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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a probability
space (Ω,F , P ). Define

Sn =

n∑
k=1

Xk.

A sequence {Xn, n ≥ 1} is said to converge completely to a constant A if

∞∑
n=1

P (|Xn −A| > ϵ) < ∞, for all ϵ > 0.

This notion was first introduced and discussed by Hsu and Robbins in [3].
They proved that the sequence of arithmetic means of independent, identically
distributed (i.i.d.) random variables converges completely to the expected value
of summands, provided the variance is finite.

The result proved by Hsu and Robbins [3] was further generalized and
extended by many authors (see e.g. [1, 2, 4]). Katz [4], Baum and Katz [1]
formed the following generalization, with a normalization of Marcinkiewicz-
Zygmund type (see [2]):

Theorem 1.1. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables. Let
rp ≥ 1, r > 1

2 . The following statements are equivalent:

(i) E |X1|p < ∞, and, if p ≥ 1, EX1 = 0,

(ii)
∑∞

n=1 n
rp−2P (|Sn| > nrϵ) < ∞ for all ϵ > 0,

(iii)
∑∞

n=1 n
rp−2P (max1≤k≤n |Sk| > nrϵ) < ∞ for all ϵ > 0.

If rp > 1 and r > 1
2 the above statements are also equivalent
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(iv)
∑∞

n=1 n
rp−2P

(
supk≥n k

−r |Sk| > ϵ
)
< ∞ for all ϵ > 0.

Sometimes, in practical applications, it is difficult to verify the assumption
that the samples are independent observations. For this reason, in the recent
years the limit theorems for sequences of dependent random variables have
been considered.

Peligrad and Gut [11] extended Theorem 1.1 to the case of a ρ∗-mixing
sequence, i.e., the sequence of random variables {Xn, n ≥ 1} satisfying the
condition

ρ∗ (n) → 0, as n → ∞,

where

ρ∗ (n) = sup
S,T

{
sup

X∈L2(FS),Y ∈L2(FT )

Cov (X,Y )√
V arXV arY

}
,

S, T ⊂ N such that dist (S, T ) ≥ k and FW is the σ-algebra generated by
random variables Xi, i ∈ W ⊂ N.

Peligrad [9, 10] and Kiesel [5, 6] extended Theorem 1.1 to the case of a ϕ-
mixing sequence, i.e., the sequence of random variables {Xn, n ≥ 1} satisfying
the condition

ϕ (n) → 0, as n → ∞,

where

ϕ (n) = sup

{∣∣∣∣P (AB)

P (A)
− P (B)

∣∣∣∣ : k ≥ 1, A ∈ Fk
1 , B ∈ F∞

k+n, P (A) ̸= 0

}
,

and Fk
j is the σ-algebra generated by random variables Xl, l = j, . . . , k.

The results in [5, 6, 9, 10, 11] were proved for the sequences of identically
distributed (i.d.) random variables. In [12], Pruss introduced the notion of reg-
ular cover which allowed him to consider non-identically distributed sequences
of random variables.

Definition 1. Let X1, X2, . . . , Xn be random variables, and let X be a random
variable possibly defined on a different probability space. Then, X1, X2, . . . , Xn

are said to be a regular cover of X, provided we have

(1) E (G (X)) =
1

n

n∑
k=1

E (G (Xk)) ,

for any measurable function G for which both sides make sense.

Using this concept, Pruss [12] obtained a generalization of the Hsu-Ribbins
theorem for a sequence of non-identically distributed random variables. Re-
cently, Kuczmaszewska [7], using a weaker cover condition

(2)
1

n

n∑
k=1

P (|Xk| > x) = cP (|X| > x) ,

obtained a generalization of the Baum-Katz theorem for negatively associated
random variables.
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Definition 2. A finite family of random variables {Xi, 1 ≤ i ≤ n} is said to
be negatively associated if for every pair of disjoint nonempty subset A,B ∈
{1, . . . , n} and any real coordinatewise nondecreasing functions f and g

Cov (f (Xi ∈ A) , g (Xj , j ∈ B)) ≤ 0,

whenever f and g are such that the covariance exists. An infinite family of
random variables is negatively associated if every finite subfamily is negatively
associated.

The aim of this paper is to prove a generalization of the Baum-Katz theorem
for ϕ-mixing sequences of random variables with different distributions satisfy-
ing condition (2). Using the inequalities proved by Nagaev [8], we improve the
results obtained by Peligrad [9, 10] and Kiesel [5, 6].

2. Some technical lemmas

Let {Xn, n ≥ 1} be a sequence of ϕ-mixing random variables defined on
a probability space (Ω,F , P ). Let us define the partial sums Sn =

∑n
k=1 Xk,

Mn = max1≤k≤n |Sk|, and let Fk
j denote σ-algebra generated by random vari-

ables Xl, l = j, . . . , k. Define

ϕ+ (m)=sup

{
P (AB)

P (A)
− P (B) :1 ≤ k ≤ n−m,A ∈ Fk

1 , B ∈ Fn
k+m, P (A) ̸=0

}
and

ϕ− (m)=sup

{
P (B)− P (AB)

P (A)
:1 ≤ k ≤ n−m,A ∈ Fk

1 , B ∈ Fn
k+m, P (A) ̸=0

}
.

Let ϕ+ (1) < 1 and let δ > 0 satisfy the condition ϕ+ (1) + δ < 1. Define
ρ = ϕ+ (1) + δ. Let α be a number such that the condition

P (2Mn > α) < δ

is satisfied. Define

Q (r) =
n∑

i=1

P (|Xi| > r) .

Using the above notation, Nagaev [8] proved the following maximal inequalities.

Lemma 1. For any r > α and 0 < ε < 1
6 ,

P (Mn > r) <
2

αρ

∫ r

0

Q

(
rαε2

2u

)
du

(1 + εu/α)
s(ε)+1

+ ρ−1
(
1 +

εr

α

)−s(ε)

,

where s (ε) = − log ρ/ log (1 + ε).

Lemma 2. For any p > 0 and 0 < ε < 1
6 such that s (ε) > p,

EMp
n < c1 (p)

n∑
i=1

E |Xi|p + c2 (p)α
p,
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where

c1 (p) < 2p+1

ε3p+1ρB (p+ 1, s (ε)− p+ 1) ,(3)

c2 (p) < ρ−1ε−pB (p+ 1, s (ε)− p) p+ 1,

and B (·, ·) is the Euler function.

Lemma 3. Let the random variables Xj take real values and let EXj = 0.
Then for p > 2 and 0 < ε < 1

6 , such that s (ε) > p,

EMp
n < c1 (p)

n∑
k=1

EXp
k + c′2 (p)

(
n∑

k=1

EX2
k

)p/2

,

where c′2 (p) = cp (p) (32c (ϕ) / ((1− ϕ− (1)) (1− ϕ+ (1))))
p/2

,
c (ϕ) =

(
1 + 2

∑∞
k=1 ϕ

1/2 (k)
)
, c1 (p) and c2 (p) satisfying the conditions (3).

As it was pointed out by Nagaev [8], if
∑∞

k=1 ϕ
1/2 (k) < ∞ and EXj = 0

for j = 1, . . . , n, then

(4) E |Sn|2 < c (ϕ)
n∑

j=1

EX2
j .

In our considerations we will also need the following lemma.

Lemma 4. (Gut [2]) Let {Xn, n ≥ 1} be a sequence of random variables satis-
fying a weak mean dominating condition with mean dominating random variable
X, i.e. for some c > 0

1

n

n∑
k=1

P (|Xk| > x) ≤ cP (|X| > x) .

Let r > 0 and for some A > 0

X ′
k = XkI (|Xk| ≤ A) , X ′′

k = XkI (|Xk| > A) ,

X∗
k = XkI (|Xk| ≤ A)−AI (Xk < −A) +AI (Xk ≤ A)

and
X ′ = XI (|X| ≤ A) , X ′′ = XI (|X| > A) ,

X∗ = XI (|X| ≤ A)−AI (X < −A) +AI (X ≤ A) .

Then

(i) if E |X|r < ∞, then 1
n

∑n
k=1 E |Xk|r ≤ CE |X|r,

(ii) 1
n

∑n
k=1 E |X ′

k|
r ≤ C

(
E |X ′|r +ArP (|X| > A)

)
for any A > 0,

(iii) 1
n

∑n
k=1 E |X ′′

k |
r ≤ CE |X ′′|r for any A > 0,

(iv) 1
n

∑n
k=1 E |X∗

k |
r ≤ CE |X∗|r for any A > 0.

Throughout this paper, C1 and C2 always stand for positive constants which
differ from one place to another.
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3. Main result

Theorem 3.1. Let rp > 1 and r > 1
2 . Let {Xn, n ≥ 1} be a sequence of

ϕ-mixing random variables with
∑∞

k=1 ϕ
1/2 (k) < ∞ and let X be a random

variable possibly defined on a different probability space satisfying the condition

(5)
1

n

n∑
k=1

P (|Xk| > x) = cP (|X| > x) ,

for all n ≥ 1, all x > 0 and some c > 0. Additionally, assume that for all
p ≥ 1, EXn = 0 for all n ≥ 1. For p > 0 and any 0 < ε < 1

6 such that
s (ε) > p, the following statements are equivalent:

(i) E |X|p < ∞,

(ii)
∑∞

n=1 n
rp−2P (max1≤k≤n |Sk| > βnr) < ∞, for all β > 0.

Corollary 1. Let rp > 1 and r > 1
2 . Let {Xn, n ≥ 1} be a sequence of ϕ-

mixing i.d. random variables with
∑∞

k=1 ϕ
1/2 (k) < ∞. Moreover, assume that

for all p ≥ 1, EX1 = 0. For any p > 0, 0 < ε < 1
6 such that s (ε) > p, the

following statements are equivalent:

(i) E |X1|p < ∞,

(ii)
∑∞

n=1 n
rp−2P (max1≤k≤n |Sk| > βnr) < ∞, for all β > 0.

Proof of Theorem 3.1: First we prove that (i) ⇒ (ii). For this purpose
we distinguish two cases.

Case 0 < p < 1. Note that

Xi = XiI (|Xi| ≤ nr) +XiI (|Xi| > nr) = X ′
i +X ′′

i

and

Sn =
n∑

i=1

XiI (|Xi| ≤ nr) +
n∑

i=1

XiI (|Xi| > nr) = S′
n + S′′

n.

By Lemma 1 and (5) we obtain

∞∑
n=1

nrp−2P

(
max
1≤i≤n

|S′
n| > βnr

)

≤ C1

∞∑
n=1

nrp−2

∫ βnr

0

n∑
i=1

P
(
|X ′

i| >
βnrαε2

2u

)
du

(1 + εu/α)
s(ε)+1

+ C2

∞∑
n=1

nrp−2

(
1 +

εβnr

α

)−s(ε)

≤ C1

∞∑
n=1

nrp−2

∫ βnr

0

n∑
i=1

P
(
|X ′

i| >
βnrαε2

2u

)
du

(1 + εu/α)
s(ε)+1

+ C2

∞∑
n=1

nrp−2−s(ε)r = I1 + I2.
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Because for any 0 < ε < 1
6 , s (ε) > p, we have that I2 < ∞. Therefore, we have

to prove that I1 < ∞. Indeed, let x = βnrαε2

2u , then

I1 ≤ C1

∞∑
n=1

nrp−2

∫ βnr

0

n∑
i=1

P
(
|X ′

i| >
βnrαε2

2u

)
du

(εu/α)
s(ε)+1

≤ C1

∞∑
n=1

nrp−2−s(ε)r
n∑

i=1

∫ ∞

2/αε2
xs(ε)−1P (|X ′

i| > x) dx

≤ C1

∞∑
n=1

nrp−2−s(ε)r
n∑

i=1

∫ ∞

0

xs(ε)−1P (|X ′
i| > x) dx.

By (5) we have

I1 ≤ C1

∞∑
n=1

nrp−1−s(ε)r

∫ nr

0

xs(ε)−1P (|X| > x) dx

≤ C1

∞∑
n=1

nrp−1−s(ε)r
n∑

k=1

∫ kr

(k−1)r
xs(ε)−1P (|X| > x) dx

= C1

∞∑
k=1

∫ kr

(k−1)r
xs(ε)−1P (|X| > x) dx

∞∑
n=k

nrp−1−s(ε)r

≤ C1

∞∑
k=1

krp−s(ε)r

∫ kr

(k−1)r
xs(ε)−1P (|X| > x) dx.

As s (ε) > p, we finally get

I1 ≤ C1

∞∑
k=1

krp−s(ε)r · ks(ε)r−rp

∫ kr

(k−1)r
xp−1P (|X| > x) dx

≤ C1

∞∑
k=1

∫ kr

(k−1)r
xp−1P (|X| > x) dx = E |X|p < ∞.

Similarly, we show that

∞∑
n=1

nrp−2P

(
max
1≤i≤n

|S′′
n| > βnr

)
< ∞.
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Indeed,

∞∑
n=1

nrp−2P

(
max
1≤i≤n

|S′′
n| > βnr

)

≤ C1

∞∑
n=1

nrp−2

∫ βnr

0

n∑
i=1

P
(
|X ′′

i | >
βnrαε2

2u

)
du

(1 + εu/α)
s(ε)+1

+ C2

∞∑
n=1

nrp−2

(
1 +

εβnr

α

)−s(ε)

≤ C1

∞∑
n=1

nrp−2

∫ βnr

0

n∑
i=1

P
(
|X ′′

i | >
βnrαε2

2u

)
du

(1 + εu/α)
s(ε)+1

+ C2

∞∑
n=1

nrp−2−s(ε)r = I3 + I4.

Because s (ε) > p, we have that I4 < ∞. It remains to prove that I3 < ∞. Let

x = βnrαε2

2u , then

I3 = C1

∞∑
n=1

nrp−2−s(ε)r
n∑

i=1

∫ ∞

2/αε2
xs(ε)−1P (|X ′′

i | > x) dx

≤ C1

∞∑
n=1

nrp−2−s(ε)r
n∑

i=1

∫ ∞

0

xs(ε)−1P (|X ′′
i | > x) dx

= C1

∞∑
n=1

nrp−2−s(ε)r
n∑

i=1

∫ ∞

nr

xs(ε)−1P (|Xi| > x) dx.

Because s (ε) > p, for any 0 < ε < 1
6 , by (5) we have

I3 ≤ C1

∞∑
n=1

nrp−1−s(ε)r

∫ ∞

nr

xs(ε)−1P (|X| > x) dx

= C1

∞∑
n=1

nrp−2−s(ε)p
∞∑

k=n

∫ (k+1)r

kr

xs(ε)−1P (|X| > x) dx

= C1

∞∑
k=1

∫ (k+1)r

kr

xs(ε)−1P (|X| > x) dx

k∑
n=1

nrp−1−s(ε)p

≤ C1

∞∑
k=1

krp−s(ε)p

∫ (k+1)r

kr

xs(ε)−1P (|X| > x) dx

≤ C1

∞∑
k=1

krp−s(ε)p · ks(ε)p−rp

∫ (k+1)r

kr

xp−1P (|X| > x) dx

≤ E |X|p .

By the condition (i),
I3 < ∞,
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which yields (ii) in the case of 0 < p < 1.

Case p ≥ 1.

Let us define X ′
ni = −nrI (Xi < −nr) + XiI (|Xi| ≤ nr) + nrI (Xi > nr),

for 1 ≤ i ≤ n, Yni = X ′
ni − EX ′

ni and S′
n,k =

∑k
i=1 Y

′
ni, for 1 ≤ k ≤ n.

Noting that EXI (|X| ≤ nr) = −EXI (|X| > nr), in view of the fact that
EX = 0, by Lemma 4 (iii) we have

max
1≤k≤n

∣∣∣∣∣
k∑

i=1

EXiI (|Xi| ≤ nr)

∣∣∣∣∣ ≤ max
1≤k≤n

k∑
i=1

EXiI (|Xi| > nr)

=
1

nr−1
EXI (|X| > nr)

≤ C
E |X|p

nrp−1
→ 0 as n → ∞,

because rp > 1.

Additionally, by the Markov inequality and (5), for 1 ≤ k ≤ n, we have∣∣∣∣∣ 1nr

k∑
i=1

(nrP (Xi > nr)− nrP (Xi < −nr))

∣∣∣∣∣ ≤ 1

nr

k∑
i=1

nrP (|Xi| > nr)

≤ CnP (|X| > nr)

≤ CE |X|p

nrp−1
→ 0,

as n → ∞ and rp > 1.

Hence, for a sufficiently large n we obtain

∞∑
n=1

nrp−2P

(
max

1≤k≤n
|Sk| > βnr

)
≤

∞∑
n=1

nrp−2P

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)

+

∞∑
n=1

nrp−2P

(
max
1≤i≤n

|Xi| > nr

)

≤
∞∑

n=1

nrp−2P

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)

+
∞∑

n=1

nrp−2
n∑

k=1

P (|Xk| > nr) .

Note that by (5) and (i), the second series on the right-hand side converges.
Therefore, it remains to show that

(6)

∞∑
n=1

nrp−2P

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)
< ∞.

By the Markov inequality and Lemma 2, for a sufficiently large q > 2 and any
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0 < ε < 1
6 such that s (ε) > q, we have

∞∑
n=1

nrp−2P

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)
≤

∞∑
n=1

nrp−2−qrE

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)q

≤ C1

∞∑
n=1

nrp−2−qr
n∑

i=1

E |X ′
ni|

q

+ C2

∞∑
n=1

nrp−2−qr

= I5 + I6.

For q > p, we obtain that I6 < ∞. By (5) we have that

I5 = C1

∞∑
n=1

nrp−2−qr
n∑

i=1

E |X ′
ni|

q

= C1

∞∑
n=1

nrp−2−qr
n∑

i=1

∫ ∞

0

xq−1P (|X ′
ni| > x) dx

≤ C1

∞∑
n=1

nrp−2−qr
n∑

i=1

∫ nr

0

xq−1P (|Xni| > x) dx

≤ C1

∞∑
n=1

nrp−1−qr

∫ nr

0

xq−1P (|X| > x) dx.

Hence, for q > p we have

I5 ≤ C1

∞∑
n=1

nrp−1−qr

∫ nr

0

xq−1P (|X| > x) dx

= C1

∞∑
n=1

nrp−1−qr
n∑

i=1

∫ ir

(i−1)r
xq−1P (|X| > x) dx

= C1

∞∑
i=1

∫ ir

(i−1)r
xq−1P (|X| > x) dx

∞∑
n=i

nrp−1−qr

≤ C1

∞∑
i=1

∫ ir

(i−1)r
xq−1P (|X| > x) dx

∞∑
n=i

nrp−1−qr

≤ C1

∞∑
i=1

irp−qr

∫ ir

(i−1)r
xq−1P (|X| > x) dx

≤ C1

∞∑
i=1

irp−qr · iqr−rp

∫ ir

(i−1)r
xp−1P (|X| > x) dx

= C1

∞∑
i=1

∫ ir

(i−1)r
xp−1P (|X| > x) dx = E |X|p .

By (i) we obtain
I5 < ∞,
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which gives (ii) in the case of p ≥ 1.

Now, we prove the converse. To prove that (ii) implies (i), it suffices to
show that

∞∑
n=1

nrp−1P (|X| > βnr) < ∞.

From (ii), it follows that

(7)
∞∑

n=1

nrp−2P

(
max

1≤k≤n
|Xk| > nr

)
< ∞

and

(8) P

(
max

1≤k≤n
|Xk| > βnr

)
→ 0.

From the relation

n∑
k=1

P

(
|Xk| > nr, max

1≤i≤n
|Xi| ≤ nr

)
≤ P

(
max
1≤i≤n

|Xi| > nr

)

and (5), we obtain

nP (|X| > nr) =

n∑
k=1

P (|Xk| > nr)

=
n∑

k=1

P

(
|Xk| > nr, max

1≤i≤n
|Xi| > nr

)

+
n∑

k=1

P

(
|Xk| > nr, max

1≤i≤n
|Xi| ≤ nr

)

≤
n∑

k=1

P

(
|Xk| > nr, max

1≤i≤n
|Xi| > nr

)
(9)

+ P

(
max
1≤i≤n

|Xi| > nr

)
.

Let J =
∑n

k=1 P (|Xk| > nr,max1≤i≤n |Xi| > nr). By centering we obtain that

J ≤ E

{
n∑

k=1

[I (|Xk| > nr)− P (|Xk| > nr)] I

(
max
1≤i≤n

|Xi| > nr

)}

+ nP

(
max
1≤i≤n

|Xi| > nr

)
P (|X| > nr) = I7 + I8.(10)
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By the Cauchy-Schwarz inequality and (4), I7 can be estimated as

|I7| ≤

√√√√E

(
n∑

k=1

[I (|Xk| > nr)− P (|Xk| > nr)]

)2

P

(
max
1≤i≤n

|Xi| > nr

)

≤

√√√√ n∑
k=1

E [I (|Xk| > nr)− P (|Xk| > nr)]
2
P

(
max
1≤i≤n

|Xi| > nr

)

≤

√√√√c (ϕ)
n∑

k=1

P (|Xk| > nr)P

(
max
1≤i≤n

|Xi| > nr

)

≤

√
c (ϕ)nP (|X| > nr)P

(
max
1≤i≤n

|Xi| > nr

)
≤ 1

4
nP (|X| > nr) + c (ϕ)P

(
max
1≤i≤n

|Xi| > nr

)
.(11)

Combining (11) and (10), we get in (9)

3

4
nP (|X| > nr) ≤ 2 (1 + c (ϕ))P

(
max
1≤i≤n

|Xi| > nr

)
+ nP (|X| > nr)P

(
max
1≤i≤n

|Xi| > nr

)
.

In the consequence, from (8), for sufficiently large n we have

(12) nP (|X| > nr) ≤ 4 (1 + c (ϕ))P

(
max
1≤i≤n

|Xi| > nr

)
.

Finally, (12) and (7) give

∞∑
n=1

nrp−1P (|X| > βnr) < ∞,

and (i) follows. This completes the proof of the theorem.

Remark 1. One can give an alternative proof of (6). By the Markov inequality
and Lemma 3, for a sufficiently large q > 2 we have

∞∑
n=1

nrp−2P

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)
≤

∞∑
n=1

nrp−2−qrE

(
max
1≤i≤n

∣∣S′
n,k

∣∣ > βnr

)q

≤ C1

∞∑
n=1

nrp−2−qr
n∑

i=1

E |X ′
ni|

q

+ C2

∞∑
n=1

nrp−2−qr

(
n∑

i=1

E |X ′
ni|

2

)q/2

= Ĩ5 + Ĩ6.
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Using similar arguments as in the estimation of I5, we obtain that Ĩ5 < ∞. In
order to estimate Ĩ6 we distinguish two cases.

Case p > 2.

Ĩ6 ≤ C2

∞∑
n=1

nrp−2−qr · nq/2
(
E |X|2

)q/2
< ∞,

for q > (rp− 1) / (r − 1/2).
Case 1 ≤ p ≤ 2.

Ĩ6 ≤ C2

∞∑
n=1

nrp−2−qr · nq/2 · n(2−p)q/2 (E |X|p)q/2 < ∞,

for q > 2.
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