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MODULAR GROUP ACTION ON QUADRATIC
FIELD BY LINEAR CONGRUENCE

Farkhanda Afzal1, Qamar Afzal2 and M Aslam Malik3

Abstract. This paper illustrates the Mobius groups M and M ′ on
Q(

√
m), where M ′ = ⟨xy, yx⟩ is a subgroup of M. The system of lin-

ear congruence is used to discover classes [a, b, c](mod12) of elements of
Q∗(

√
n) and then by means of these classes, we explored several M ′-

subsets of Q′′′(
√
n) which assist in finding more M-subsets of Q(

√
m).
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1. Introduction

There is a dictum that anyone who desires to get at the root of a topic
should first study its history. That is why in this section we have thrown light
on some known results from the previous work done in this area of mathematics.
We believe that by this approach, readers will be able to support the parts that
they find most difficult. We have embodied the background material about the
action of Möbius groups on the real quadratic fields (Q

√
m ).

Möbius groups have always attracted great attention in finding group ac-
tions on quadratic fields. G. Higman familiarized coset diagrams for presenting
the action of modular groups onto number fields.

Q. Mushtaq laid the foundation and established it further. Higman et al.
[3] proved that the group PSL(2,Z) is generated by the linear fractional trans-
formations

x′(z) =
1

−z
and y′(z) =

z − 1

z

Q. Mushtaq proved that every real quadratic irrational number can be rep-

resented uniquely as a+
√
n

c with a non-square positive integer n, where a,a
2−n
c

and c are relatively prime integers [17]. He also discovered that the ambiguous
numbers in Q∗(

√
n) are finite and that part of the coset diagram containing

these numbers forms a single closed path under the action of G and the set is
invariant under the action of G, [18].
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In 1989, Mushtaq [19] investigated the extended modular group acting on
the projective line over a Galois field. Mushtaq and Shaheen [20] showed some
special circuits in coset diagrams, while Mushtaq et al. discussed the group
generated by two elements of orders 2 and 4 acting on real quadratic field in
[21].

Aslam Malik et al. [7] studied modular group action on certain quadratic
fields. In [8] the authors proved that the action of G on Q∗(

√
n) for n ̸= 2,

is intransitive. Imrana Kouser et al. in [4] gave a classification of the ele-

ments
a+

√
p

c of Q∗(
√
p) with respect to odd/even nature of a, b and c. They

have obtained a classification of Q∗(
√
p) and a partition of Q∗(

√
p) under the

modular group PSL(2, Z) as well. In [12] Aslam Malik et al. discussed the
properties of real quadratic irrational numbers under the action of the group
H = ⟨x, y : x2 = y4 = 1⟩.

In [5] M. Ashiq studied an action of two-generator groups on a real quadratic
field. Ashiq and Mushtaq [6] investigated the action of a subgroup of a modular
group on an imaginary quadratic field. The imaginary quadratic fields are
defined as Q(

√
−m) = {a+ b

√
−m; a, b ∈ Q}, where m is a square free positive

integer. They proved that the action of a subgroup of G on Q(
√
−m) is always

transitive. They have also proved [16] that the action of M on Q(
√
m) is

intransitive for m = 3k and m = 3k + 1.

Aslam [15] studied the action of ⟨y, t : y4 = t4 = 1⟩ on Q(
√
m). By using

the coset diagram for the action of H = ⟨y, t : y4 = t4 = 1⟩ on Q(
√
m), they

showed that if α is of the form α+
√
n

2c , then every element in the orbit αH is

also of the form α′+
√
n

2c′ and αH ⊂ Q∗(
√
n).

M Aslam Malik et al. [9] generalized these results by using the notion of
congruence. They have proved that for each square free positive integer n > 2,
the action of group G on Q∗(

√
n) is intransitive. They also discussed some

properties of real quadratic irrational numbers under the action of M = ⟨x, y :
x2 = y6 = 1⟩ in [10] and [11]. Mehmood has proved that there exist two
G-subsets of Q∗(

√
n) if n is a quadratic residue [13]. Zafar [14] obtained two

proper G-subsets of Q∗(
√
n) corresponding to each odd prime divisor of n. In

[2] we have given a classification of the real quadratic irrational numbers a+
√
n

c
of Q∗(

√
n) with respect to modulo 3r.

Our interest is to find linear transformation in general x,y satisfying the
relations x2 = ym = 1, with a view to studying the action of the group ⟨x, y⟩
on real quadratic fields. We are interested in the group ⟨x, y⟩ for m = 6.
That is M = ⟨x, y;x2 = y6 = 1⟩. We find a proper subgroup M ′ = ⟨xy, yx⟩
of M which is very much useful in finding M -subsets. This paper describes
the actions of Möbius groups M and M ′ on real quadratic fields. Here we
find M ′-subsets which facilitate the finding of M -subsets with the assistance
of congruence classes. Also, by using the system of linear congruence we find
the classes [a, b, c](mod12) of elements of Q∗(

√
n) and then we investigate more

M ′-subsets of Q′′′(
√
n).
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2. Preliminaries

Möbius transformation or map is a function f of a complex variable z that
can be written in the form f(z) = az+b

cz+d ; for some complex numbers a, b,
c and d with ad − bc ̸= 0. The set of all Möbius transformation forms a
group under composition called the Möbius group. The Möbius group M is
defined as M = ⟨x, y;x2 = y6 = 1⟩, where x(α) = −1

3 and y(α) = −1
3(α+1)

are linear fractional transformations. Throughout this paper we take m as a
square free positive integer. An element a+ b

√
m, b ̸= 0, of real quadratic field

Q
√
m = {a + b

√
m : a, b ∈ Q} is called a real quadratic irrational number. A

set X with some action on group G on it, is known as G-set. A subset X ′ of
G-sets is called a G-subset if g ∈ G ⇒ ag ∈ X ′ for each a ∈ X ′.

If n = k2m and k > 0 be an integer, then we have the following definitions:

Q∗(
√
n) :={a+

√
n

c
: a, b :=

a2 − n

c
, c ∈ Z and (a,

a2 − n

c
, c) = 1}

Q′′′(
√
n) ={α/t;α ∈ Q∗(

√
n); t = 1, 3}

Q∗∗∗(
√
n) ={ (a+

√
n)

c
∈ Q∗(

√
n) : 3|c}.

Lemma 2.1. [10] Let n be a non-square positive integer, α ∈ Q∗(
√
n) with

b = a2−n
c , then

1. If n ̸≡ 0(mod9), then α
3 belongs to Q∗(

√
n) if and only if 3|b

2. α
3 belongs to Q∗(

√
9n) if and only if 3 - b.

Our first lemma produces that if a+
√
n

c ∈ Q∗∗∗(
√
n) with n ≡ 0(mod3)then

a ≡ 0(mod3).

Lemma 2.2. Let a+
√
n

c ∈ Q∗∗∗(
√
n) with n ≡ 0(mod3), then there must be

a ≡ (mod3) only.

Proof. As we know a2 − bc ≡ n(mod3). Thus a2 ≡ bc + n(mod3). So a2 ≡
0(mod3) since c ≡ 0(mod3) for all a+

√
n

c ∈ Q∗∗∗(
√
n). Hence a ≡ 0(mod3).

3. Subgroups of M and M-subsets

Now we present the idea of subgroups of M and explore the action of some
important subgroups of M on Q(

√
m). Since M is a finitely generated group

then it contains infinitely many two-generator subgroups. Let M ′ = ⟨u, v⟩,
where u = xy and v = yx are linear fractional transformations u : α → α + 1
and v : α → α

1−3α . It is easy to see that un = α + n and vn = α
1−3n(α) ;

n = 1, 2, . . .. These equations imply that u, v are of infinite order. Since each
g ∈ M ′ is a word in xy, yx, y2, and y4. Therefore u, v, (vu), u(vu), u(vu)2,
(vu)v and (vu)2 are important elements ofM ′. We have the following important
results obtained after the actions of Möbius group M ′ on real quadratic fields.

Theorem 3.1. Let xy = u and yx = v and M ′ = ⟨u, v⟩, then for any non-
square positive integer n, the sets:

A = {a+
√
n

c
∈ Q∗(

√
n) : c ≡ 1(mod3)}
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and

B = {a+
√
n

c
∈ Q∗(

√
n) : c ≡ 2(mod3)}

are M ′-subset.

Proof. Since n ≡ 0, 1 or 2(mod3), so we discuss these cases separately.
In the first case let n ≡ 0mod3.
Let a+

√
n

c ∈ A. We know that a2 − bc ≡ n(mod3), then

a2 − bc ≡ 0(mod3) ⇒ a2 ≡ bc(mod3) ⇒ a2 ≡ b(mod3),

since c ≡ 1(mod3).
Now a ≡ 0, 1 or 2(mod3), therefore a2 ≡ 0 or 1(mod3) as a2 ≡ 0(mod3) if

a ≡ 0(mod3) and a2 ≡ 1(mod3) if a ≡ 1, 2(mod3).
If a2 ≡ 0(mod3) then b ≡ 0(mod3) and if a2 ≡ 1(mod3), then b ≡ 1(mod3).

Thus A = {a+
√
n

c ∈ Q∗(
√
n) : c ≡ 1(mod3)} consists of elements of the forms

[0, 0, 1], [1, 1, 1] and [2, 1, 1] only.

Let a+
√
n

c ∈ B, then a2 − bc ≡ n(mod3) ⇒ a2 ≡ bc(mod3) therefore n ≡
0(mod3), since c ≡ 2(mod3) given, then a2 ≡ 2b(mod3). If a ≡ 0(mod3), then
a2 ≡ 0(mod3) and hence b ≡ 0(mod3). Similarly, if a ≡ 1 or 2(mod3), then
a2 ≡ 1(mod3) and hence b ≡ 2(mod3). Similarly, if a ≡ 1 or 2(mod3), then
a2 ≡ 1(mod3) and hence b ≡ 2mod3.

Since a2 ≡ 2b(mod3). Thus the elements in set B = {a+
√
n

c ;α ∈ Q∗(
√
n) :

c ≡ 2(mod3)} are of the forms [0, 0, 2], [1, 2, 2] and [2, 2, 2] only. Hence every
element of M ′ is a word in the generator u, v of M ′. Thus it is enough to show
that elements of the sets A and B are mapped on A and B respectively under
u and v. We know

xy(
a+

√
n

c
) =

(a+ c) +
√
n

c
=

a1 +
√
n

c1
; a1 = a+ c, b1 = 2a+ b+ c, c1 = c.

yx(
a+

√
n

c
) =

(a− 3b) +
√
n

−6a+ 9b+ c
=

a2 +
√
n

c2
; a2 = a−3b, 2 = b, c2 = −6a+9b+c.

Thus u takes elements of the forms [0, 0, 1], [1, 1, 1], and [2, 1, 1] onto elements
of the forms [1, 1, 1], [2, 1, 1] and [0, 0, 1] respectively. Also [0, 0, 1], [1, 1, 1] and
[2, 1, 1] maps onto elements of the forms [0, 0, 1], [1, 1, 1] and [2, 1, 1] respectively
under v. Thus the elements of A are mapped on to the elements of the forms
[0, 0, 1], [1, 1, 1] and [2, 1, 1]. Therefore, the set A is a M ′-subset.

Similarly, it can be checked that the elements of B of the forms [0, 0, 2],
[1, 2, 2] and [2, 2, 2] are mapped onto [0, 0, 2], [1, 2, 2] and [2, 2, 2] under u and
v. Thus A and B are M ′-subset. Similarly, one can easily check A and B for
other two cases that is n ≡ 1(mod3) and n ≡ 2(mod3).

The above theorem deals with the case when c ≡ 1 or 2(mod3). The
question arises as to the cases when c ≡ 0(mod3). These cases do not arise
when n ≡ 2(mod3). Therefore we will discuss this for the remaining two cases.
The following theorem deals with the case when n ≡ 1(mod3).
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Theorem 3.2. Let n ≡ 1(mod3) be a non-square positive integer, then

A = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : a ≡ 1(mod3)}

B = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : a ≡ 2(mod3)}

are both M ′-subsets.

Proof. Consider n ≡ 1(mod3).

Let α = {α+
√
n

c ∈ Q∗∗∗(
√
n) : c ≡ 0(mod3)} and since a2 − bc ≡ n(mod3),

then a2 ≡ bc(mod3) since c ≡ 0(mod3) and n ≡ 1(mod3), hence b ≡ 0, 1 or
2(mod3). Now a2 ≡ 1(mod3) implies a ≡ 1 or 2(mod3). So the elements of the
set A are of the forms [1, 1, 0], [1, 0, 0],[1, 2, 0] only, and the set B consists of
elements of the forms [2, 1, 0], [2, 0, 0] and [2, 2, 0] only.

Thus it can be verified that the elements of the set A are mapped onto the
elements of the forms [1, 0, 0], [1, 2, 0] and [1, 1, 0] under the actions of u,v ∈ M ′.
Also, the elements of the set B are mapped onto elements of the forms [2, 1, 0],
[2, 0, 0] and [2, 2, 0] under the action of M ′. Hence, A and B are M ′-subsets of
Q∗∗∗(

√
n).

In the next theorem we consider the case when n ≡ 0(mod3). This provides
us two M ′-subsets of Q∗∗∗(

√
n).

Theorem 3.3. Let n ≡ 0(mod3) be a non-square positive integer, then the sets

A = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : b ≡ 1(mod3)}

B = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : b ≡ 2(mod3)}

are M ′-subsets of Q′′′(
√
n)

Note that each n ≡ 0(mod3) gives rise to three cases n ≡ 0, 3or6(mod9).
Then, the above theorem leads to the following corollary.

Corollary 3.1. Let n be a non-square positive integer such that n ≡ 3(mod9).
Then the sets A and B of Theorem 3.3 become

A = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : c ≡ 6(mod9)}

and

B = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : c ≡ 3(mod9)}.

Proof. Let a+
√
n

c ∈ Q∗∗∗(
√
n) and n ≡ 3(mod9). Thus by Lemma 2.1 we

have a ≡ 0(mod3). Then a2 ≡ 0(mod9). Hence bc ≡ −3(mod9) as bc ≡
a2 − n(mod9), so bc ≡ 6(mod9). Let a+

√
n

c ∈ A and b ≡ 1(mod3) implies that

b ≡ 1, 4 or 7(mod9). Thus we are left with c ≡ 6(mod9) only. For a+
√
n

c ∈ B
and b ≡ 2(mod3) implies that b ≡ 2, 5 or 8(mod9). Thus we have c ≡ 3(mod9).
Therefore, for the set A, c ≡ 6(mod9) and for the set B, c ≡ 3(mod9). This
completes the proof.
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Corollary 3.2. Let n be a non-square positive integer such that n ≡ 6(mod9).
Then, the sets A and B of Theorem 3.3 becomes

A = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : c ≡ 3(mod9)}

and

B = {a+
√
n

c
;α ∈ Q∗∗∗(

√
n) : c ≡ 6(mod9)}.

Proof. Proof is straightforward as done in Corollary 3.1.

Lemma 3.1. Let

M = ⟨x, y : x2 = y6 = 1⟩

and M ′ = ⟨u, v⟩, then prove that ⟨M ′, x⟩ = M .

Proof. Since xy ∈ M ′, then xy ∈ ⟨M ′, x⟩. Also xxy = y ∈ ⟨M ′, x⟩. Therefore,
the generators x and y of M are in ⟨M ′, x⟩.

Thus

(1) M ⊆ ⟨M ′, x⟩

But clearly, the generators of M ′ are contained in M . Therefore for x ∈ M ,
we have,

(2) ⟨M ′, x⟩ ⊆ M

From equations (1) and (2) it is evident that ⟨M ′, x⟩ = M .

Note: By above lemma, we know that ⟨M ′, x⟩ = M . Therefore:

Q∗(
√
n)

∪{
−1

3α
: α ∈ Q∗(

√
n) = Q∗(

√
n)

∪
x(Q∗(

√
n))

}
is invariant under M . Similarly if any subset A of Q∗(

√
n) is invariant under

M ′, then clearly A
∪
x(A) is invariant under M . That is, A is M ′-subset of

Q∗(
√
n). Then A

∪
x(A) is M ′-subset of Q

′′′
(
√
n)

4. M-Subsets by using linear congruence

In this section we can classify the elements of Q∗(
√
n) with the modulus

s = 2u 3v ; u, v ≥ 1.

Example 4.1. By taking s = 2131, we have classified the elements with respect
to the modulo 6 by using the system of linear congruences and we exploit the
results in modulo 2 and 3. Also, we are concerned with results for s = 2u31,
where u = 2, 3 in this section. Since, each non-square n can be considered in
the modulo s for any value of s ≥ 1. For example, in this section if we take
s = 3, 4. That is n ≡ 0, 1, 2 or 3(mod4) we have n ≡ 0, 1 or 2(mod3) as well.
As each n ≡ i(mod4) and similarly the same n ≡ j(mod3), where 0 ≤ i ≤ 3
and 0 ≤ j ≤ 2. Thus, by using the method of solving linear congruence, we
can obtain solutions of these congruences in the modulo 12.
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Example 4.2. The solution of the congruences n ≡ 0(mod4) andn ≡ 0(mod3)
in the modulo 12 is n ≡ 0(mod12). Similarly, n ≡ 0(mod4) and n ≡ 1(mod3)
implies n ≡ 4(mod12). Also, n ≡ 0(mod4) and n ≡ 2(mod3) leads to n ≡
8(mod12).

We need the following theorems from number theory:

Theorem 4.1. [1] Let m > 1 be fixed and a, b, c and d be arbitrary integers,
then the following properties hold

i) a ≡ a(modm),
ii) If a ≡ b(modm), then b ≡ a(modm),
iii) If a ≡ b(modm) and b ≡ c(modm), then a ≡ c(modm),
iv) If a ≡ b(modm) and c ≡ d(modm), then a + c ≡ b + d(modm) and

ac ≡ bd(modm),
v) If a ≡ b(modm) and d | m,d > 0, then a ≡ b(modd).

Theorem 4.2. If a, b, k and m are integers such that k > 0,m > 0 and
a ≡ b(modm). Then ak ≡ bk(modm).

Now we are in condition to produce our first lemma.

Lemma 4.1. Let n ≡ 1(mod12) be a non-square positive integer, and

C1 = {a+
√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 1(mod6)}

C2 = {a+
√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 5(mod6)}

C3 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 2(mod6)}

C4 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 4(mod6)}

C5 = {a+
√
n

c
∈ Q∗∗∗(

√
n) \Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 1, 6(mod6)}

C6 = {a+
√
n

c
∈ Q∗∗∗(

√
n) \Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 2, 5(mod6)}

C7 = {a+
√
n

c
∈ Q∗(

√
n) : [a, b, c](mod6) with c ≡ 1, 4(mod6)}

C8 = {a+
√
n

c
∈ Q∗(

√
n) : [a, b, c](mod6) with c ≡ 2, 5(mod6)}

are M ′-subsets.

Proof. We know that the elements of Q∗(
√
n) of the forms [a, b, c](mod2) are

exactly 4 for n ≡ 1(mod4) and for n ≡ 1(mod3) the elements of Q∗(
√
n) are

exactly 12 of the forms [a, b, c](mod3). Therefore, if n ≡ 1(mod12) then the
elements of Q∗(

√
n) of the forms [a, b, c](mod6) are 48 in number.

It is well known that if a2 − n ≡ 1(mod3) has k1 solutions and a2 − n ≡
1(mod2) has k2 solutions, then a2 − n ≡ 1(mod2.3) ≡ 1(mod6) has k1 k2
solutions by Theorem 4.2.
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Let a+
√
n

c ∈ C1, since n ≡ 1(mod12) implies that n ≡ 1(mod6) by Theorem
4.1(v).

Given a ≡ 1(mod6) implies a2 ≡ 1(mod6)and also c ≡ 0(mod6) since
a+

√
n

c ∈ Q′∗∗∗(
√
n). Thus bc ≡ a2 − n(mod6) gives us bc ≡ 0(mod6). Also, c ≡

0(mod6) forces that b ≡ 0, 2or4(mod6) as [a, b, c](mod6) is basically of the form
[1, 0, 0](mod2). Therefore, the elements of C1 are of the forms [1, 0, 0],[1, 2, 0]
and [1, 4, 0](mod6) only.

Let a+
√
n

c ∈ C2. Given a ≡ 5(mod6) implies a2 ≡ 1(mod6). Thus bc ≡
a2 − n(mod6) gives bc ≡ 0(mod6). Also, c ≡ 0(mod6) forces that b ≡ 0, 2 or
4(mod6) as [a, b, c](mod6) is basically of the form [1, 0, 0](mod2). Therefore,
the elements of C2 are of the forms [5, 0, 0], [5, 2, 0] and [5, 4, 0](mod6).

Since

C1=

{
a+

√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with c ≡ 0(mod6) and a ≡ 1(mod6)

}
,

here a ≡ 1(mod6) implies that a ≡ 1(mod3), also c ≡ 0(mod3) since c ≡
0(mod6).

Therefore we have

C1 = {a+
√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 1(mod6)}

is an M ′-subset. Similarly, it can be checked for C2. In this way one can prove
that C3, C4, C5, C6, C7 and C7 are M ′-subsets.

Also we have the following important lemmas by using the method of solving
linear congruences in modulo12.

Lemma 4.2. Let n ≡ 5(mod12) be a non-square positive integer, and

D1 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 2(mod6)}

D2 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 4(mod6)}

D3 = {a+
√
n

c
∈ Q∗(

√
n) \Q′(

√
n) : [a, b, c](mod6) with c ≡ 1 or 4(mod6)}

D4 = {a+
√
n

c
∈ Q∗(

√
n) \Q′(

√
n) : [a, b, c](mod6) with c ≡ 2 or 5(mod6)}

are M ′-subsets.
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Lemma 4.3. Let n ≡ 9(mod12) be a non-square positive integer, and

E1 = {a+
√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 2(mod6)}

E2 = {a+
√
n

c
∈ Q′∗∗∗(

√
n) : [a, b, c](mod6) with a ≡ 4(mod6)}

E3 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 2(mod6)}

E4 = {a+
√
n

c
∈ Q′(

√
n) : [a, b, c](mod6) with c ≡ 4(mod6)}

E5 = {a+
√
n

c
∈ Q∗∗∗(

√
n) \Q′∗∗∗(

√
n) : [a, b, c](mod6) with b ≡ 1 or 4(mod6)}

E6 = {a+
√
n

c
∈ Q∗∗∗(

√
n) \Q′∗∗∗(

√
n) : [a, b, c](mod6) with b ≡ 2 or 5(mod6)}

E7 = {a+
√
n

c
∈ Q∗(

√
n) \Q′(

√
n) : [a, b, c](mod6) with c ≡ 1 or 4(mod6)}

E8 = {a+
√
n

c
∈ Q∗(

√
n) \Q′(

√
n) : [a, b, c](mod6) with c ≡ 2 or 5(mod6)},

are M ′-subsets.

Proof of these two lemmas is analogous to the proof of Lemma 4.1.

Conclusion

From the last three lemmas we get the following immediate consequences.
There are two M ′-subsets for n ≡ 0(mod4) given below:

A ={α ∈ Q∗(
√
n) :

a+
√
n

c
is of forms

[0, 0, 1], [0, 1, 0], [1, 1, 1], [2, 0, 1], [2, 1, 0] or [3, 1, 1]}

B ={α ∈ Q∗(
√
n) :

a+
√
n

c
is of forms

[0, 0, 3], [0, 3, 0], [1, 3, 3], [2, 0, 3], [2, 3, 0] or [3, 3, 3]}

Also, we combine n ≡ 0, 1, or 2(mod3) with the n ≡ 0(mod4). Thus we
obtain eight M ′-subsets for n ≡ 0(mod12), n ≡ 8(mod12) and four M ′-subsets
when n ≡ 4(mod12). We have two M ′-subsets for n ≡ 3(mod4) given as:

A ={α ∈ Q∗(
√
n) :

a+
√
n

c
is of forms

[0, 1, 1], [1, 1, 2], [1, 2, 1], [2, 1, 1], [3, 1, 2] or [3, 2, 1]}

B ={α ∈ Q∗(
√
n) :

a+
√
n

c
is of forms

[0, 3, 3], [1, 2, 3], [1, 3, 2], [2, 3, 3], [3, 2, 3] or [3, 3, 2]}

Then, after combining n ≡ 0, 1, or 2(mod3) with the n ≡ 3(mod4), we have
eight M ′-subsets if n ≡ 3(mod12), n ≡ 7(mod12) and four M ′-subsets if n ≡
11(mod12).
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When n ≡ 3(mod4) we have two M ′-subsets for each n ≡ 2(mod8) and
n ≡ 6(mod8). Also, we combine n ≡ 0, 1 or 2(mod3) with these two relations.

Thus we get classes in the modulo 24. Therefore, M ′-subsets for n ≡ 2, 6
or 10(mod12) can be calculated by the above technique.
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