A NEW CHARACTERIZATION OF S₈

Alireza Khalili Asboei¹

Abstract. Let G be a group and $\pi_e(G)$ be the set of element orders of G. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. Set $\operatorname{nse}(G) := \{m_k | k \in \pi_e(G)\}$. In this work we prove if G is a group such that $\operatorname{nse}(G) = \operatorname{nse}(S_8)$, then $G \cong S_8$.

AMS Mathematics Subject Classification (2010):20D06, 20D20, 20D60

Key words and phrases: Element order, set of the numbers of elements of the same order, Symmetric group

1. Introduction

If n is an integer, then we denote by $\pi(n)$ the set of all prime divisors of n. Let G be a finite group. Denote by $\pi(G)$ the set of primes p such that G contains an element of order p. Also, the set of element orders of G is denoted by $\pi_e(G)$. A finite group G is called a simple K_n -group, if G is a simple group with $|\pi(G)| = n$. Set $m_i = m_i(G) = |\{g \in G| \text{ the order of } g \text{ is } i\}|$ and $\operatorname{nse}(G) := \{m_i | i \in \pi_e(G)\}.$

For the set nse(G), the most important problem is related to Thompson's problem. In 1987, J. G. Thompson put forward the following problem. For each finite group G and each integer $d \ge 1$, let $G(d) = \{x \in G | x^d = 1\}$. Defining G_1 and G_2 is of the same order type if, and only if, $|G_1(d)| = |G_2(d)|, d = 1, 2, 3, \cdots$. Suppose G_1 and G_2 are of the same order type. If G_1 is solvable, is G_2 necessarily solvable?

W. J. Shi in [10] made the above problem public in 1989. Unfortunately, no one could solve it or give a counterexample until now, and it remains open. The influence of nse(G) on the structure of finite groups was studied by some authors (see [1, 9, 7, 6]). In this paper we continue this work and show that the symmetric group S_8 is characterizable by nse(G). In fact, the main theorem of our paper is as follows:

Main Theorem: Let G be a group such that $nse(G)=nse(S_8)$. Then $G \cong S_8$.

We note that there are finite groups which are not characterizable by nse(G) and |G|. In 1987, Thompson gave an example as follows:

Let $G_1 = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_7$ and $G_2 = L_3(4) \rtimes C_2$ be the maximal subgroups of M_{23} , where \rtimes is a semidirect product symbol. Then $nse(G_1) =$ $nse(G_2)$ and $|G_1| = |G_2|$, but $G_1 \not\cong G_2$. Throughout this paper, we denote by ϕ the Euler totient function. If G is a finite group, then we denote by P_q a Sylow

 $^{^{1}\}mbox{Department}$ of Mathematics, Babol Education, Mazandaran, Iran, e-mail: khaliliasbo@yahoo.com

q-subgroup of G and $n_q(G)$ is the number of Sylow q-subgroup of G, that is, $n_q(G)=|Syl_q(G)|$. We use $a \mid b$ to mean that a divides b, if p is a prime, then $p^n \mid b$ means $p^n \mid b$ but $p^{n+1} \nmid b$. All other notations are standard and we refer to [8], for example.

2. Preliminary Results

In this section, for the proof of the main theorem we need the following Lemmas:

Lemma 2.1. [2] Let G be a finite group and m be a positive integer dividing |G|. If $L_m(G) = \{g \in G | g^m = 1\}$, then $m \mid |L_m(G)|$.

Lemma 2.2. [9] Let G be a group containing more than two elements. Let $k \in \pi_e(G)$ and m_k be the number of elements of order k in G. If $s = \sup\{m_k | k \in \pi_e(G)\}$ is finite, then G is finite and $|G| \leq s(s^2 - 1)$.

Lemma 2.3. [3] Let G be a finite group and $p \in \pi(G)$ be odd. Suppose that P is a Sylow p-subgroup of G and $n = p^s m$, where (p, m) = 1. If P is not cyclic and s > 1, then the number of elements of order n is always a multiple of p^s .

Lemma 2.4. [4] Let G be a finite solvable group and $|G| = m \cdot n$, where $m = p_1^{\alpha_1} \cdots p_r^{\alpha_r}$, (m, n) = 1. Let $\pi = \{p_1, ..., p_r\}$ and h_m be the number of π -Hall subgroups of G. Then $h_m = q_1^{\beta_1} \cdots q_s^{\beta_s}$ satisfies the following conditions for all $i \in \{1, 2, ..., s\}$:

- 1. $q_i^{\beta_i} \equiv 1 \pmod{p_j}$, for some p_j .
- 2. The order of some chief factor of G is divisible by $q_i^{\beta_i}$.

Lemma 2.5. [1] Let G be a finite group, $P \in \operatorname{Syl}_p(G)$, where $p \in \pi(G)$. Let G have a normal series $K \trianglelefteq L \trianglelefteq G$. If $P \le L$ and $p \nmid |K|$, then the following hold: (1) $N_{G/K}(PK/K) = N_G(P)K/K$;

(2) $|G: N_G(P)| = |L: N_L(P)|$, that is, $n_p(G) = n_p(L)$;

(3) $|L/K: N_{L/K}(PK/K)|t = |G: N_G(P)| = |L: N_L(P)|$, that is, $n_p(L/K)t = n_p(G) = n_p(L)$ for some positive integer t, and $|N_K(P)|t = |K|$.

Lemma 2.6. [5] If G is a simple K_3 - group, then G is isomorphic to one of the following groups: A_5 , A_6 , $L_2(7)$, $L_2(8)$, $L_2(17)$, $L_3(3)$, $U_3(3)$ or $U_4(2)$.

Lemma 2.7. [11] Let G be a simple group of order $2^a \cdot 3^b \cdot 5 \cdot p^c$, where $p \neq 2$, 3, 5 is a prime, and $abc \neq 0$. Then G is isomorphic to one of the following groups: A_7 , A_8 , A_9 ; M_{11} , M_{12} ; $L_2(q)$, q = 11, 16, 19, 31, 81; $L_3(4)$, $L_4(3)$, $S_6(2)$, $U_4(3)$ or $U_5(2)$. In particular, if p = 11, then $G \cong M_{11}$, M_{12} , $L_2(11)$ or $U_5(2)$; if p = 7, then $G \cong A_7$, A_8 , A_9 , A_{10} , $L_2(49)$, $L_3(4)$, $S_4(7)$, $S_6(2)$, $U_3(5)$, $U_4(3)$, J_2 , or $O_8^+(2)$.

Let G be a group such that $nse(G)=nse(S_8)$. By Lemma 2.2, we can assume that G is finite. Let m_n be the number of elements of order n. We note that $m_n = k\phi(n)$, where k is the number of cyclic subgroups of order n in G. Also, we note that if n > 2, then $\phi(n)$ is even. If $n \in \pi_e(G)$, then by Lemma 2.1 and the above notation, we have:

$$\begin{cases} \phi(n) \mid m_n \\ n \mid \sum_{d \mid n} m_d \end{cases} (*)$$

In the proof of the main theorem, we often apply (*) and the above comments.

3. Proof of the Main Theorem.

Let G be a group such that $nse(G)=nse(S_8)=\{1, 763, 1232, 1344, 2688, 3360, 4032, 5040, 5460, 5760, 10640\}$. First we prove that $\pi(G) \subseteq \{2, 3, 5, 7\}$. Since 763 \in nse(G), it follows that $2 \in \pi(G)$ and $m_2 = 763$. Let $2 \neq p \in \pi(G)$. By (*) we have $p \in \{3, 5, 7, 43, 37, 71, 2689, 3361\}$.

We will show $43 \notin \pi(G)$. Suppose $43 \in \pi(G)$. By (*), $m_{43} = 5460$. If $43^2 \in \pi_e(G)$, then $\phi(43^2) \mid m_n$ where $m_n \in \operatorname{nse}(G)$, a contradiction. Hence $\exp(P_{43}) = 43$. Thus by Lemma 2.1, $|P_{43}| \mid (1 + m_{43}) = 5461$, so $|P_{43}| = 43$. We prove $86 \notin \pi_e(G)$.

Suppose $86 \in \pi_e(G)$, we know that if P and Q are Sylow 43-subgroups of G, then P and Q are conjugate, which implies that $C_G(P)$ and $C_G(Q)$ are conjugate. Therefore $m_{86} = \phi(86) \cdot n_{43} \cdot k$, where k is the number of cyclic subgroups of order 2 in $C_G(P_{43})$. Since $n_{43} = m_{43}/\phi(43) = 130$, 5460 | m_{86} . Therefore $m_{86} = 5460$. On the other hand, 86 | $(1 + m_2 + m_{43} + m_{86}) = 11684$, which is a contradiction.

Hence 86 $\notin \pi_e(G)$. Then the group P_{43} acts fixed point freely on the set of elements of order 2. Hence $|P_{43}| \mid m_2 = 763$, a contradiction. Arguing as above, we can prove 37, 71, 2689 and 3361 $\notin \pi(G)$. Hence $\pi(G) \subseteq \{2, 3, 5, 7\}$.

If 3, 5, $7 \in \pi(G)$, then $m_3 \in \{1232, 10640\}$, $m_5 = 1344$ and $m_7 = 5760$ by (*). It is clear that G does not contain any element of order 81, 25, 512 and 343 by (*). If $49 \in \pi_e(G)$, then $m_{49} \in \{1344, 5460\}$. Hence by Lemma 2.1, $|P_7| \mid (1 + m_7 + m_{49}) = 7105$ or 11221, so $|P_7| = 49$. Therefore $n_7 = m_{49}/\phi(49) = 32$ or 130. Since $n_7 = 1 + 7k$ for some k, we get a contradiction. Thus $49 \notin \pi_e(G)$.

We conclude if 5, $7 \in \pi(G)$, then $\exp(P_5) = 5$ and $\exp(P_7) = 7$, also by Lemma 2.1 $|P_5| = 5$ and $|P_7| = 7$. Hence $n_5 = m_5/\phi(5) = 2^4 \times 7 \times 3$ and $n_7 = m_7/\phi(7) = 2^6 \times 3 \times 5$. Thus if $5 \in \pi(G)$, then 3, $7 \in \pi(G)$ and if $7 \in \pi(G)$, then 3, $5 \in \pi(G)$.

So if we show that $\pi(G)$ could not be the sets $\{2\}$, $\{2, 3\}$, then $\pi(G)$ must be equal to $\{2, 3, 5, 7\}$. We consider the following cases:

<u>Case a.</u> Suppose that $\pi(G) = \{2\}$. Hence $\pi_e(G) \subseteq \{1, 2, 4, 8, 16, 32, 64, 128, 256\}$. Since nse(G) have eleven elements, we get a contradiction.

<u>Case b.</u> Suppose that $\pi(G) = \{2, 3\}$. Since $81 \notin \pi_e(G)$, $\exp(P_3) = 3, 9$ or 27. Let $\exp(P_3) = 3$. Thus $|P_3| \mid (1 + m_3) = 1233$ or 10641 by Lemma 2.1. Hence $|P_3| \mid 9$. If $|P_3| = 3$, then $n_3 = m_3/\phi(3) = 616$ or 5320. Because $7 \notin \pi(G)$, we get a contradiction.

Let $|P_3| = 9$. Since $\exp(P_3) = 3$ and $2^8 \times 3 \notin \pi_e(G)$, $\pi_e(G) \subseteq \{1, 2, 3, 2^2, \ldots, 2^8\} \cup \{2 \times 3, 2^2 \times 3, \ldots, 2^7 \times 3\}$. Hence $|\pi_e(G)| \le 17$. Therefore $40320 + 1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 1232k_5 + 5040k_6 + 5460k_7 + 1232k_1 + 1232k_1 + 1232k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 1232k_1 + 1232k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 1232k_1 + 1232k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 1232k_2 + 1232k_2$

 $5760k_8 + 10640k_9 = 2^m \times 9$ where $m, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8$ and k_9 are non-negative integers and $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 6$.

We know that $40320 \le 2^m \times 9 \le 40320 + 10640 \times 6$, hence m = 13 and so $1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 5760k_8 + 10640k_9 = 33408$ where $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 6$. By simple computer calculation, it is easy to see this equation has no solution.

Let $\exp(P_3) = 9$. By (*) we have $m_9 \in \{4032, 5040, 5760\}$. Assume $m_3 = 10640$. Then by (*), $9 \mid (1 + m_3 + m_9)$. Since $m_9 \in \{4032, 5040, 5760\}$, we get a contradiction. Hence $m_3 = 1232$ and hence by Lemma 2.1, $|P_3| \mid 81$.

If $|P_3| = 9$, then $n_3 = m_9/\phi(9) \in \{672, 840, 960\}$, which is a contradiction by 5, $7 \notin \pi(G)$.

Assume $|P_3| = 27$. Since $\exp(P_3) = 9$ and $2^8 \times 3$, $2^8 \times 9 \notin \pi_e(G)$, $\pi_e(G) \subseteq \{1, 2, 3, 2^2, \ldots, 2^8\} \cup \{2 \times 3, 2^2 \times 3, \ldots, 2^7 \times 3\} \cup \{2 \times 9, 2^2 \times 9, \ldots, 2^7 \times 9\}$. On the other hand, if $2^8 \in \pi_e(G)$ since $2^8 \times 3 \notin \pi_e(G)$, the group P_3 acts fixed point freely on the set of elements of order 256. Hence $|P_3| \mid m_{256} = 5760$, a contradiction. Thus $2^8 \notin \pi_e(G)$ and $|\pi_e(G)| \le 24$. Therefore $40320 + 1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 5760k_8 + 10640k_9 = 2^m \times 27$ where $m, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8$ and k_9 are non-negative integers and $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 13$. We have $40320 \le 2^m \times 27 \le 40320 + 10640 \times 14$, so m = 11 or 12.

If m = 11, then $1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 5760k_8 + 10640k_9 = 14976$ where $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 13$. By computer calculation, it is easy to see this equation has no solution.

If m = 12, then $1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 5760k_8 + 10640k_9 = 70272$, where $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 13$.

If $2^7 \times 9 \in \pi_e(G)$, then $|\pi_e(G)| = 24$. In this case the equation have 31 solutions. For example $(k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) = (0, 0, 0, 7, 1, 1, 0, 1, 3)$ is one of the solutions. We show this is impossible. Since $2^7 \times 9$, $2^7 \times 3 \in \pi_e(G)$, $m_{2^7 \times 9} = 2688$ or 5760 and $m_{2^7 \times 3} = 2688$ or 5760. We know $2^8 \notin \pi_e(G)$, thus $\exp(P_2) = 2$, 4, 8, 16, 32, 64 or 128. Hence if $\exp(P_2) = 2^i$ where $1 \leq i \leq 7$, then $|P_2| \mid (1 + m_2 + \ldots + m_{2^i})$, by Lemma 2.1. In fact, $|P_2| \mid (1 + 763 + 1232t_1 + 1344t_2 + 2688t_3 + 3360t_4 + 4032t_5 + 5040t_6 + 5460t_7 + 5760t_8 + 10640t_9)$, where $t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8$ and t_9 are non-negative integers and $0 \leq t_1 + t_2 + t_3 + t_4 + t_5 + t_6 + t_7 + t_8 + t_9 \leq 6$. Because $k_1 = 0$ and $m_3 = 1232, m_{2^i} \neq 1232$ for $1 \leq i \leq 7, t_1 = 0$. Since $k_8 = 1$ and $m_{2^7 \times 9} = 2688$ or 5760 and also $m_{2^7 \times 3} = 2688$ or 5760, $0 \leq t_8 \leq 1$. Also $k_2 = 0$ and $k_3 = 0$, thus $0 \leq t_2 \leq 1$ and $0 \leq t_3 \leq 1$. Also we have $0 \leq t_5 \leq 2, 0 \leq t_6 \leq 2, 0 \leq t_7 \leq 1$ and $0 \leq t_9 \leq 4$. By an easy computer calculation, $|P_2| | 2^9$, a contradiction. Arguing as above for other solutions we get a contradiction.

If $2^7 \times 9 \notin \pi_e(G)$, then $|\pi_e(G)| \leq 23$ and the above equation where $0 \leq k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \leq 12$, have 25 solutions. For example $(k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8, k_9) = (0, 0, 0, 1, 1, 5, 0, 1, 3)$ is one of the solutions. We show that this is impossible. Arguing as above, $t_1 = 0, 0 \leq t_2 \leq 1, 0 \leq t_3 \leq 1, 0 \leq t_4 \leq 2, 0 \leq t_5 \leq 2, 0 \leq t_6 \leq 6, 0 \leq t_7 \leq 1, 0 \leq t_8 \leq 2$ and $0 \leq t_9 \leq 4$. By an easy computer calculation, $|P_2| \mid 2^{10}$, a contradiction.

If $|P_3| = 81$, then $40320 + 1232k_1 + 1344k_2 + 2688k_3 + 3360k_4 + 4032k_5 + 5040k_6 + 5460k_7 + 5760k_8 + 10640k_9 = 2^m \times 81$, where $m, k_1, k_2, k_3, k_4, k_5, k_6, k_7, k_8$ and k_9 are non-negative integers and $0 \le k_1 + k_2 + k_3 + k_4 + k_5 + k_6 + k_7 + k_8 + k_9 \le 13$. We know that $40320 \le 2^m \times 81 \le 40320 + 10640 \times 14$, hence m = 9, 10 or 11. Arguing as above we get a contradiction. If $\exp(P_3) = 27$, then $|P_3| \mid (1 + m_3 + m_9 + m_{27})$ by Lemma 2.1. It is clear that $|P_3| = 27$ or 3^n where $n \geqq 3$. Hence if $|P_3| = 27$, then $n_3 = m_{27}/\phi(27) \in \{224, 280, 320\}$. Since 5, $7 \notin \pi(G)$, we get a contradiction.

If $|P_3| = 3^n$ where $n \ge 3$, then by Lemma 2.3, m_{27} is a multiple of 27, a contradiction.

Therefore $\pi(G) = \{2, 3, 5, 7\}$. We prove that $21 \notin \pi_e(G)$. Suppose that $21 \in \pi_e(G)$, then $m_{21} = \phi(21) \cdot n_7 \cdot k$, where k is the number of cyclic subgroups of order 3 in $C_G(P_7)$. Since $n_7 = m_7/\phi(7) = 960, 5760 \mid m_{21}$ and $m_{21} = 5760$. On the other hand, by (*) $21 \mid (1 + m_3 + m_7 + m_{21}) = 12753$ or 22161, which is a contradiction. Thus $21 \notin \pi_e(G)$. Arguing as above, we can prove that $14 \notin \pi_e(G)$. Since $21 \notin \pi_e(G)$, the group P_3 acts fixed point freely on the set of elements of order 7. Hence $|P_3| \mid m_7 = 5760$, and hence $|P_3| = 3$ or 9. Also, since $14 \notin \pi_e(G)$, the group P_2 acts fixed point freely on the set of elements of order 7. Hence $|P_2| \mid 2^7$. On the other hand, $40320 \leq |G|$ then $|G| = 2^7 \times 3^2 \times 5 \times 7 = |S_8|$.

Now we claim that G is a nonsolvable group. Suppose that G is a solvable group. Since $n_7 = 960$ by Lemma 2.4, $3 \equiv 1 \pmod{7}$, which is a contradiction. Hence G is a nonsolvable group and $p \parallel |G|$, where $p \in \{5, 7\}$. Therefore G has a normal series

$$1 \trianglelefteq N \trianglelefteq H \trianglelefteq G$$

such that N is a maximal solvable normal subgroup of G and H/N is a nonsolvable minimal normal subgroup of G/N. Then, H/N is a non-abelian simple K_3 -group or simple K_4 -group.

If H/N be simple K_3 - group, then by Lemma 2.6, H/N is isomorphic to one of the groups: A_5 , A_6 , $L_2(7)$ or $L_2(8)$.

Suppose that $H/N \cong A_5$. If $P_5 \in \operatorname{Syl}_5(G)$, then $P_5N/N \in \operatorname{Syl}_5(H/N)$, $n_5(H/N)t = n_5(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_5(A_5) = 6$, $n_5(G) = 6t$. Then $m_5 = n_5(G) \times 4 = 24t = 1344$ and t = 56. So, by Lemma 2.5, $56 \times |N_N(P_5)| = |N|$. Since $|N| \mid 2^6 \times 3 \times 7$, $n_7(N) = 1$, 8 or 64. So, the number of elements of order 7 in G is 6, 48 or 384, which is a contradiction.

Suppose that $H/N \cong A_6$. If $P_5 \in \text{Syl}_5(G)$, then $P_5N/N \in \text{Syl}_5(H/N)$, $n_5(H/N)t = n_5(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_5(A_6) = 36$, $n_5(G) = 36t$. Then $m_5 = n_5(G) \times 4 = 144t = 1344$ and t = 28/3, which is a contradiction.

Suppose that $H/N \cong L_2(7)$. If $P_7 \in \operatorname{Syl}_7(G)$, then $P_7N/N \in \operatorname{Syl}_7(H/N)$, $n_7(H/N)t = n_7(G)$ for some positive integer t and $7 \nmid t$, by Lemma 2.5. Since $n_7(L_2(7)) = 8$, $n_7(G) = 8t$. Thus $m_7 = n_7(G) \times 6 = 48t = 5760$ and t = 120. So, by Lemma 2.5, $120 \times |N_N(P_7)| = |N|$. Since $|N| \mid 2^4 \times 3^2 \times 5$, $n_5(N) = 1$ or 6. So, the number of elements of order 5 in G is 4 or 24, which is a contradiction.

Suppose that $H/N \cong L_2(8)$. If $P_7 \in \text{Syl}_7(G)$, then $P_7N/N \in \text{Syl}_7(H/N)$, $n_7(H/N)t = n_7(G)$ for some positive integer t and $7 \nmid t$, by Lemma 2.5. Since

 $n_7(L_2(7)) = 36$, $n_7(G) = 36t$. Thus $m_7 = n_7(G) \times 6 = 216t = 5760$ and t = 80/3, a contradiction.

Hence H/N is simple K_4 -group. By Lemma 2.7, H/N is isomorphic to A_7 , A_8 or $L_3(4)$.

Suppose that $H/N \cong A_7$. If $P_5 \in \text{Syl}_5(G)$, then $P_5N/N \in \text{Syl}_5(H/N)$, $n_5(H/N)t = n_5(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_5(A_7) = 126$, $n_5(G) = 126t$. Thus $m_5 = n_5(G) \times 4 = 504t = 1344$ and t = 8/3, a contradiction.

Suppose that $H/N \cong L_3(4)$. If $P_5 \in \text{Syl}_5(G)$, then $P_5N/N \in \text{Syl}_5(H/N)$, $n_5(H/N)t = n_5(G)$ for some positive integer t and $5 \nmid t$, by Lemma 2.5. Since $n_5(L_3(4)) = 2016$, $n_5(G) = 2016t$. Thus $m_5 = n_5(G) \times 4 = 8064t = 1344$, a contradiction.

Hence $H/N \cong A_8$. Now set $\overline{H} := H/N \cong A_8$ and $\overline{G} := G/N$. On the other hand, we have

$$A_8 \cong \overline{H} \cong \overline{H}C_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \overline{G}/C_{\overline{G}}(\overline{H}) = N_{\overline{G}}(\overline{H})/C_{\overline{G}}(\overline{H}) \leq \operatorname{Aut}(\overline{H}).$$

Let $K = \{x \in G \mid xN \in C_{\overline{G}}(\overline{H})\}$. Thus $G/K \cong \overline{G}/C_{\overline{G}}(\overline{H})$ and $A_8 \leq G/K \leq \operatorname{Aut}(A_8)$. Then $G/K \cong A_8$ or $G/K \cong S_8$.

If $G/K \cong A_8$, then |K| = 2. We have $N \leq K$ and N is a maximal solvable normal subgroup of G, then N = K. Thus $H/N \cong A_8$ and |N| = 2. Then G has a normal subgroup N of order 2, generated by a central involution z. Let x be an element of order 7 in G. Since xz = zx and (o(x), o(z)) = 1, o(xz) = 14. Hence $14 \in \pi_e(G)$. We know $14 \notin \pi_e(G)$, a contradiction.

If $G/K \cong S_8$, then |K| = 1 and $G \cong S_8$. Now the proof of the main theorem is complete.

Acknowledgment

The author would like to thank the referee for pointing out some questions in the previous version of the paper. His/Her valuable suggestions made the proof of our main results substantially simplified.

References

- Shao, C. G., Shi, W., Jiang, Q. H., Characterization of simple K₄-groups. Front Math China. 3 (2008), 355-370.
- [2] Frobenius, G., Verallgemeinerung des sylowschen satze, Berliner sitz. (1895), 981-993.
- [3] Miller, G., Addition to a theorem due to Frobenius. Bull. Am. Math. Soc. 11 (1904), 6-7.
- [4] Hall, M., The Theory of Groups. New York: Macmillan 1959.
- [5] Herzog, M., On finite simple groups of order divisible by three primes only. J. Algebra. 120 (10) (1968), 383-388.
- [6] Khalili, A. R., Salehi, S. S., Iranmanesh, A., Tehranian, A., A New Characterization of Symmetric Groups for Some n. (unpublished manuscript)

- [7] Khatami, M., Khosaravi, B., Akhlaghi, Z., A new characterization for some linear groups. Monatsh Math. 163 (2011), 39-50.
- [8] Conway, J. H., Curtis, R. T., Norton, S. P., Wilson, R. A., Atlas of Finite Groups. Oxford: Clarendon 1985.
- [9] Shen, R., Shao, C. G., Jiang, Q., Shi, W., Mazurov, V., A New Characterization of A₅. Monatsh Math. 160 (2010), 337-341.
- [10] Shi, W. J., A new characterization of the sporadic simple groups in group theory. In Proceeding of the 1987 Singapore Group Theory Conference. Walter de Gruyter, Berlin. (1989), 531-540.
- Shi, W., The simple groups of order 2^a3^b5^c7^d and Janko's simple groups. J. Southwest China Normal University (Natural Science Edition). 12 (4) (1987), 1-8.

Received by the editors September 1, 2011