# A NEW CHARACTERIZATION OF $S_{8}$ 

Alireza Khalili Asboei ${ }^{\text {T }}$


#### Abstract

Let $G$ be a group and $\pi_{e}(G)$ be the set of element orders of $G$. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. Set $\operatorname{nse}(G):=\left\{m_{k} \mid k \in \pi_{e}(G)\right\}$. In this work we prove if $G$ is a group such that nse $(G)=\operatorname{nse}\left(S_{8}\right)$, then $G \cong S_{8}$.


AMS Mathematics Subject Classification (2010):20D06, 20D20, 20D60
Key words and phrases: Element order, set of the numbers of elements of the same order, Symmetric group

## 1. Introduction

If $n$ is an integer, then we denote by $\pi(n)$ the set of all prime divisors of $n$. Let $G$ be a finite group. Denote by $\pi(G)$ the set of primes $p$ such that $G$ contains an element of order $p$. Also, the set of element orders of $G$ is denoted by $\pi_{e}(G)$. A finite group $G$ is called a simple $K_{n}$-group, if $G$ is a simple group with $|\pi(G)|=n$. Set $m_{i}=m_{i}(G)=\mid\{g \in G \mid$ the order of $g$ is $i\} \mid$ and $\operatorname{nse}(G):=\left\{m_{i} \mid i \in \pi_{e}(G)\right\}$.

For the set nse $(G)$, the most important problem is related to Thompson's problem. In 1987, J. G. Thompson put forward the following problem. For each finite group $G$ and each integer $d \geq 1$, let $G(d)=\left\{x \in G \mid x^{d}=1\right\}$. Defining $G_{1}$ and $G_{2}$ is of the same order type if, and only if, $\left|G_{1}(d)\right|=\left|G_{2}(d)\right|, d=1$, $2,3, \cdots$. Suppose $G_{1}$ and $G_{2}$ are of the same order type. If $G_{1}$ is solvable, is $G_{2}$ necessarily solvable?
W. J. Shi in [II]] made the above problem public in 1989. Unfortunately, no one could solve it or give a counterexample until now, and it remains open. The influence of nse $(G)$ on the structure of finite groups was studied by some authors (see $[\boxed{\pi}, \underline{\square},[\boxed{\pi}, \underline{6}]$ ). In this paper we continue this work and show that the symmetric group $S_{8}$ is characterizable by nse $(G)$. In fact, the main theorem of our paper is as follows:

Main Theorem: Let $G$ be a group such that nse $(G)=\operatorname{nse}\left(S_{8}\right)$. Then $G \cong S_{8}$.

We note that there are finite groups which are not characterizable by nse $(G)$ and $|G|$. In 1987, Thompson gave an example as follows:
Let $G_{1}=\left(C_{2} \times C_{2} \times C_{2} \times C_{2}\right) \rtimes A_{7}$ and $G_{2}=L_{3}(4) \rtimes C_{2}$ be the maximal subgroups of $M_{23}$, where $\rtimes$ is a semidirect product symbol. Then nse $\left(G_{1}\right)=$ nse $\left(G_{2}\right)$ and $\left|G_{1}\right|=\left|G_{2}\right|$, but $G_{1} \not \not G_{2}$. Throughout this paper, we denote by $\phi$ the Euler totient function. If $G$ is a finite group, then we denote by $P_{q}$ a Sylow

[^0]$q$-subgroup of $G$ and $n_{q}(G)$ is the number of Sylow $q$-subgroup of $G$, that is, $n_{q}(G)=\left|\operatorname{Syl}_{q}(G)\right|$. We use $a \mid b$ to mean that $a$ divides $b$, if $p$ is a prime, then $p^{n} \| b$ means $p^{n} \mid b$ but $p^{n+1} \nmid b$. All other notations are standard and we refer to [ 8$]$, for example.

## 2. Preliminary Results

In this section, for the proof of the main theorem we need the following Lemmas:

Lemma 2.1. [2] Let $G$ be a finite group and $m$ be a positive integer dividing $|G|$. If $L_{m}(G)=\left\{g \in G \mid g^{m}=1\right\}$, then $m\left|\left|L_{m}(G)\right|\right.$.
Lemma 2.2. [ 9$]$ Let $G$ be a group containing more than two elements. Let $k \in \pi_{e}(G)$ and $m_{k}$ be the number of elements of order $k$ in $G$. If $s=\sup \left\{m_{k} \mid k \in\right.$ $\left.\pi_{e}(G)\right\}$ is finite, then $G$ is finite and $|G| \leq s\left(s^{2}-1\right)$.
Lemma 2.3. [3] Let $G$ be a finite group and $p \in \pi(G)$ be odd. Suppose that $P$ is a Sylow $p$-subgroup of $G$ and $n=p^{s} m$, where $(p, m)=1$. If $P$ is not cyclic and $s>1$, then the number of elements of order $n$ is always a multiple of $p^{s}$.

Lemma 2.4. [4] Let $G$ be a finite solvable group and $|G|=m \cdot n$, where $m=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}},(m, n)=1$. Let $\pi=\left\{p_{1}, \ldots, p_{r}\right\}$ and $h_{m}$ be the number of $\pi-$ Hall subgroups of $G$. Then $h_{m}=q_{1}^{\beta_{1}} \cdots q_{s}^{\beta_{s}}$ satisfies the following conditions for all $i \in\{1,2, \ldots, s\}$ :

1. $q_{i}^{\beta_{i}} \equiv 1\left(\bmod p_{j}\right)$, for some $p_{j}$.
2. The order of some chief factor of $G$ is divisible by $q_{i}^{\beta_{i}}$.

Lemma 2.5. [I] Let $G$ be a finite group, $P \in \operatorname{Syl}_{p}(G)$, where $p \in \pi(G)$. Let $G$ have a normal series $K \unlhd L \unlhd G$. If $P \leq L$ and $p \nmid|K|$, then the following hold:
(1) $N_{G / K}(P K / K)=N_{G}(P) K / K$;
(2) $\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}(G)=n_{p}(L)$;
(3) $\left|L / K: N_{L / K}(P K / K)\right| t=\left|G: N_{G}(P)\right|=\left|L: N_{L}(P)\right|$, that is, $n_{p}(L / K) t=$ $n_{p}(G)=n_{p}(L)$ for some positive integer $t$, and $\left|N_{K}(P)\right| t=|K|$.
Lemma 2.6. [5] If $G$ is a simple $K_{3}-$ group, then $G$ is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3), U_{3}(3)$ or $U_{4}(2)$.
Lemma 2.7. [TI] Let $G$ be a simple group of order $2^{a} \cdot 3^{b} \cdot 5 \cdot p^{c}$, where $p \neq 2$, 3,5 is a prime, and $a b c \neq 0$. Then $G$ is isomorphic to one of the following groups: $A_{7}, A_{8}, A_{9} ; M_{11}, M_{12} ; L_{2}(q), q=11,16,19,31,81 ; L_{3}(4), L_{4}(3)$, $S_{6}(2), U_{4}(3)$ or $U_{5}(2)$. In particular, if $p=11$, then $G \cong M_{11}, M_{12}, L_{2}(11)$ or $U_{5}(2)$; if $p=7$, then $G \cong A_{7}, A_{8}, A_{9}, A_{10}, L_{2}(49), L_{3}(4), S_{4}(7), S_{6}(2), U_{3}(5)$, $U_{4}(3), J_{2}$, or $O_{8}^{+}(2)$.

Let $G$ be a group such that nse $(G)=\operatorname{nse}\left(S_{8}\right)$. By Lemma [2.2], we can assume that $G$ is finite. Let $m_{n}$ be the number of elements of order $n$. We note that $m_{n}=k \phi(n)$, where $k$ is the number of cyclic subgroups of order $n$ in $G$. Also, we note that if $n>2$, then $\phi(n)$ is even. If $n \in \pi_{e}(G)$, then by Lemma 2.1 and the above notation, we have:

$$
\left\{\begin{array}{l}
\phi(n) \mid m_{n}  \tag{*}\\
n \mid \sum_{d \mid n} m_{d}
\end{array}\right.
$$

In the proof of the main theorem, we often apply $(*)$ and the above comments.

## 3. Proof of the Main Theorem.

Let $G$ be a group such that $\operatorname{nse}(G)=\operatorname{nse}\left(S_{8}\right)=\{1,763,1232,1344,2688$, $3360,4032,5040,5460,5760,10640\}$. First we prove that $\pi(G) \subseteq\{2,3,5,7\}$. Since $763 \in \operatorname{nse}(G)$, it follows that $2 \in \pi(G)$ and $m_{2}=763$. Let $2 \neq p \in \pi(G)$. By ( $*$ ) we have $p \in\{3,5,7,43,37,71,2689,3361\}$.

We will show $43 \notin \pi(G)$. Suppose $43 \in \pi(G)$. By $(*), m_{43}=5460$. If $43^{2} \in \pi_{e}(G)$, then $\phi\left(43^{2}\right) \mid m_{n}$ where $m_{n} \in \operatorname{nse}(G)$, a contradiction. Hence $\exp \left(P_{43}\right)=43$. Thus by Lemma [..], $\left|P_{43}\right| \mid\left(1+m_{43}\right)=5461$, so $\left|P_{43}\right|=43$. We prove $86 \notin \pi_{e}(G)$.

Suppose $86 \in \pi_{e}(G)$, we know that if $P$ and $Q$ are Sylow 43-subgroups of $G$, then $P$ and $Q$ are conjugate, which implies that $C_{G}(P)$ and $C_{G}(Q)$ are conjugate. Therefore $m_{86}=\phi(86) \cdot n_{43} \cdot k$, where $k$ is the number of cyclic subgroups of order 2 in $C_{G}\left(P_{43}\right)$. Since $n_{43}=m_{43} / \phi(43)=130,5460 \mid m_{86}$. Therefore $m_{86}=5460$. On the other hand, $86 \mid\left(1+m_{2}+m_{43}+m_{86}\right)=11684$, which is a contradiction.

Hence $86 \notin \pi_{e}(G)$. Then the group $P_{43}$ acts fixed point freely on the set of elements of order 2. Hence $\left|P_{43}\right| \mid m_{2}=763$, a contradiction. Arguing as above, we can prove $37,71,2689$ and $3361 \notin \pi(G)$. Hence $\pi(G) \subseteq\{2,3,5,7\}$.

If $3,5,7 \in \pi(G)$, then $m_{3} \in\{1232,10640\}, m_{5}=1344$ and $m_{7}=5760$ by $(*)$. It is clear that $G$ does not contain any element of order $81,25,512$ and 343 by $(*)$. If $49 \in \pi_{e}(G)$, then $m_{49} \in\{1344,5460\}$. Hence by Lemma [2..], $\left|P_{7}\right| \mid$ $\left(1+m_{7}+m_{49}\right)=7105$ or 11221 , so $\left|P_{7}\right|=49$. Therefore $n_{7}=m_{49} / \phi(49)=32$ or 130 . Since $n_{7}=1+7 k$ for some $k$, we get a contradiction. Thus $49 \notin \pi_{e}(G)$.

We conclude if $5,7 \in \pi(G)$, then $\exp \left(P_{5}\right)=5$ and $\exp \left(P_{7}\right)=7$, also by Lemma [2.] $\left|P_{5}\right|=5$ and $\left|P_{7}\right|=7$. Hence $n_{5}=m_{5} / \phi(5)=2^{4} \times 7 \times 3$ and $n_{7}=m_{7} / \phi(7)=2^{6} \times 3 \times 5$. Thus if $5 \in \pi(G)$, then $3,7 \in \pi(G)$ and if $7 \in \pi(G)$, then $3,5 \in \pi(G)$.

So if we show that $\pi(G)$ could not be the sets $\{2\},\{2,3\}$, then $\pi(G)$ must be equal to $\{2,3,5,7\}$. We consider the following cases:

Case a. Suppose that $\pi(G)=\{2\}$. Hence $\pi_{e}(G) \subseteq\{1,2,4,8,16,32,64$, $128,256\}$. Since nse $(G)$ have eleven elements, we get a contradiction.

Case b. Suppose that $\pi(G)=\{2,3\}$. Since $81 \notin \pi_{e}(G), \exp \left(P_{3}\right)=3,9$ or 27 . Let $\exp \left(P_{3}\right)=3$. Thus $\left|P_{3}\right| \mid\left(1+m_{3}\right)=1233$ or 10641 by Lemma [.]. Hence $\left|P_{3}\right| \mid 9$. If $\left|P_{3}\right|=3$, then $n_{3}=m_{3} / \phi(3)=616$ or 5320 . Because $7 \notin \pi(G)$, we get a contradiction.

Let $\left|P_{3}\right|=9$. Since $\exp \left(P_{3}\right)=3$ and $2^{8} \times 3 \notin \pi_{e}(G), \pi_{e}(G) \subseteq\{1,2,3$, $\left.2^{2}, \ldots, 2^{8}\right\} \cup\left\{2 \times 3,2^{2} \times 3, \ldots, 2^{7} \times 3\right\}$. Hence $\left|\pi_{e}(G)\right| \leq 17$. Therefore $40320+1232 k_{1}+1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+5040 k_{6}+5460 k_{7}+$
$5760 k_{8}+10640 k_{9}=2^{m} \times 9$ where $m, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}$ and $k_{9}$ are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9} \leq 6$.

We know that $40320 \leq 2^{m} \times 9 \leq 40320+10640 \times 6$, hence $m=13$ and so $1232 k_{1}+1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+5040 k_{6}+5460 k_{7}+5760 k_{8}+$ $10640 k_{9}=33408$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9} \leq 6$. By simple computer calculation, it is easy to see this equation has no solution.

Let $\exp \left(P_{3}\right)=9$. By $(*)$ we have $m_{9} \in\{4032,5040,5760\}$. Assume $m_{3}=10640$. Then by $(*), 9 \mid\left(1+m_{3}+m_{9}\right)$. Since $m_{9} \in\{4032,5040,5760\}$, we get a contradiction. Hence $m_{3}=1232$ and hence by Lemma [2.], $\left|P_{3}\right| \mid 81$.

If $\left|P_{3}\right|=9$, then $n_{3}=m_{9} / \phi(9) \in\{672,840,960\}$, which is a contradiction by $5,7 \notin \pi(G)$.

Assume $\left|P_{3}\right|=27$. Since $\exp \left(P_{3}\right)=9$ and $2^{8} \times 3,2^{8} \times 9 \notin \pi_{e}(G), \pi_{e}(G) \subseteq\{1$, $\left.2,3,2^{2}, \ldots, 2^{8}\right\} \cup\left\{2 \times 3,2^{2} \times 3, \ldots, 2^{7} \times 3\right\} \cup\left\{2 \times 9,2^{2} \times 9, \ldots, 2^{7} \times 9\right\}$. On the other hand, if $2^{8} \in \pi_{e}(G)$ since $2^{8} \times 3 \notin \pi_{e}(G)$, the group $P_{3}$ acts fixed point freely on the set of elements of order 256 . Hence $\left|P_{3}\right| \mid m_{256}=5760$, a contradiction. Thus $2^{8} \notin \pi_{e}(G)$ and $\left|\pi_{e}(G)\right| \leq 24$. Therefore $40320+1232 k_{1}+$ $1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+5040 k_{6}+5460 k_{7}+5760 k_{8}+10640 k_{9}=2^{m} \times 27$ where $m, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}$ and $k_{9}$ are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9} \leq 13$. We have $40320 \leq 2^{m} \times 27 \leq$ $40320+10640 \times 14$, so $m=11$ or 12 .

If $m=11$, then $1232 k_{1}+1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+5040 k_{6}+$ $5460 k_{7}+5760 k_{8}+10640 k_{9}=14976$ where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+$ $k_{7}+k_{8}+k_{9} \leq 13$. By computer calculation, it is easy to see this equation has no solution.

If $m=12$, then $1232 k_{1}+1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+5040 k_{6}+$ $5460 k_{7}+5760 k_{8}+10640 k_{9}=70272$, where $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+$ $k_{7}+k_{8}+k_{9} \leq 13$.

If $2^{7} \times 9 \in \pi_{e}(G)$, then $\left|\pi_{e}(G)\right|=24$. In this case the equation have 31 solutions. For example $\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9}\right)=(0,0,0,7,1$, $1,0,1,3)$ is one of the solutions. We show this is impossible. Since $2^{7} \times 9$, $2^{7} \times 3 \in \pi_{e}(G), m_{2^{7} \times 9}=2688$ or 5760 and $m_{2^{7} \times 3}=2688$ or 5760 . We know $2^{8} \notin \pi_{e}(G)$, thus $\exp \left(P_{2}\right)=2,4,8,16,32,64$ or 128 . Hence if $\exp \left(P_{2}\right)=2^{i}$ where $1 \leq i \leq 7$, then $\left|P_{2}\right| \mid\left(1+m_{2}+\ldots+m_{2^{i}}\right)$, by Lemma $\quad$. In. In fact, $\left|P_{2}\right| \mid\left(1+763+1232 t_{1}+1344 t_{2}+2688 t_{3}+3360 t_{4}+4032 t_{5}+5040 t_{6}+5460 t_{7}+\right.$ $5760 t_{8}+10640 t_{9}$ ), where $t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}, t_{8}$ and $t_{9}$ are non-negative integers and $0 \leq t_{1}+t_{2}+t_{3}+t_{4}+t_{5}+t_{6}+t_{7}+t_{8}+t_{9} \leq 6$. Because $k_{1}=0$ and $m_{3}=1232, m_{2^{i}} \neq 1232$ for $1 \leq i \leq 7, t_{1}=0$. Since $k_{8}=1$ and $m_{2^{7} \times 9}=2688$ or 5760 and also $m_{2^{7} \times 3}=2688$ or $5760,0 \leq t_{8} \leq 1$. Also $k_{2}=0$ and $k_{3}=0$, thus $0 \leq t_{2} \leq 1$ and $0 \leq t_{3} \leq 1$. Also we have $0 \leq t_{5} \leq 2,0 \leq t_{6} \leq 2,0 \leq t_{7} \leq 1$ and $0 \leq t_{9} \leq 4$. By an easy computer calculation, $\left|P_{2}\right| \mid 2^{9}$, a contradiction. Arguing as above for other solutions we get a contradiction.

If $2^{7} \times 9 \notin \pi_{e}(G)$, then $\left|\pi_{e}(G)\right| \leq 23$ and the above equation where $0 \leq$ $k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+k_{7}+k_{8}+k_{9} \leq 12$, have 25 solutions. For example ( $k_{1}$, $\left.k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}, k_{9}\right)=(0,0,0,1,1,5,0,1,3)$ is one of the solutions. We show that this is impossible. Arguing as above, $t_{1}=0,0 \leq t_{2} \leq 1,0 \leq$ $t_{3} \leq 1,0 \leq t_{4} \leq 2,0 \leq t_{5} \leq 2,0 \leq t_{6} \leq 6,0 \leq t_{7} \leq 1,0 \leq t_{8} \leq 2$ and $0 \leq$ $t_{9} \leq 4$. By an easy computer calculation, $\left|P_{2}\right| \mid 2^{10}$, a contradiction.

If $\left|P_{3}\right|=81$, then $40320+1232 k_{1}+1344 k_{2}+2688 k_{3}+3360 k_{4}+4032 k_{5}+$ $5040 k_{6}+5460 k_{7}+5760 k_{8}+10640 k_{9}=2^{m} \times 81$, where $m, k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$, $k_{7}, k_{8}$ and $k_{9}$ are non-negative integers and $0 \leq k_{1}+k_{2}+k_{3}+k_{4}+k_{5}+k_{6}+$ $k_{7}+k_{8}+k_{9} \leq 13$. We know that $40320 \leq 2^{m} \times 81 \leq 40320+10640 \times 14$, hence $m=9,10$ or 11. Arguing as above we get a contradiction. If $\exp \left(P_{3}\right)=27$, then $\left|P_{3}\right| \mid\left(1+m_{3}+m_{9}+m_{27}\right)$ by Lemma [.1. It is clear that $\left|P_{3}\right|=27$ or $3^{n}$ where $n \ngtr 3$. Hence if $\left|P_{3}\right|=27$, then $n_{3}=m_{27} / \phi(27) \in\{224,280,320\}$. Since $5,7 \notin \pi(G)$, we get a contradiction.

If $\left|P_{3}\right|=3^{n}$ where $n \nexists 3$, then by Lemma [2.3], $m_{27}$ is a multiple of 27 , a contradiction.

Therefore $\pi(G)=\{2,3,5,7\}$. We prove that $21 \notin \pi_{e}(G)$. Suppose that $21 \in \pi_{e}(G)$, then $m_{21}=\phi(21) \cdot n_{7} \cdot k$, where $k$ is the number of cyclic subgroups of order 3 in $C_{G}\left(P_{7}\right)$. Since $n_{7}=m_{7} / \phi(7)=960,5760 \mid m_{21}$ and $m_{21}=5760$. On the other hand, by $(*) 21 \mid\left(1+m_{3}+m_{7}+m_{21}\right)=12753$ or 22161 , which is a contradiction. Thus $21 \notin \pi_{e}(G)$. Arguing as above, we can prove that $14 \notin \pi_{e}(G)$. Since $21 \notin \pi_{e}(G)$, the group $P_{3}$ acts fixed point freely on the set of elements of order 7 . Hence $\left|P_{3}\right| \mid m_{7}=5760$, and hence $\left|P_{3}\right|=3$ or 9 . Also, since $14 \notin \pi_{e}(G)$, the group $P_{2}$ acts fixed point freely on the set of elements of order 7. Hence $\left|P_{2}\right| \mid m_{7}$, then $\left|P_{2}\right| \mid 2^{7}$. On the other hand, $40320 \leq|G|$ then $|G|=2^{7} \times 3^{2} \times 5 \times 7=\left|S_{8}\right|$.

Now we claim that $G$ is a nonsolvable group. Suppose that $G$ is a solvable group. Since $n_{7}=960$ by Lemma [2.4, $3 \equiv 1(\bmod 7)$, which is a contradiction. Hence $G$ is a nonsolvable group and $p \||G|$, where $p \in\{5,7\}$. Therefore $G$ has a normal series

$$
1 \unlhd N \unlhd H \unlhd G
$$

such that $N$ is a maximal solvable normal subgroup of $G$ and $H / N$ is a nonsolvable minimal normal subgroup of $G / N$. Then, $H / N$ is a non-abelian simple $K_{3}$-group or simple $K_{4}$-group.

If $H / N$ be simple $K_{3}$ - group, then by Lemma [2.6, $H / N$ is isomorphic to one of the groups: $A_{5}, A_{6}, L_{2}(7)$ or $L_{2}(8)$.

Suppose that $H / N \cong A_{5}$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N)$, $n_{5}(H / N) t=n_{5}(G)$ for some positive integer $t$ and $5 \nmid t$, by Lemma [2.5. Since $n_{5}\left(A_{5}\right)=6, n_{5}(G)=6 t$. Then $m_{5}=n_{5}(G) \times 4=24 t=1344$ and $t=56$. So, by Lemma [2.5, $56 \times\left|N_{N}\left(P_{5}\right)\right|=|N|$. Since $|N| \mid 2^{6} \times 3 \times 7, n_{7}(N)=1,8$ or 64 . So, the number of elements of order 7 in $G$ is 6,48 or 384 , which is a contradiction.

Suppose that $H / N \cong A_{6}$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N)$, $n_{5}(H / N) t=n_{5}(G)$ for some positive integer $t$ and $5 \nmid t$, by Lemma L.5. Since $n_{5}\left(A_{6}\right)=36, n_{5}(G)=36 t$. Then $m_{5}=n_{5}(G) \times 4=144 t=1344$ and $t=28 / 3$, which is a contradiction.

Suppose that $H / N \cong L_{2}(7)$. If $P_{7} \in \operatorname{Syl}_{7}(G)$, then $P_{7} N / N \in \operatorname{Syl}_{7}(H / N)$, $n_{7}(H / N) t=n_{7}(G)$ for some positive integer $t$ and $7 \nmid t$, by Lemma [2.5. Since $n_{7}\left(L_{2}(7)\right)=8, n_{7}(G)=8 t$. Thus $m_{7}=n_{7}(G) \times 6=48 t=5760$ and $t=120$. So, by Lemma [2.5, $120 \times\left|N_{N}\left(P_{7}\right)\right|=|N|$. Since $|N| \mid 2^{4} \times 3^{2} \times 5, n_{5}(N)=1$ or 6 . So, the number of elements of order 5 in $G$ is 4 or 24 , which is a contradiction.

Suppose that $H / N \cong L_{2}(8)$. If $P_{7} \in \operatorname{Syl}_{7}(G)$, then $P_{7} N / N \in \operatorname{Syl}_{7}(H / N)$, $n_{7}(H / N) t=n_{7}(G)$ for some positive integer $t$ and $7 \nmid t$, by Lemma [.5. Since
$n_{7}\left(L_{2}(7)\right)=36, n_{7}(G)=36 t$. Thus $m_{7}=n_{7}(G) \times 6=216 t=5760$ and $t=80 / 3$, a contradiction.

Hence $H / N$ is simple $K_{4}$-group. By Lemma [2.7, $H / N$ is isomorphic to $A_{7}, A_{8}$ or $L_{3}(4)$.

Suppose that $H / N \cong A_{7}$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N)$, $n_{5}(H / N) t=n_{5}(G)$ for some positive integer $t$ and $5 \nmid t$, by Lemma [2.5. Since $n_{5}\left(A_{7}\right)=126, n_{5}(G)=126 t$. Thus $m_{5}=n_{5}(G) \times 4=504 t=1344$ and $t=8 / 3$, a contradiction.

Suppose that $H / N \cong L_{3}(4)$. If $P_{5} \in \operatorname{Syl}_{5}(G)$, then $P_{5} N / N \in \operatorname{Syl}_{5}(H / N)$, $n_{5}(H / N) t=n_{5}(G)$ for some positive integer $t$ and $5 \nmid t$, by Lemma [2.5. Since $n_{5}\left(L_{3}(4)\right)=2016, n_{5}(G)=2016 t$. Thus $m_{5}=n_{5}(G) \times 4=8064 t=1344$, a contradiction.

Hence $H / N \cong A_{8}$. Now set $\bar{H}:=H / N \cong A_{8}$ and $\bar{G}:=G / N$. On the other hand, we have

$$
A_{8} \cong \bar{H} \cong \bar{H} C_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \bar{G} / C_{\bar{G}}(\bar{H})=N_{\bar{G}}(\bar{H}) / C_{\bar{G}}(\bar{H}) \leq \operatorname{Aut}(\bar{H})
$$

Let $K=\left\{x \in G \mid x N \in C_{\bar{G}}(\bar{H})\right\}$. Thus $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$ and $A_{8} \leq$ $G / K \leq \operatorname{Aut}\left(A_{8}\right)$. Then $G / K \cong A_{8}$ or $G / K \cong S_{8}$.

If $G / K \cong A_{8}$, then $|K|=2$. We have $N \leq K$ and $N$ is a maximal solvable normal subgroup of $G$, then $N=K$. Thus $H / N \cong A_{8}$ and $|N|=2$. Then $G$ has a normal subgroup $N$ of order 2 , generated by a central involution $z$. Let $x$ be an element of order 7 in $G$. Since $x z=z x$ and $(o(x), o(z))=1, o(x z)=14$. Hence $14 \in \pi_{e}(G)$. We know $14 \notin \pi_{e}(G)$, a contradiction.

If $G / K \cong S_{8}$, then $|K|=1$ and $G \cong S_{8}$. Now the proof of the main theorem is complete.

## Acknowledgment

The author would like to thank the referee for pointing out some questions in the previous version of the paper. His/Her valuable suggestions made the proof of our main results substantially simplified.

## References

[1] Shao, C. G., Shi, W., Jiang, Q. H., Characterization of simple $K_{4}$-groups. Front Math China. 3 (2008), 355-370.
[2] Frobenius, G., Verallgemeinerung des sylowschen satze, Berliner sitz. (1895), 981-993.
[3] Miller, G., Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 11 (1904), 6-7.
[4] Hall, M., The Theory of Groups. New York: Macmillan 1959.
[5] Herzog, M., On finite simple groups of order divisible by three primes only. J. Algebra. 120 (10) (1968), 383-388.
[6] Khalili, A. R., Salehi, S. S., Iranmanesh, A., Tehranian, A., A New Characterization of Symmetric Groups for Some $n$. (unpublished manuscript)
[7] Khatami, M., Khosaravi, B., Akhlaghi, Z., A new characterization for some linear groups. Monatsh Math. 163 (2011), 39-50.
[8] Conway, J. H., Curtis, R. T., Norton, S. P., Wilson, R. A., Atlas of Finite Groups. Oxford: Clarendon 1985.
[9] Shen, R., Shao, C. G., Jiang, Q., Shi, W., Mazurov, V., A New Characterization of $A_{5}$. Monatsh Math. 160 (2010), 337-341.
[10] Shi, W. J., A new characterization of the sporadic simple groups in group theory. In Proceeding of the 1987 Singapore Group Theory Conference. Walter de Gruyter, Berlin. (1989), 531-540.
[11] Shi, W., The simple groups of order $2^{a} 3^{b} 5^{c} 7^{d}$ and Janko's simple groups. J. Southwest China Normal University (Natural Science Edition). 12 (4) (1987), 1-8.

Received by the editors September 1, 2011


[^0]:    ${ }^{1}$ Department of Mathematics, Babol Education, Mazandaran, Iran, e-mail: khaliliasbo@yahoo.com

