}+(p+1)(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}}{\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}}\right] .
$$

From the expressions (3.20) and (3.39), after simplifying, we get
(3.40) $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq$
$\frac{p^{2}(p-\alpha)^{2}\left[6(p+1-\alpha)^{2}+(p+1)(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}\right]}{(p+1)(p+2)^{2}(p+3)\left\{2 \alpha(\alpha-2 p)\left(p^{2}+4 p+1\right)+\left(2 p^{4}+8 p^{3}+3 p^{2}+4 p+7\right)\right\}}$.
This completes the proof of the theorem.

Remark.

1) For the choice of $p=1$, from (3.40), we get

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq\left[\frac{(1-\alpha)^{2}\left(17 \alpha^{2}-36 \alpha+36\right)}{144\left(\alpha^{2}-2 \alpha+2\right)}\right]
$$

2) Choosing $p=1$ and $\alpha=0$, from (3.40), we obtain $\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8}$. This inequality is sharp, and it coincides with the result of Janteng, Halim and Darus [7].

Acknowledgements

The authors are highly thankful to the referees for their valuable suggestions and comments that helped us in preparing this article.

References

[1] Abubaker, Afaf, Darus, M., Hankel Determinant for a class of analytic functions involving a generalized linear differential operator. Int. J. Pure Appl.Math. 69(4) (2011), 429-435.
[2] Ali, R. M., Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. (second series) 26(1) (2003), 63-71.
[3] Al-Refai, Oqlah., Darus, M., Second Hankel determinant for a class of analytic functions defined by a fractional operator. European J. Sci. Res. 28(2) (2009), 234-241.
[4] Ehrenborg, R., The Hankel determinant of exponential polynomials. Amer. Math. Monthly 107(6) (2000), 557-560.
[5] Goodman, A.W., Univalent functions Vol.I and Vol.II. Tampa, Florida: Mariner publishing Comp. Inc., 1983.
[6] Grenander, U., Szego, G., Toeplitz forms and their application. Berkeley and Los Angeles: Univ. of California Press, 1958.
[7] Janteng, A., Halim, S. A. Darus, M., Hankel Determinant for starlike and convex functions. Int. J. Math. Anal. 1(13) (2007), 619-625.
[8] Janteng, A., Halim, S. A. Darus, M., Coefficient inequality for a function whose derivative has a positive real part. J. Inequal. Pure Appl. Math 7(2) (2006), 1-5.
[9] Layman, J. W., The Hankel transform and some of its properties, J. Integer Seq. 4(1) (2001), 1-11.
[10] Mac Gregor, T.H., Functions whose derivative have a positive real part. Trans. Amer. Math. Soc. 104(3) (1962), 532-537.
[11] Mishra, A. K., Gochhayat, P., Second Hankel Determinant for a class of Analytic Functions Defined by Fractional Derivative. Int. J. Math. Math. Sci., vol. 2008, Article ID 153280 (2008), 1-10.
[12] Murugusundaramoorthy, Gangadharan., Magesh, N., Coefficient inequalities for certain classes of analytic functions associated with Hankel determinant. Bull Math Anal. Appl. 1(3) (2009), 85-89.
[13] Noonan, J. W., Thomas, D. K., On the second Hankel determinant of a really mean p-Valent functions. Trans. Amer. Math. Soc. 223(2) (1976), 337-346.
[14] Noor, K. I., Hankel determinant problem for the class of functions with bounded boundary rotation. Rev. Roum. Math. Pures Et Appl. 28(8) (1983), 731-739.
[15] Owa, S. Srivastava, H. M., Univalent and starlike generalised hypergeometric functions. Canad. J. Math. 39(5) (1987), 1057-1077.
[16] Pommerenke, Ch., Univalent functions. Gottingen: Vandenhoeck and Ruprecht, 1975.

Received by the editors January 16, 2012

[^0]: ${ }^{1}$ School of Sciences and Humanities, K L University, Green Fields, Vaddeswaram- 522 502, Guntur Dt., Andhra Pradesh, India, e-mail: vamsheekrishna1972@gmail.com
 ${ }^{2}$ Department of Mathematics, Kakatiya University, Warangal - 506009, Andhrapradesh, India, e-mail: reddytr2@yahoo.com

