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Abstract. The objective of this paper is to obtain an upper bound
to the second Hankel determinant |ap4+1ap+3 — a123+2\ for p-valent starlike
and convex functions of order «, using Toeplitz determinants.
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1. Introduction

Let A, (p is a fixed integer > 1) denote the class of functions f of the form
(1.1) flz)=2"+ Z anz"

in the open unit disc F = {z : |z| < 1} with p € N ={1,2,3,...}. Let S be the
subclass of A; = A, consisting of univalent functions.

In 1976, Noonan and Thomas [I3] defined the ¢** Hankel determinant of f
for ¢ > 1 and n > 1, which is stated by

(07 Ap+1 Tt a7z+q—1
An+1 Qn42 Un4q
(1.2) Hym=| 7T
Ant+q—1 Ontq " (An42¢-2

This determinant has been considered by several authors. For example, Noor
[[@] determined the rate of growth of H,(n) as n — oo for the functions in S
with a bounded boundary. Ehrenborg [d] studied the Hankel determinant of ex-
ponential polynomials. The Hankel transform of an integer sequence and some
of its properties were discussed by Layman in [d]. One can easily observe that
the Fekete-Szego functional is Ha(1). Fekete-Szego then further generalized the
estimate |ag—pa3| with p real and f € S. Ali [2] found sharp bounds on the first
four coefficients and sharp estimate for the Fekete-Szegé functional |y3 — ty3|,
where t is real, for the inverse function of f defined as f~!(w) = w+Y oo, Yow"
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to the class of strongly starlike functions of order a(0 < a < 1) denoted by

ST (a). For our discussion in this paper, we consider the Hankel determinant
in the case of ¢ = 2 and n = 2, known as second Hankel determinant

az as

(1.3) o

= |agay — d3l.

Janteng, Halim and Darus [8] have considered the functional|asas — a3| and
found a sharp bound for the function f in the subclass RT of S, consisting of
functions whose derivative has a positive real part studied by Mac Gregor [IT].
In their work, they have shown that if f € RT then |agas — a3| < 5. They [{]
also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV
and showed that |azas — a3| < 1 and |azas — aj| < % respectively. Mishra and
Gochhayat [I1] have obtained the sharp bound to the non-linear functional
lazay — a3| for the class of analytic functions denoted by Ry(a,p)(0 < p <
1,0 <A < 1,|a| < ), by making use of the fractional differential operator due
to Owa and Srivastava [[5]. They have shown that, if f € Ry(a, p) then

(1—p)2(2—-N)2(3 - )\)2005204} '

|azay — a3| < { 9

Murugusundaramoorthy and Magesh [I2] have obtained a sharp upper bound
for the functional |asay — a3| for the function f € R(«), where

R(a) = {f(Z) € A: Re {(1 - a)@ +af/(z)} >0,a>0,Vz € E] .
They have shown that if f € R(a) then |agay —a3| < {7(1+§a)2 } Recently,

Al-Refai and Darus [B] have obtained a sharp upper bound to the second Hankel
determinant |agay — a3| for the functions in the class denoted by R, (), p)(0 <
a<l,0<8<1, -3 <A< Fand 0 < p < 1), defined as

Ro g\ p) = [f(z) cA: Re{e”%} > pcosA, Vze E} ,

where ©%# is the generalized Owa-Srivastava differential operator. They have
shown that if f € Ry g(\, p) then

lagay — a%‘ < {(1 — p)2(2 — a)2(3 — a)2(2 —_ 6)2(3 _ 6)20032)\} |

324
Very recently, Abubaker and Darus [1] have obtained a sharp upper bound
to the non-linear functional |agay — a3| for a new subclass of analytic functions

denoted by R ,(0,p)(0 < p < a<1,p,0 € Ny), defined as

Rau(o,p) = [f(z) € A: Re {(D% f(2))'} > 0,forall z € E
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by making use of the linear differential operator D7/, defined by them. In
their work they have shown that

16
—a?l < '
laz04 = a5 < {9<1 +p)22(1+ p)?(1 + 20— 2ﬂ+6w>2"}

Motivated by the above mentioned results obtained by different authors in this
direction, in this paper, we obtain an upper bound to the functional |ap1ap43—
af) o] for the function f belonging to p-valent starlike and convex functions,
defined as follows.

Definition 1.1. A function f(z) € A, is said to be p-valent starlike function
(%Z) #0), if it satisfies the condition

(1.4) Re { ;J;((ZZ))} >0, Vze E.

The set of all these functions is denoted by ST},. It is observed that for p =1,
ST, reduces to ST.

Definition 1.2. A function f(z) € A, is said to be p-valent convex function,
if it satisfies the condition

1 Zf”(2)> }
1.5 Res -1+ > 0, Vz € E.
(1) HESE

The class of all these functions is denoted by C'V,,. It is observed that for p=1,
we obtain CV; = CV.

Definition 1.3. A function f(z) € A, is said to be p-valent starlike function
of order a(0 < o < p) (@ # 0), if and only if

(1.6) Re { ZJ{;S)} > a, Vz e E.

The class of all these functions was introduced by Goodman [6] and denoted
by ST,(a). It is observed that for p = 1, ST,(«) reduces to ST («), class of

starlike functions of order (0 < o < 1) and for p = 1 and o = 0, we obtain
ST, (0) = ST.

Definition 1.4. A function f(z) € A, is said to be p-valent convex function
of order a(0 < a < p), if and only if

(1.7) Re {1 + ZJ{,/;S) } > a, Vz € E.

The class of all these functions is denoted by CV, (). It is observed that for p

=1, we get CV,(a) = CV (), class of convex functions of order o(0 < o < 1)
and for p = 1 and a = 0, we obtain CV;(0) = CV. From the relations (1.6) and
(1.7), we observe that f(z) € CV,(«) if and only if # € ST,(a). Further,
we have ST,(a) C ST,(0), CV,(a) C CV,(0) and CV, () C ST, () C A,, for
0<a<np.

We first state some preliminary lemmas required for proving our results.
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2. Preliminary Results

Let P denote the class of functions p analytic in E for which Re{p(z)} > 0,

1+ chz"] Vz e FE.
n=1

Lemma 2.1 ([I6]). Ifp € P, then |ck| < 2, for each k > 1.

(2.1) p(z) =1 +ciz4+cz? +e32® +..) =

Lemma 2.2 ([6]). The power series for p given in (2.1) converges in the unit
disc E to a function in P if and only if the Toeplitz determinants

2 c1 Co oo Cn
c_1 2 c1 Tt Cpot
D, = ,n=1,23...
C-pn Copntl Cony2 - 2

and c_y, = ¢, are all non-negative. They are strictly positive except for p(z) =
S pepo(exp(ity)z), pr > 0, ty real and ty, # t;, for k # j; in this case
D, >0 forn < (m—1) and D,, =0 for n > m. This necessary and sufficient
condition is due to Caratheodory and can be found in [6].

We may assume without restriction that ¢; > 0. On using Lemma 2732, for
n = 2 and n = 3 respectively, we get

2 C1 C2
Dy=|e 2 ¢ |=[8+2Re{cica} —2]|ca|?—4ci] >0,
Cy C¢1 2

which is equivalent to

(2.2) 2cy = {ci +x(4—c2)}, for some x, |z| < 1.

2 cC1 C2 C3
1 2 ¢ e
s 1 2 ¢
C3 Cy ¢1 2

Ds3 =

Then D3 > 0 is equivalent to
(2.3) |(4cz —derca+ )4 — ) 4 c1(2c0 — 2)? <24 — ¢2)? — 2|(2¢0 — )2
From the relations (2.2) and (2.3), after simplifying, we get

(24) 4des={c +2c;4—cDx —c1(4—cD)a® +2(4 — )1 — |z*)z}

for some real value of z, with|z| < 1.
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3. Main Results

Theorem 3.1. If
f(z) € STy(a) (0 <a< ( - ;)) )

|apr1ap4s — a§+2| <(p—a)

with p € N, then

Proof. Let f(z) = 2P + 377 | an2"™ be in the class STp(«), from Definition
3, there exists an analytic function p € P in the unit disc E with p(0) = 1
and Re{p(z)} > 0 such that

S —af(5)) _
3.1) { @ a)f () }p“

= {2f'(2) = af(2)} ={(p — ) f(2)} p(2).

Replacing f(z), f'(z) by their equivalent p-valent expressions and the equiva-
lent expression for p(z) in series in (3.1), we have

n=p+1 n=p+1

{zp—i— i anz"} X {1 + icnz"}l
n=p+1 n=1

=(p—a)x

Upon simplification, we obtain

(3.2)  [app12P T+ 2a,102P T2 + 3a, 3213 + ]

=(p—a) x[e12PT 4 (co + crap41) 2P T2+ (c3 + caapy1 + crap42) 2P+ L

Equating the coefficients of the like powers of 2PT1, 2P*2 and 2P*3 respectively
on both sides of (3.2), we have

[apr1 = (p — a@)c1;2ap12 = (p — @) {c2 + crapy1};
3apts = (p — @) {c3 + c2ap41 + c10p42}]

After simplifying, we get

(33) [y = (- eriapes = L5 fer 4 (p— o))

Ap+s = (p g @) {2¢5 4+ 3(p — a)cica + (p — @)’} }]

Considering the second Hankel functional |ap41ap43 — af, 1| for the function
[ € ST,(a) and substituting the values of apt1,ap42 and apys from the
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relation (3.3), we have

‘ap-i-lap-‘r?» - ai+2| =

(p—a)
6

(p—a)ey x {2c5 4+ 3(p — a)cica + (p — @)?c}}

— 2 2
e - a))

Upon simplification, we obtain
(p—a)

B [ 4c1es — 3c3— (p— a)QCﬂ

(3.4) |ap1ap43 — a§+2| =

Substituting the values of ¢z and ¢3 from (2.2) and (2.4) respectively
from Lemma P72 in the right-hand side of (3.4), we have

’40103 - 303 —(p— a)Qc‘H =

1
[4eq x 1{6? +2c1(4—c)x —c1(4—c)x? +2(4 — ) (1 — |z)?)2}
1
3 - ) - (o - )]
After simplifying, we get
(3.5) 4|dcics — 3¢5 — (p— a)QCﬂ =[{1-4(p - a)?} ¢l +8c1(4—c2)z+
2¢1(4 — Y)lz| = (c1 +2)(e1 + 6)(4 = ¢f) 2|z
Since ¢; € [0,2], using the result (¢; + a)(c1 +b) > (1 — a)(ey — b), where
a,b > 0 in the relation (3.5), we get
(3.6) 4 ’40103 —3c3—(p— a)zcﬂ <|{1-4(p—a)*} ] +8c1(4 — c})z+
2¢i (4 = cf)lz| = (c1 = 2)(c1 = 6)(4 — ¢f)z[a]?|

Choosing ¢; = ¢ € [0,2], applying Triangle inequality and replacing | = | by u
in the right-hand side of (3.6), it reduces to
(3.7) 4 ’46103 =33 — (p—)’ct| <[{4lp—)® =1} ¢* +8c(4 - )+
224 — ) + (¢ — (e — B)(4 — )]
— Flep), for 0<p=lz/<1

where
(38) F(e,u) =[{d(p—a)? =1} c* +8c(4 — ?) + 2 (4 — )
+(c=2)(c—6)(4 - )’

We assume that the upper bound for (3.7) occurs at an interior point of the
set {(p,¢) : p€[0,1] and c€]0,2]}.
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Differentiating F'(c, u) in (3.8) partially with respect to u, we get

OF
(3.9) i =[2¢%(4 — *) +2(c — 2)(c — 6)(4 — )]
For 0 < p < 1 and for fixed ¢ with 0 < ¢ < 2, from (3.9), we observe that
% > 0. Therefore, F(c, ) is an increasing function of p, which contradicts
our assumption that the maximum value of it occurs at an interior point of the
set {(u,¢) : p€10,1] and c€0,2]}. Also, for a fixed ¢ € [0, 2], we have

(3.10) Joax, F(e, 1) = F(e,1) = G(e)(say).

Therefore, replacing p by 1 in (3.8), upon simplification, we obtain

(3.11) Gle)=4{(p—a)*—1}c* +48
(3.12) G'(c) =16 {(p— a)* — 1} ¢
(3.13) G"(c) =48 {(p— a)* — 1} ¢

For an optimum value of G(c), consider G’(¢) = 0. From (3.12), we get
16{(p—a)’ -1} =0.={(p—a+1)(p—a-1)c"} =0.
Since @ < p = (p — a+ 1) # 0. Therefore, we must have (p —a —1)c® = 0.
We now discuss the following cases.

Case 1. If (p — a) = 1 and for every ¢ € [0,2], it is possible only when
p =1 and o = 0, then we have G’(¢) = o and G”(¢) = 0. Therefore, in this
case, we get G(c) = 48, which is a constant. For these values i.e.,for p =1 and
a = 0, from Definition I3, we obtain ST;(0) = ST, for which the result can
be found in [[].

Case 2. If (p—a) # 1 and ¢ = 0, then we get G'(¢) = 0o and G"(¢) =0. In
this case also, we obtain G(c) = 48, which is a constant.

Therefore, From Cases 1 and 2, we conclude that the maximum value of
G(c) is 48, which occurs at ¢ = 0. From the expression (3.11), we get

(3.14) Gmas = G(0) = 48.

From (3.7) and (3.14), upon simplification, we obtain
(3.15) [eres — 3c3 — (p— a)2c‘11| <12
From (3.4) and (3.15), after simplifying, we obtain
(3.16) |apr1ap4s — a§+2| <(p-a)

This completes the proof of the theorem. O
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Remark.
1) For the choice of p = 1, from (3.16), we get

lazas — a3 < (1-a)*(0<a <

)-

N |

2) By choosing p =1 and « = 0, from (3.16), we obtain |agay —a3| < 1.
This inequality is sharp and it coincides with the result of Janteng, Halim and
Darus [[].

Theorem 3.2. If

with p € N, then

lapt1apts — aio| <
p2(p—)? [6(p+1—a)?+(p+1)(p+3) {2a(a—2p) (p? +4p+1) + (2p* +8p® +3p2 +4p+7) }]
(p+1)(p+2)%2(p+ 3) {20(cx — 2p)(p?> + 4p+ 1) + (2p* + 8p® + 3p2 + 4p+ 7)}

Proof. Let f(z) = 2P 4+ 37" .| a,z" be in the class CV,(a), from Definition
3, there exists an analytic function p € P in the unit disc E with p(0) = 1
and Re{p(z)} > 0 such that

= p(2)

(3.17) { {f'(z) +2f"(2)} — af'(?) }

(p—a)f'(2)
= {1 =a)f'(z) +21"(2)} = (p — ) {{'(2)p(2)} .

substituting the equivalent expressions for f'(z), f”(z) and p(z) in series in the
relation (3.17), we have

[(1 —a) {pzpl + i nanznl} +

:p-l,-l

{ (p—1)2P"2 + Z (n = 1)anz —2}]

n=p+1

= [(Pa {PZP L+ Zﬂnan }x {1+Z:1cnz”}]

After simplifying, we get

(3:18)  [(0+ Daps12” +2(p + 2)aps22P T 4 3(p + 3)apy 32"+ + ]
= (p— ) x [pe1z? + {pea + (0 + Derapia} 2P+
{pes + (0 + Deaaps1 + (p+2)crapp2} 2742 4 ]
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Equating the coefficients of like powers of 2P, zP*! and zP*2 respectively on
both sides of (3.18), upon simplification, we obtain

(3.19)  [ap+1 = mcl;%w = 12)((1)” {24+ (p— )T}
Apts = 1;((]9—’_3 {2¢5 +3(p — @)crca + (p 2ct}]

Substituting the values of a,11,ap12 and apys from the relation (3.19) in
the second Hankel functional |apq1a,43 — a2 | for the function f € CV,(«),
we have

|apy1ap3 — apy o] =
p(p — ) o x p(p —
(p+1) 6(p+3

{263 +3(p— a)cica + (p }

2
pi(p—
_4(p+22 {2+ -y}

Upon simplification, we obtain
‘a 1pis — | _ p2<p - 04)2
pH1drt = Ay 12(p+1)(p +2)(p +3)
6(p — a)ciea = 3(p+ 1)(p +3)c5 — (0* +4p + 1)(p — )]

X ‘4(}) + 2)20103+

The above expression is equivalent to
p’(p — a)? "
12(p+1)(p+2)2(p + 3)
‘dlclcg + dQC%CQ + dgcg + Cl40‘1l .

(3.20) |apt1apts — a12,+2| =

where
(321) {di =4(p+2)*dy =6(p— a);
ds=-3(p+1)(p+3)=-30°+4p+3);ds = —(p> +4p + 1)(p — a)?}.

Substituting the values of ¢ and ¢z from (2.2) and (2.4) respectively from
Lemma P2 in the right-hand side of (3.20), we have

\dlclcg —+ dQC%CQ —+ dgCg —+ d4C?|
1
= |dicy % Z{c‘i’ +2c1(4—c)r—c1(4—c)x? +2(4 — D)1 — |z|*)2}+
1 1
doc? x 5{6% +z(4—c3)) +ds x Z{C:{ + (4 — )2 + duci).
After simplifying, we get

(3.22)  4|dicics + dacicy + dzci + dact| = |(dy + 2dg + ds + 4dy)ci
+2dyc1(4 — )z 4+ 2(dy + dy + d3)ci (4 — 2)|z|—
{(d1 +d3)ci +2dyc1 — 4ds} (4 — ¢F)|z[?z].
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Using the values of di, da, d3 and dy4 from the relation (3.21), upon simplifica-
tion, we obtain

(3.23) {(d1+2ds +ds +4dy) =
{~4@® +4dp+Dp—-a)? +12(p—a) + (P> +4p+7)};
dy = 4(p +2)% (dy + d2 + d3) = (p° + 10p+ 7 — 6a)}.

(324) {(dl + dg)C% + 2d101 — 4d3}
={(P* +4p+T7)ci +8(p+2)%c1 +12(p+1)(p+3)}.

Consider

{®P* +4p+T)ci +8(p+2)%ci + 12(p+ 1)(p+ 3)}

8(p+2)2 . 12(p+1)(p+3)}
P +4p+7) T (PP +Ap+T)

=(p2+4p+7)>< |:C%+

= (p® +4p+T7)x
l{c A(p +2)? }2 160 +2)* 120+ )(p+3)
P (

p?+4p+7) p?+4p+7)2 (P> +4p+7)

Upon simplification, the above expression can also be expressed as

{* +ap+7)cd +8(p+2)%c + 120+ 1)(p+3) } = (p° +4p + T)x

2
{C . 4(p+2)? }2_ 2/ + 8p + 18p% + 8p + 1
TRt ap+ ) (P +4p+7)

(325) {(®* +4p+1)ci +8(p+2)%ci +12(p+1)(p+3)}
= (p? +4p+T7)x

N A(p +2)? 24/pt +8p3 + 18p2 +8p + 1
Y2+ 4p+T) (P +4p+7)

X

p2+4p+17) (p2+4p+7)

. +{ Ap+2)? 2 pi 18P +18p2 +8p+1
) _
(

Since ¢; € [0, 2], using the result (¢1 + a)(c1 +b) > (1 — a)(cr — b), where
a,b > 0 in the right-hand side of (3.25), upon simplification, we obtain

(326) {(®* +4p+1)ci +8(p+2)%ci +12(p+1)(p+3)}
>{(p* +4p+1)cf —8(p+2)°c1 +12(p+ 1)(p+3)}.
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From the relations (3.24) and (3.26), we obtain

(327) — {(dl + d3)C% + 2dic1 — 4d3}
—<{(P*+4p+1)c] —8(p+2)%c1 + 120+ 1)(p+3)} .

Substituting the calculated values from (3.23) and (3.27) in the right-hand side
of the relation (3.22), we get

(3.28) 4|dycics + dacicy + dzci + dyct
<{H4@* +4p+Dp—a)’ +12(p — ) + (p° +4p+T)} ]
+8(p+2)%c1(4 — )z +2(p* 4+ 10p + 7 — 6a)ci (4 — c3) ||
@ +ap+1E —8(p+2)%c + 120+ 1)(p +3)} (4 — )] 2.

Choosing ¢; = ¢ € [0, 2], applying Triangle inequality and replacing |z| by u in
the right-hand side of (3.28), it reduces to

(3.29)  4|dicics + docicy + dzci + dyct
<{-4@*+4p+1)p—a)+12(p—a)+ (P> +4p+T7)} !
+8(p+2)%c(d — ) +2(p* + 10p + 7 — 6a)c*(4 — *)u
+{(P* +4p+1)c® = 8(p +2)%c + 12(p + 1) (p +3) } (4 — ¢*)u’]
=F(c,p), for 0<p=|z| <L

where

(3.30) Fle,p)
={-4@* +4p+Dp—a)’ +12(p - ) + (0* +4p +7)} *
+8(p+2)%c(d — ) +2(p* + 10p + 7 — 6a)c*(4 — *)u
+{@* +4p+ 1) = 8(p+2)%c+ 120+ 1)(p +3) } (4 — *)p”]
We assume that the upper bound for (3.29) occurs at an interior point of the set

{(pt,¢) : p€10,1] and c€[0,2]}. Differentiating F'(c, x) in (3.30) partially
with respect to u, we get

(3.31) Z—F = [2(p? + 10p + 7 — 6a)c*(4 — %)
w

+2{(pP*+4p+1)* —8(p+2)°c+12(p+ 1)(p+3)} (4 — )y

For 0 < p < 1, for fixed ¢ with 0 < ¢ < 2 and (0 < a < @,%))7 from
(3.31), we observe that % > 0. Therefore, F(c, u) is an increasing function of
1, which contradicts our assumption that the maximum value of it occurs at
an interior point of the set {(y,c) : p €[0,1] and ¢ € 0,2]}.

Further, for a fixed ¢ € [0, 2], we have
(3.32) max F(c,u) = F(e,1) = G(c)(say).

0<u<l1
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From the relations (3.30) and (3.32), upon simplification, we obtain

(3.33) G(c) =2[- {2a(a—2p)(p* + 4p + 1)+
(2p" +8p° +3p* +4p+ 1)}
+24(p+1 —a)c® 4+ 24(p + 1)(p + 3)].

(3.34) G'(c) =2[-4{2a(a —2p)(p* +4p+ 1)+
(2p* +8p® +3p* +4p+ 1)} & +48(p+ 1 — a)d].

(3.35) G"(c) =2[—12{2a(a —2p)(p* + 4p + 1)+
(2p* +8p° +3p* +4p+ 1)} +48(p+ 1 — a)).

The maximum or minimum value of G(c) is obtained for the values of G’(¢) = 0.
From the expression(3.34), we get

(3.36) — 8c[{2a(a —2p)(p* +4p + 1)+
(2p* + 8p® + 3p? +4p+7)}02 —12(p+1—a)]=0.

We now discuss the following cases.
Case 1. If ¢ = 0, then from (3.35), we obtain

G"(c)=96(p+1—a) >0, because a<p= (p—a)>0.
Therefore, by the second derivative test, G(c¢) has a minimum value at ¢ = 0,

which is ruled out.
Case 2. If ¢ # 0, then from (3.36), we obtain

(3.37) &= 12(p+1=a) } 0,

{za(a —2p)(p? +4p+ 1)+ (2p* +8p3 +3p2 +4p+7)
1
for(0 < a< (p— 2>)

Using the value of ¢? given in (3.37) in (3.35), after simplifying, we get

G"(c)=-192(p+1—a) >0, because a<p= (p—a)>0.

From the second derivative test, G(c) has a maximum value at ¢, where ¢? is

given by (3.37). From the expression (3.33), we have G-maximum value at c?,
after simplifying, it is given by
(3.38)  Gmax = G(c) = 48

o 6(p+1—a)?+(p+1)(p+3){20(—2p) (P> +4p+ 1) + (2p* + 8p> + 3p2 + 4p+ 7)}
{2a(a —2p)(p% +4p+ 1) + (2p* +8p3 +3p2 +4p+ 7)}
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Considering only the maximum value of G(c) at ¢, where ¢? is given by (3.37).
From the expressions (3.29) and (3.38), upon simplification, we obtain
(3.39) |d16163 -+ dgc%cz =+ d3C§ + d4czll| <12

|61 )+ (p+ 1)(p + 3) {2a(a — 2p)(p? + 4p + 1) + (2p* +8p® + 3p? +4p+7)}
{2a(ar — 2p)(p? +4p + 1) + (2p* + 8p3 +3p2 +4p +7)}

From the expressions (3.20) and (3.39), after simplifying, we get

(3.40)  |apt+1apts — ap | <
p*(p—a)? [6(p+1—a)?+(p+1)(p+3) {2a(a—2p) (p? +4p+1)+(2p* +8p® +3p? +4p+7) }]
(p+1)(p+2)%(p + 3) {20( — 2p) (p? + 4p + 1) + (2p* + 8p% + 3p2 + 4p+ 7)}

This completes the proof of the theorem. O

Remark.
1) For the choice of p = 1, from (3.40), we get

(1 - a)?(17a2 — 36 + 36)
144(a? — 200 + 2)

|azay — a3| <

2) Choosing p =1 and « = 0, from (3.40), we obtain |agay — a3| < %.
This inequality is sharp, and it coincides with the result of Janteng, Halim and
Darus [].
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