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Abstract. The objective of this paper is to obtain an upper bound
to the second Hankel determinant |ap+1ap+3 − a2
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1. Introduction

Let Ap (p is a fixed integer ≥ 1) denote the class of functions f of the form

(1.1) f(z) = zp +
∞∑

n=p+1

anz
n

in the open unit disc E = {z : |z| < 1} with p ∈ N = {1, 2, 3, ...}. Let S be the
subclass of A1 = A, consisting of univalent functions.

In 1976, Noonan and Thomas [13] defined the qth Hankel determinant of f
for q ≥ 1 and n ≥ 1, which is stated by

(1.2) Hq(n) =

an an+1 · · · an+q−1

an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

.

This determinant has been considered by several authors. For example, Noor
[14] determined the rate of growth of Hq(n) as n → ∞ for the functions in S
with a bounded boundary. Ehrenborg [4] studied the Hankel determinant of ex-
ponential polynomials. The Hankel transform of an integer sequence and some
of its properties were discussed by Layman in [9]. One can easily observe that
the Fekete-Szegö functional is H2(1). Fekete-Szegö then further generalized the
estimate |a3−µa22| with µ real and f ∈ S. Ali [2] found sharp bounds on the first
four coefficients and sharp estimate for the Fekete-Szegö functional |γ3 − tγ2

2 |,
where t is real, for the inverse function of f defined as f−1(w) = w+

∑∞
n=2 γnw

n
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to the class of strongly starlike functions of order α(0 < α ≤ 1) denoted by

S̃T (α). For our discussion in this paper, we consider the Hankel determinant
in the case of q = 2 and n = 2, known as second Hankel determinant

(1.3)
a2 a3
a3 a4

= |a2a4 − a23|.

Janteng, Halim and Darus [8] have considered the functional|a2a4 − a23| and
found a sharp bound for the function f in the subclass RT of S, consisting of
functions whose derivative has a positive real part studied by Mac Gregor [10].
In their work, they have shown that if f ∈ RT then |a2a4 − a23| ≤ 4

9 . They [7]
also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV
and showed that |a2a4 − a23| ≤ 1 and |a2a4 − a23| ≤ 1

8 respectively. Mishra and
Gochhayat [11] have obtained the sharp bound to the non-linear functional
|a2a4 − a23| for the class of analytic functions denoted by Rλ(α, ρ)(0 ≤ ρ ≤
1, 0 ≤ λ < 1, |α| < π

2 ), by making use of the fractional differential operator due
to Owa and Srivastava [15]. They have shown that, if f ∈ Rλ(α, ρ) then

|a2a4 − a23| ≤
{
(1− ρ)2(2− λ)2(3− λ)2cos2α

9

}
.

Murugusundaramoorthy and Magesh [12] have obtained a sharp upper bound
for the functional |a2a4 − a23| for the function f ∈ R(α), where

R(α) =

[
f(z) ∈ A : Re

{
(1− α)

f(z)

z
+ αf ′(z)

}
> 0, α > 0, ∀z ∈ E

]
.

They have shown that if f ∈ R(α) then |a2a4 − a23| ≤
{

4
(1+2α)2

}
. Recently,

Al-Refai and Darus [3] have obtained a sharp upper bound to the second Hankel
determinant |a2a4−a23| for the functions in the class denoted by Rα,β(λ, ρ)(0 ≤
α < 1, 0 ≤ β < 1,−π

2 < λ < π
2 and 0 ≤ ρ ≤ 1), defined as

Rα,β(λ, ρ) =

[
f(z) ∈ A : Re{eiλΘ

α,βf(z)

z
} > ρ cosλ, ∀z ∈ E

]
,

where Θα,β is the generalized Owa-Srivastava differential operator. They have
shown that if f ∈ Rα,β(λ, ρ) then

|a2a4 − a23| ≤
{
(1− ρ)2(2− α)2(3− α)2(2− β)2(3− β)2cos2λ

324

}
.

Very recently, Abubaker and Darus [1] have obtained a sharp upper bound
to the non-linear functional |a2a4−a23| for a new subclass of analytic functions
denoted by Rα,µ(σ, ρ)(0 ≤ µ ≤ α ≤ 1, ρ, σ ∈ N0), defined as

Rα,µ(σ, ρ) =
[
f(z) ∈ A : Re

{
(Dσ,ρ

α,µf(z))
′} > 0, forall z ∈ E

]
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by making use of the linear differential operator Dσ,ρ
α,µ, defined by them. In

their work they have shown that

|a2a4 − a23| ≤
{

16

9(1 + ρ)22(1 + ρ)2(1 + 2α− 2µ+ 6αµ)2σ

}
.

Motivated by the above mentioned results obtained by different authors in this
direction, in this paper, we obtain an upper bound to the functional |ap+1ap+3−
a2p+2| for the function f belonging to p-valent starlike and convex functions,
defined as follows.

Definition 1.1. A function f(z) ∈ Ap is said to be p-valent starlike function

( f(z)z ̸= 0), if it satisfies the condition

(1.4) Re

{
zf ′(z)

pf(z)

}
> 0, ∀z ∈ E.

The set of all these functions is denoted by STp. It is observed that for p = 1,
STp reduces to ST.

Definition 1.2. A function f(z) ∈ Ap is said to be p-valent convex function,
if it satisfies the condition

(1.5) Re

{
1

p

(
1 +

zf ′′(z)

f ′(z)

)}
> 0, ∀z ∈ E.

The class of all these functions is denoted by CVp. It is observed that for p=1,
we obtain CV1 = CV .

Definition 1.3. A function f(z) ∈ Ap is said to be p-valent starlike function

of order α(0 ≤ α < p) ( f(z)z ̸= 0), if and only if

(1.6) Re

{
zf ′(z)

f(z)

}
> α, ∀z ∈ E.

The class of all these functions was introduced by Goodman [5] and denoted
by STp(α). It is observed that for p = 1, STp(α) reduces to ST (α), class of
starlike functions of order α(0 ≤ α < 1) and for p = 1 and α = 0, we obtain
ST1(0) = ST .

Definition 1.4. A function f(z) ∈ Ap is said to be p-valent convex function
of order α(0 ≤ α < p), if and only if

(1.7) Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, ∀z ∈ E.

The class of all these functions is denoted by CVp(α). It is observed that for p
= 1, we get CVp(α) = CV (α), class of convex functions of order α(0 ≤ α < 1)
and for p = 1 and α = 0, we obtain CV1(0) = CV . From the relations (1.6) and

(1.7), we observe that f(z) ∈ CVp(α) if and only if zf ′(z)
p ∈ STp(α). Further,

we have STp(α) ⊆ STp(0), CVp(α) ⊆ CVp(0) and CVp(α) ⊂ STp(α) ⊂ Ap, for
0 ≤ α < p.

We first state some preliminary lemmas required for proving our results.
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2. Preliminary Results

Let P denote the class of functions p analytic in E for which Re{p(z)} > 0,

(2.1) p(z) = (1 + c1z + c2z
2 + c3z

3 + ...) =

[
1 +

∞∑
n=1

cnz
n

]
, ∀z ∈ E.

Lemma 2.1 ([16]). If p ∈ P, then |ck| ≤ 2, for each k ≥ 1.

Lemma 2.2 ([6]). The power series for p given in (2.1) converges in the unit
disc E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. They are strictly positive except for p(z) =∑m
k=1 ρkp0(exp(itk)z), ρk > 0, tk real and tk ̸= tj, for k ̸= j; in this case

Dn > 0 for n < (m− 1) and Dn
.
= 0 for n ≥ m. This necessary and sufficient

condition is due to Caratheodory and can be found in [6].

We may assume without restriction that c1 > 0. On using Lemma 2.2, for
n = 2 and n = 3 respectively, we get

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2 | c2 |2 − 4c21] ≥ 0,

which is equivalent to

(2.2) 2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1.

D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

(2.3) |(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2 ≤ 2(4− c21)

2 − 2|(2c2 − c21)|2.

From the relations (2.2) and (2.3), after simplifying, we get

(2.4) 4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z}

for some real value of z, with|z| ≤ 1.



Hankel determinant for p-valent starlike and convex functions of order α 93

3. Main Results

Theorem 3.1. If

f(z) ∈ STp(α)

(
0 ≤ α ≤

(
p− 1

2

))
,

with p ∈ N , then

|ap+1ap+3 − a2p+2| ≤ (p− α)2.

Proof. Let f(z) = zp +
∑∞

n=p+1 anz
n be in the class STp(α), from Definition

1.3, there exists an analytic function p ∈ P in the unit disc E with p(0) = 1
and Re{p(z)} > 0 such that

(3.1)

{
zf ′(z)− αf(z)

(p− α)f(z)

}
= p(z)

⇒ {zf ′(z)− αf(z)} = {(p− α)f(z)} p(z).

Replacing f(z), f ′(z) by their equivalent p-valent expressions and the equiva-
lent expression for p(z) in series in (3.1), we have[

z

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}
− α

{
zp +

∞∑
n=p+1

anz
n

}]

= (p− α)×

[{
zp +

∞∑
n=p+1

anz
n

}
×

{
1 +

∞∑
n=1

cnz
n

}]

Upon simplification, we obtain

(3.2) [ap+1z
p+1 + 2ap+2z

p+2 + 3ap+3z
p+3 + ...]

= (p−α)× [c1z
p+1 + (c2 + c1ap+1) z

p+2 + (c3 + c2ap+1 + c1ap+2) z
p+3 + ...]

Equating the coefficients of the like powers of zp+1, zp+2 and zp+3 respectively
on both sides of (3.2), we have

[ap+1 = (p− α)c1; 2ap+2 = (p− α) {c2 + c1ap+1} ;
3ap+3 = (p− α) {c3 + c2ap+1 + c1ap+2}]

After simplifying, we get

(3.3) [ap+1 = (p− α)c1; ap+2 =
(p− α)

2

{
c2 + (p− α)c21

}
ap+3 =

(p− α)

6

{
2c3 + 3(p− α)c1c2 + (p− α)2c31

}
]

Considering the second Hankel functional |ap+1ap+3 − a2p+2| for the function
f ∈ STp(α) and substituting the values of ap+1, ap+2 and ap+3 from the
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relation (3.3), we have

|ap+1ap+3 − a2p+2| =∣∣∣∣(p− α)c1 ×
(p− α)

6

{
2c3 + 3(p− α)c1c2 + (p− α)2c31

}
− (p− α)2

4

{
c2 + (p− α)c21

}2
∣∣∣∣

Upon simplification, we obtain

(3.4) |ap+1ap+3 − a2p+2| =
(p− α)2

12

∣∣4c1c3 − 3c22 − (p− α)2c41
∣∣

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively
from Lemma 2.2 in the right-hand side of (3.4), we have∣∣4c1c3 − 3c22 − (p− α)2c41

∣∣ =
|4c1 ×

1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x

2 + 2(4− c21)(1− |x|2)z}

− 3× 1

4
{c21 + x(4− c21)}2 − (p− α)2c41|

After simplifying, we get

(3.5) 4
∣∣4c1c3 − 3c22 − (p− α)2c41

∣∣ = |
{
1− 4(p− α)2

}
c41 + 8c1(4− c21)z+

2c21(4− c21)|x| − (c1 + 2)(c1 + 6)(4− c21)z|x|2|

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where
a, b ≥ 0 in the relation (3.5), we get

(3.6) 4
∣∣4c1c3 − 3c22 − (p− α)2c41

∣∣ ≤ |
{
1− 4(p− α)2

}
c41 + 8c1(4− c21)z+

2c21(4− c21)|x| − (c1 − 2)(c1 − 6)(4− c21)z|x|2|

Choosing c1 = c ∈ [0, 2], applying Triangle inequality and replacing | x | by µ
in the right-hand side of (3.6), it reduces to

(3.7) 4
∣∣4c1c3 − 3c22 − (p− α)2c41

∣∣ ≤ [
{
4(p− α)2 − 1

}
c4 + 8c(4− c2)+

2c2(4− c2)µ+ (c− 2)(c− 6)(4− c2)µ2]

= F (c, µ), for 0 ≤ µ = |x| ≤ 1

where

(3.8) F (c, µ) = [
{
4(p− α)2 − 1

}
c4 + 8c(4− c2) + 2c2(4− c2)µ

+ (c− 2)(c− 6)(4− c2)µ2]

We assume that the upper bound for (3.7) occurs at an interior point of the
set {(µ, c) : µ ∈ [0, 1] and c ∈ [0, 2]}.
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Differentiating F (c, µ) in (3.8) partially with respect to µ, we get

(3.9)
∂F

∂µ
= [2c2(4− c2) + 2(c− 2)(c− 6)(4− c2)µ]

For 0 < µ < 1 and for fixed c with 0 < c < 2, from (3.9), we observe that
∂F
∂µ > 0. Therefore, F (c, µ) is an increasing function of µ, which contradicts
our assumption that the maximum value of it occurs at an interior point of the
set {(µ, c) : µ ∈ [0, 1] and c ∈ [0, 2]}. Also, for a fixed c ∈ [0, 2], we have

(3.10) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say).

Therefore, replacing µ by 1 in (3.8), upon simplification, we obtain

(3.11) G(c) = 4
{
(p− α)2 − 1

}
c4 + 48

(3.12) G′(c) = 16
{
(p− α)2 − 1

}
c3

(3.13) G′′(c) = 48
{
(p− α)2 − 1

}
c2

For an optimum value of G(c), consider G′(c) = 0. From (3.12), we get

16
{
(p− α)2 − 1

}
c3 = 0. ⇒

{
(p− α+ 1)(p− α− 1)c3

}
= 0.

Since α < p ⇒ (p−α+1) ̸= 0. Therefore, we must have (p−α− 1)c3 = 0.
We now discuss the following cases.

Case 1. If (p − α) = 1 and for every c ∈ [0, 2], it is possible only when
p = 1 and α = 0, then we have G′(c) = o and G′′(c) = 0. Therefore, in this
case, we get G(c) = 48, which is a constant. For these values i.e.,for p = 1 and
α = 0, from Definition 1.3, we obtain ST1(0) = ST , for which the result can
be found in [7].

Case 2. If (p−α) ̸= 1 and c = 0, then we get G′(c) = o and G′′(c) = 0. In
this case also, we obtain G(c) = 48, which is a constant.

Therefore, From Cases 1 and 2, we conclude that the maximum value of
G(c) is 48, which occurs at c = 0. From the expression (3.11), we get

(3.14) Gmax = G(0) = 48.

From (3.7) and (3.14), upon simplification, we obtain

(3.15)
∣∣4c1c3 − 3c22 − (p− α)2c41

∣∣ ≤ 12

From (3.4) and (3.15), after simplifying, we obtain

(3.16) |ap+1ap+3 − a2p+2| ≤ (p− α)2.

This completes the proof of the theorem.
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Remark.

1) For the choice of p = 1, from (3.16), we get

|a2a4 − a23| ≤ (1− α)2(0 ≤ α ≤ 1

2
).

2) By choosing p = 1 and α = 0, from (3.16), we obtain |a2a4 − a23| ≤ 1.
This inequality is sharp and it coincides with the result of Janteng, Halim and
Darus [7].

Theorem 3.2. If

f(z) ∈ CVp(α)(0 ≤ α ≤
(
p− 1

2

)
),

with p ∈ N , then

|ap+1ap+3 − a2p+2| ≤

p2(p−α)2
[
6(p+1−α)2+(p+1)(p+3)

{
2α(α−2p)(p2+4p+1)+(2p4+8p3+3p2+4p+7)

}]
(p+ 1)(p+ 2)2(p+ 3) {2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)}

.

Proof. Let f(z) = zp +
∑∞

n=p+1 anz
n be in the class CVp(α), from Definition

1.4, there exists an analytic function p ∈ P in the unit disc E with p(0) = 1
and Re{p(z)} > 0 such that

(3.17)

{
{f ′(z) + zf ′′(z)} − αf ′(z)

(p− α)f ′(z)

}
= p(z)

⇒ {(1− α)f ′(z) + zf ′′(z)} = (p− α) {f ′(z)p(z)} .

substituting the equivalent expressions for f ′(z), f ′′(z) and p(z) in series in the
relation (3.17), we have

[
(1− α)

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}
+

z

{
p(p− 1)zp−2 +

∞∑
n=p+1

n(n− 1)anz
n−2

}]

=

[
(p− α)

{
pzp−1 +

∞∑
n=p+1

nanz
n−1

}
×

{
1 +

∞∑
n=1

cnz
n

}]

After simplifying, we get

(3.18) [(p+ 1)ap+1z
p + 2(p+ 2)ap+2z

p+1 + 3(p+ 3)ap+3z
p+2 + ...]

= (p− α)× [pc1z
p + {pc2 + (p+ 1)c1ap+1} zp+1+

{pc3 + (p+ 1)c2ap+1 + (p+ 2)c1ap+2} zp+2 + ...]
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Equating the coefficients of like powers of zp, zp+1 and zp+2 respectively on
both sides of (3.18), upon simplification, we obtain

(3.19) [ap+1 =
p(p− α)

(p+ 1)
c1; ap+2 =

p(p− α)

2(p+ 2)

{
c2 + (p− α)c21

}
;

ap+3 =
p(p− α)

6(p+ 3)

{
2c3 + 3(p− α)c1c2 + (p− α)2c31

}
]

Substituting the values of ap+1, ap+2 and ap+3 from the relation (3.19) in
the second Hankel functional |ap+1ap+3 − a2p+2| for the function f ∈ CVp(α),
we have

|ap+1ap+3 − a2p+2| =∣∣∣∣p(p− α)

(p+ 1)
c1 ×

p(p− α)

6(p+ 3)

{
2c3 + 3(p− α)c1c2 + (p− α)2c31

}
−p2(p− α)2

4(p+ 2)2
{
c2 + (p− α)c21

}2
∣∣∣∣

Upon simplification, we obtain

|ap+1ap+3 − a2p+2| =
p2(p− α)2

12(p+ 1)(p+ 2)2(p+ 3)
×

∣∣4(p+ 2)2c1c3+

6(p− α)c21c2 − 3(p+ 1)(p+ 3)c22 − (p2 + 4p+ 1)(p− α)2c41
∣∣

The above expression is equivalent to

(3.20) |ap+1ap+3 − a2p+2| =
p2(p− α)2

12(p+ 1)(p+ 2)2(p+ 3)
×∣∣d1c1c3 + d2c

2
1c2 + d3c

2
2 + d4c

4
1

∣∣ .
where

(3.21) {d1 = 4(p+ 2)2; d2 = 6(p− α);

d3 = −3(p+ 1)(p+ 3) = −3(p2 + 4p+ 3); d4 = −(p2 + 4p+ 1)(p− α)2}.

Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from
Lemma 2.2 in the right-hand side of (3.20), we have

|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

= |d1c1 ×
1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x

2 + 2(4− c21)(1− |x|2)z}+

d2c
2
1 ×

1

2
{c21 + x(4− c21)}+ d3 ×

1

4
{c21 + x(4− c21)}2 + d4c

4
1|.

After simplifying, we get

(3.22) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| = |(d1 + 2d2 + d3 + 4d4)c

4
1

+ 2d1c1(4− c21)z + 2(d1 + d2 + d3)c
2
1(4− c21)|x|−{

(d1 + d3)c
2
1 + 2d1c1 − 4d3

}
(4− c21)|x|2z|.
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Using the values of d1, d2, d3 and d4 from the relation (3.21), upon simplifica-
tion, we obtain

(3.23) {(d1 + 2d2 + d3 + 4d4) ={
−4(p2 + 4p+ 1)(p− α)2 + 12(p− α) + (p2 + 4p+ 7)

}
;

d1 = 4(p+ 2)2; (d1 + d2 + d3) = (p2 + 10p+ 7− 6α)}.

(3.24)
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
=

{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
.

Consider{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)×

[
c21 +

8(p+ 2)2

(p2 + 4p+ 7)
c1 +

12(p+ 1)(p+ 3)

(p2 + 4p+ 7)

]
.

= (p2 + 4p+ 7)×[{
c1 +

4(p+ 2)2

(p2 + 4p+ 7)

}2

− 16(p+ 2)4

(p2 + 4p+ 7)2
+

12(p+ 1)(p+ 3)

(p2 + 4p+ 7)

]
.

Upon simplification, the above expression can also be expressed as{
(p2 + 4p+ 7)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)×{c1 + 4(p+ 2)2

(p2 + 4p+ 7)

}2

−

{
2
√

p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}2
 .

(3.25)
{
(p2 + 4p+ 1)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
= (p2 + 4p+ 7)×[

c1 +

{
4(p+ 2)2

(p2 + 4p+ 7)
+

2
√
p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}]

×

[
c1 +

{
4(p+ 2)2

(p2 + 4p+ 7)
− 2

√
p4 + 8p3 + 18p2 + 8p+ 1

(p2 + 4p+ 7)

}]
.

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where
a, b ≥ 0 in the right-hand side of (3.25), upon simplification, we obtain

(3.26)
{
(p2 + 4p+ 1)c21 + 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
≥

{
(p2 + 4p+ 1)c21 − 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
.
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From the relations (3.24) and (3.26), we obtain

(3.27) −
{
(d1 + d3)c

2
1 + 2d1c1 − 4d3

}
− ≤

{
(p2 + 4p+ 1)c21 − 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
.

Substituting the calculated values from (3.23) and (3.27) in the right-hand side
of the relation (3.22), we get

(3.28) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

≤ |
{
−4(p2 + 4p+ 1)(p− α)2 + 12(p− α) + (p2 + 4p+ 7)

}
c41

+ 8(p+ 2)2c1(4− c21)z + 2(p2 + 10p+ 7− 6α)c21(4− c21)|x|
−
{
(p2 + 4p+ 1)c21 − 8(p+ 2)2c1 + 12(p+ 1)(p+ 3)

}
(4− c21)|x|2z|.

Choosing c1 = c ∈ [0, 2], applying Triangle inequality and replacing |x| by µ in
the right-hand side of (3.28), it reduces to

(3.29) 4|d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1|

≤ [
{
−4(p2 + 4p+ 1)(p− α)2 + 12(p− α) + (p2 + 4p+ 7)

}
c4

+ 8(p+ 2)2c(4− c2) + 2(p2 + 10p+ 7− 6α)c2(4− c2)µ

+
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
(4− c2)µ2]

= F (c, µ), for 0 ≤ µ = |x| ≤ 1.

where

(3.30) F (c, µ)

= [
{
−4(p2 + 4p+ 1)(p− α)2 + 12(p− α) + (p2 + 4p+ 7)

}
c4

+ 8(p+ 2)2c(4− c2) + 2(p2 + 10p+ 7− 6α)c2(4− c2)µ

+
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
(4− c2)µ2]

We assume that the upper bound for (3.29) occurs at an interior point of the set
{(µ, c) : µ ∈ [0, 1] and c ∈ [0, 2]}. Differentiating F (c, µ) in (3.30) partially
with respect to µ, we get

(3.31)
∂F

∂µ
= [2(p2 + 10p+ 7− 6α)c2(4− c2)

+ 2
{
(p2 + 4p+ 1)c2 − 8(p+ 2)2c+ 12(p+ 1)(p+ 3)

}
(4− c2)µ]

For 0 < µ < 1 , for fixed c with 0 < c < 2 and (0 ≤ α ≤
(
p− 1

2

)
), from

(3.31), we observe that ∂F
∂µ > 0. Therefore, F (c, µ) is an increasing function of

µ, which contradicts our assumption that the maximum value of it occurs at
an interior point of the set {(µ, c) : µ ∈ [0, 1] and c ∈ [0, 2]}.

Further, for a fixed c ∈ [0, 2], we have

(3.32) max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c)(say).



100 D. Vamshee Krishna, T. Ramreddy

From the relations (3.30) and (3.32), upon simplification, we obtain

(3.33) G(c) = 2[−
{
2α(α− 2p)(p2 + 4p+ 1)+

(2p4 + 8p3 + 3p2 + 4p+ 7)
}
c4

+ 24(p+ 1− α)c2 + 24(p+ 1)(p+ 3)].

(3.34) G′(c) = 2[−4
{
2α(α− 2p)(p2 + 4p+ 1)+

(2p4 + 8p3 + 3p2 + 4p+ 7)
}
c3 + 48(p+ 1− α)c].

(3.35) G′′(c) = 2[−12
{
2α(α− 2p)(p2 + 4p+ 1)+

(2p4 + 8p3 + 3p2 + 4p+ 7)
}
c2 + 48(p+ 1− α)].

The maximum or minimum value of G(c) is obtained for the values of G′(c) = 0.
From the expression(3.34), we get

(3.36) − 8c[
{
2α(α− 2p)(p2 + 4p+ 1)+

(2p4 + 8p3 + 3p2 + 4p+ 7)
}
c2 − 12(p+ 1− α)] = 0.

We now discuss the following cases.

Case 1. If c = 0, then from (3.35), we obtain

G′′(c) = 96(p+ 1− α) > 0, because α < p ⇒ (p− α) > 0.

Therefore, by the second derivative test, G(c) has a minimum value at c = 0,
which is ruled out.

Case 2. If c ̸= 0, then from (3.36), we obtain

(3.37) c2 =

{
12(p+ 1− α)

2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)

}
> 0,

for(0 ≤ α ≤
(
p− 1

2

)
)

Using the value of c2 given in (3.37) in (3.35), after simplifying, we get

G′′(c) = −192(p+ 1− α) > 0, because α < p ⇒ (p− α) > 0.

From the second derivative test, G(c) has a maximum value at c, where c2 is
given by (3.37). From the expression (3.33), we have G-maximum value at c2,
after simplifying, it is given by

(3.38) Gmax = G(c) = 48

×
[
6(p+ 1− α)2 + (p+ 1)(p+ 3)

{
2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)

}
{2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)}

]
.
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Considering only the maximum value of G(c) at c, where c2 is given by (3.37).
From the expressions (3.29) and (3.38), upon simplification, we obtain

(3.39) |d1c1c3 + d2c
2
1c2 + d3c

2
2 + d4c

4
1| ≤ 12

×
[
6(p+ 1− α)2 + (p+ 1)(p+ 3)

{
2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)

}
{2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)}

]
.

From the expressions (3.20) and (3.39), after simplifying, we get

(3.40) |ap+1ap+3 − a2p+2| ≤

p2(p−α)2
[
6(p+1−α)2+(p+1)(p+3)

{
2α(α−2p)(p2+4p+1)+(2p4+8p3+3p2+4p+7)

}]
(p+ 1)(p+ 2)2(p+ 3) {2α(α− 2p)(p2 + 4p+ 1) + (2p4 + 8p3 + 3p2 + 4p+ 7)}

.

This completes the proof of the theorem.

Remark.
1) For the choice of p = 1, from (3.40), we get

|a2a4 − a23| ≤
[
(1− α)2(17α2 − 36α+ 36)

144(α2 − 2α+ 2)

]
.

2) Choosing p = 1 and α = 0, from (3.40), we obtain |a2a4 − a23| ≤ 1
8 .

This inequality is sharp, and it coincides with the result of Janteng, Halim and
Darus [7].
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