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A NEW CHARACTERIZATION OF S8

Alireza Khalili Asboei1

Abstract. Let G be a group and πe(G) be the set of element orders
of G. Let k ∈ πe(G) and mk be the number of elements of order k in G.
Set nse(G):={mk|k ∈ πe(G)}. In this work we prove if G is a group such
that nse(G)=nse(S8), then G ∼= S8.
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of
n. Let G be a finite group. Denote by π(G) the set of primes p such that G
contains an element of order p. Also, the set of element orders of G is denoted
by πe(G). A finite group G is called a simple Kn−group, if G is a simple
group with |π(G)| = n. Set mi=mi(G)=|{g ∈ G| the order of g is i}| and
nse(G):={mi|i ∈ πe(G)}.

For the set nse(G), the most important problem is related to Thompson’s
problem. In 1987, J. G. Thompson put forward the following problem. For each
finite group G and each integer d ≥ 1, let G(d) = {x ∈ G|xd = 1}. Defining
G1 and G2 is of the same order type if, and only if, |G1(d)| = |G2(d)|, d = 1,
2, 3, · · · . Suppose G1 and G2 are of the same order type. If G1 is solvable, is
G2 necessarily solvable?

W. J. Shi in [10] made the above problem public in 1989. Unfortunately,
no one could solve it or give a counterexample until now, and it remains open.
The influence of nse(G) on the structure of finite groups was studied by some
authors (see [1, 9, 7, 6]). In this paper we continue this work and show that the
symmetric group S8 is characterizable by nse(G). In fact, the main theorem of
our paper is as follows:

Main Theorem: Let G be a group such that nse(G)=nse(S8). Then
G ∼= S8.

We note that there are finite groups which are not characterizable by nse(G)
and |G|. In 1987, Thompson gave an example as follows:
Let G1= (C2 × C2 × C2 × C2) o A7 and G2 = L3(4) o C2 be the maximal
subgroups of M23, where o is a semidirect product symbol. Then nse(G1) =
nse(G2) and |G1|=|G2|, but G1 ̸∼= G2. Throughout this paper, we denote by ϕ
the Euler totient function. If G is a finite group, then we denote by Pq a Sylow
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q−subgroup of G and nq(G) is the number of Sylow q−subgroup of G, that is,
nq(G)=|Sylq(G)|. We use a | b to mean that a divides b, if p is a prime, then
pn || b means pn | b but pn+1 - b. All other notations are standard and we refer
to [8], for example.

2. Preliminary Results

In this section, for the proof of the main theorem we need the following
Lemmas:

Lemma 2.1. [2] Let G be a finite group and m be a positive integer dividing
|G|. If Lm(G) = {g ∈ G|gm = 1}, then m | |Lm(G)|.
Lemma 2.2. [9] Let G be a group containing more than two elements. Let
k ∈ πe(G) andmk be the number of elements of order k inG. If s= sup{mk|k ∈
πe(G)} is finite, then G is finite and |G| ≤ s(s2 − 1).

Lemma 2.3. [3] Let G be a finite group and p ∈ π(G) be odd. Suppose that
P is a Sylow p−subgroup of G and n = psm, where (p,m) = 1. If P is not
cyclic and s > 1, then the number of elements of order n is always a multiple
of ps.

Lemma 2.4. [4] Let G be a finite solvable group and |G| = m · n, where
m = pα1

1 · · · pαr
r , (m,n) = 1. Let π = {p1, ..., pr} and hm be the number of

π−Hall subgroups of G. Then hm = q
β1
1 · · ·qβs

s satisfies the following conditions
for all i ∈ {1, 2, ..., s}:

1. q
βi
i ≡ 1 (mod pj), for some pj .

2. The order of some chief factor of G is divisible by q
βi
i .

Lemma 2.5. [1] Let G be a finite group, P ∈Sylp(G), where p ∈ π(G). Let G
have a normal series K �L�G. If P ≤ L and p - |K|, then the following hold:
(1) NG/K(PK/K) = NG(P )K/K;
(2) |G : NG(P )| = |L : NL(P )|, that is, np(G) = np(L);
(3) |L/K : NL/K(PK/K)|t = |G : NG(P )| = |L : NL(P )|, that is, np(L/K)t =
np(G) = np(L) for some positive integer t, and |NK(P )|t = |K|.
Lemma 2.6. [5] If G is a simple K3− group, then G is isomorphic to one of
the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3) or U4(2).

Lemma 2.7. [11] Let G be a simple group of order 2a · 3b · 5 · pc, where p ̸= 2,
3, 5 is a prime, and abc ̸= 0. Then G is isomorphic to one of the following
groups: A7, A8, A9; M11, M12; L2(q), q = 11, 16, 19, 31, 81; L3(4), L4(3),
S6(2), U4(3) or U5(2). In particular, if p = 11, then G ∼= M11, M12, L2(11) or
U5(2); if p = 7, then G ∼= A7, A8, A9, A10, L2(49), L3(4), S4(7), S6(2), U3(5),
U4(3), J2, or O

+
8 (2).

Let G be a group such that nse(G)=nse(S8). By Lemma 2.2, we can assume
that G is finite. Let mn be the number of elements of order n. We note that
mn = kϕ(n), where k is the number of cyclic subgroups of order n in G. Also,
we note that if n > 2, then ϕ(n) is even. If n ∈ πe(G), then by Lemma 2.1 and
the above notation, we have:
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ϕ(n) | mn

(∗)
n |

∑
d|n md

In the proof of the main theorem, we often apply (∗) and the above com-
ments.

3. Proof of the Main Theorem.

Let G be a group such that nse(G)=nse(S8)={1, 763, 1232, 1344, 2688,
3360, 4032, 5040, 5460, 5760, 10640}. First we prove that π(G) ⊆ {2, 3, 5, 7}.
Since 763 ∈nse(G), it follows that 2 ∈ π(G) and m2 = 763. Let 2 ̸= p ∈ π(G).
By (∗) we have p ∈ {3, 5, 7, 43, 37, 71, 2689, 3361}.

We will show 43 /∈ π(G). Suppose 43 ∈ π(G). By (∗), m43 = 5460. If
432 ∈ πe(G), then ϕ(432) | mn where mn ∈ nse(G), a contradiction. Hence
exp(P43) = 43. Thus by Lemma 2.1, |P43| | (1 +m43) = 5461, so |P43| = 43.
We prove 86 /∈ πe(G).

Suppose 86 ∈ πe(G), we know that if P and Q are Sylow 43−subgroups
of G, then P and Q are conjugate, which implies that CG(P ) and CG(Q) are
conjugate. Therefore m86 = ϕ(86) · n43 · k, where k is the number of cyclic
subgroups of order 2 in CG(P43). Since n43 = m43/ϕ(43) = 130, 5460 | m86.
Therefore m86 = 5460. On the other hand, 86 | (1+m2+m43+m86) = 11684,
which is a contradiction.

Hence 86 /∈ πe(G). Then the group P43 acts fixed point freely on the set
of elements of order 2. Hence |P43| | m2 = 763, a contradiction. Arguing as
above, we can prove 37, 71, 2689 and 3361 /∈ π(G). Hence π(G) ⊆ {2, 3, 5, 7}.

If 3, 5, 7 ∈ π(G), then m3 ∈ {1232, 10640}, m5 = 1344 and m7 = 5760 by
(∗). It is clear that G does not contain any element of order 81, 25, 512 and 343
by (∗). If 49 ∈ πe(G), then m49 ∈ {1344, 5460}. Hence by Lemma 2.1, |P7| |
(1+m7+m49) = 7105 or 11221, so |P7| = 49. Therefore n7 = m49/ϕ(49) = 32
or 130. Since n7 = 1+7k for some k, we get a contradiction. Thus 49 /∈ πe(G).

We conclude if 5, 7 ∈ π(G), then exp(P5) = 5 and exp(P7) = 7, also by
Lemma 2.1 |P5| = 5 and |P7| = 7. Hence n5 = m5/ϕ(5) = 24 × 7 × 3 and
n7 = m7/ϕ(7) = 26 × 3 × 5. Thus if 5 ∈ π(G), then 3, 7 ∈ π(G) and if
7 ∈ π(G), then 3, 5 ∈ π(G).

So if we show that π(G) could not be the sets {2}, {2, 3}, then π(G) must
be equal to {2, 3, 5, 7}. We consider the following cases:

Case a. Suppose that π(G) = {2}. Hence πe(G) ⊆ {1, 2, 4, 8, 16, 32, 64,
128, 256}. Since nse(G) have eleven elements, we get a contradiction.

Case b. Suppose that π(G) = {2, 3}. Since 81 /∈ πe(G), exp(P3) = 3, 9
or 27. Let exp(P3) = 3. Thus |P3| | (1 + m3) = 1233 or 10641 by Lemma
2.1. Hence |P3| | 9. If |P3| = 3, then n3 = m3/ϕ(3) = 616 or 5320. Because
7 /∈ π(G), we get a contradiction.

Let |P3| = 9. Since exp(P3) = 3 and 28 × 3 /∈ πe(G), πe(G) ⊆ {1, 2, 3,
22, . . ., 28} ∪ {2 × 3, 22 × 3, . . ., 27 × 3}. Hence |πe(G)| ≤ 17. Therefore
40320 + 1232k1 + 1344k2 + 2688k3 + 3360k4 + 4032k5 + 5040k6 + 5460k7 +
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5760k8 + 10640k9 = 2m × 9 where m, k1, k2, k3, k4, k5, k6, k7, k8 and k9 are
non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9 ≤ 6.

We know that 40320 ≤ 2m × 9 ≤ 40320 + 10640 × 6, hence m = 13 and
so 1232k1 + 1344k2 + 2688k3 + 3360k4 + 4032k5 + 5040k6 + 5460k7 + 5760k8 +
10640k9 = 33408 where 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 + k7 + k8 + k9 ≤ 6. By
simple computer calculation, it is easy to see this equation has no solution.

Let exp(P3) = 9. By (∗) we have m9 ∈ {4032, 5040, 5760}. Assume
m3 = 10640. Then by (∗), 9 | (1 +m3 +m9). Since m9 ∈ {4032, 5040, 5760},
we get a contradiction. Hence m3 = 1232 and hence by Lemma 2.1, |P3| | 81.

If |P3| = 9, then n3 = m9/ϕ(9) ∈ {672, 840, 960}, which is a contradiction
by 5, 7 /∈ π(G).

Assume |P3| = 27. Since exp(P3) = 9 and 28×3, 28×9 /∈ πe(G), πe(G) ⊆ {1,
2, 3, 22, . . ., 28} ∪ {2 × 3, 22 × 3, . . ., 27 × 3} ∪ {2 × 9, 22 × 9, . . ., 27 × 9}.
On the other hand, if 28 ∈ πe(G) since 28 × 3 /∈ πe(G), the group P3 acts fixed
point freely on the set of elements of order 256. Hence |P3| | m256 = 5760, a
contradiction. Thus 28 /∈ πe(G) and |πe(G)| ≤ 24. Therefore 40320+1232k1+
1344k2+2688k3+3360k4+4032k5+5040k6+5460k7+5760k8+10640k9 = 2m×27
where m, k1, k2, k3, k4, k5, k6, k7, k8 and k9 are non-negative integers and
0 ≤ k1+k2+k3+k4+k5+k6+k7+k8+k9 ≤ 13. We have 40320 ≤ 2m×27 ≤
40320 + 10640× 14, so m = 11 or 12.

If m = 11, then 1232k1 + 1344k2 + 2688k3 + 3360k4 + 4032k5 + 5040k6 +
5460k7 + 5760k8 + 10640k9 = 14976 where 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 +
k7 + k8 + k9 ≤ 13. By computer calculation, it is easy to see this equation has
no solution.

If m = 12, then 1232k1 + 1344k2 + 2688k3 + 3360k4 + 4032k5 + 5040k6 +
5460k7 + 5760k8 + 10640k9 = 70272, where 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 +
k7 + k8 + k9 ≤ 13.

If 27 × 9 ∈ πe(G), then |πe(G)| = 24. In this case the equation have 31
solutions. For example (k1, k2, k3, k4, k5, k6, k7, k8, k9) = (0, 0, 0, 7, 1,
1, 0, 1, 3) is one of the solutions. We show this is impossible. Since 27 × 9,
27 × 3 ∈ πe(G), m27×9 = 2688 or 5760 and m27×3 = 2688 or 5760. We know
28 ̸∈ πe(G), thus exp(P2) = 2, 4, 8, 16, 32, 64 or 128. Hence if exp(P2) = 2i

where 1 ≤ i ≤ 7, then |P2| | (1 + m2 + . . . + m2i), by Lemma 2.1. In fact,
|P2| | (1+763+1232t1+1344t2+2688t3+3360t4+4032t5+5040t6+5460t7+
5760t8 + 10640t9), where t1, t2, t3, t4, t5, t6, t7, t8 and t9 are non-negative
integers and 0 ≤ t1+ t2+ t3+ t4+ t5+ t6+ t7+ t8+ t9 ≤ 6. Because k1 = 0 and
m3 = 1232, m2i ̸= 1232 for 1 ≤ i ≤ 7, t1 = 0. Since k8 = 1 and m27×9 = 2688
or 5760 and also m27×3 = 2688 or 5760, 0 ≤ t8 ≤ 1. Also k2 = 0 and k3 = 0,
thus 0 ≤ t2 ≤ 1 and 0 ≤ t3 ≤ 1. Also we have 0 ≤ t5 ≤ 2, 0 ≤ t6 ≤ 2, 0 ≤ t7 ≤ 1
and 0 ≤ t9 ≤ 4. By an easy computer calculation, |P2| | 29, a contradiction.
Arguing as above for other solutions we get a contradiction.

If 27 × 9 /∈ πe(G), then |πe(G)| ≤ 23 and the above equation where 0 ≤
k1+k2+k3+k4+k5+k6+k7+k8+k9 ≤ 12, have 25 solutions. For example (k1,
k2, k3, k4, k5, k6, k7, k8, k9) = (0, 0, 0, 1, 1, 5, 0, 1, 3) is one of the solutions.
We show that this is impossible. Arguing as above, t1 = 0, 0 ≤ t2 ≤ 1, 0 ≤
t3 ≤ 1, 0 ≤ t4 ≤ 2, 0 ≤ t5 ≤ 2, 0 ≤ t6 ≤ 6, 0 ≤ t7 ≤ 1, 0 ≤ t8 ≤ 2 and 0 ≤
t9 ≤ 4. By an easy computer calculation, |P2| | 210, a contradiction.
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If |P3| = 81, then 40320 + 1232k1 + 1344k2 + 2688k3 + 3360k4 + 4032k5 +
5040k6+5460k7+5760k8+10640k9 = 2m×81, where m, k1, k2, k3, k4, k5, k6,
k7, k8 and k9 are non-negative integers and 0 ≤ k1 + k2 + k3 + k4 + k5 + k6 +
k7+k8+k9 ≤ 13. We know that 40320 ≤ 2m×81 ≤ 40320+10640×14, hence
m = 9, 10 or 11. Arguing as above we get a contradiction. If exp(P3) = 27,
then |P3| | (1 +m3 + m9 +m27) by Lemma 2.1. It is clear that |P3| = 27 or
3n where n � 3. Hence if |P3| = 27, then n3 = m27/ϕ(27) ∈ {224, 280, 320}.
Since 5, 7 /∈ π(G), we get a contradiction.

If |P3| = 3n where n � 3, then by Lemma 2.3, m27 is a multiple of 27, a
contradiction.

Therefore π(G) = {2, 3, 5, 7}. We prove that 21 /∈ πe(G). Suppose that
21 ∈ πe(G), then m21 = ϕ(21) ·n7 ·k, where k is the number of cyclic subgroups
of order 3 in CG(P7). Since n7 = m7/ϕ(7) = 960, 5760 | m21 and m21 = 5760.
On the other hand, by (∗) 21 | (1 +m3 +m7 +m21) = 12753 or 22161, which
is a contradiction. Thus 21 ̸∈ πe(G). Arguing as above, we can prove that
14 /∈ πe(G). Since 21 /∈ πe(G), the group P3 acts fixed point freely on the set
of elements of order 7. Hence |P3| | m7 = 5760, and hence |P3| = 3 or 9. Also,
since 14 /∈ πe(G), the group P2 acts fixed point freely on the set of elements of
order 7. Hence |P2| | m7, then |P2| | 27. On the other hand, 40320 ≤ |G| then
|G| = 27 × 32 × 5× 7 = |S8|.

Now we claim that G is a nonsolvable group. Suppose that G is a solvable
group. Since n7 = 960 by Lemma 2.4, 3 ≡ 1 (mod 7), which is a contradiction.
Hence G is a nonsolvable group and p || |G|, where p ∈ {5, 7}. Therefore G
has a normal series

1 E N E H E G

such that N is a maximal solvable normal subgroup of G and H/N is a nonsolv-
able minimal normal subgroup of G/N . Then, H/N is a non-abelian simple
K3−group or simple K4−group.

If H/N be simple K3− group, then by Lemma 2.6, H/N is isomorphic to
one of the groups: A5 , A6, L2(7) or L2(8).

Suppose that H/N ∼= A5. If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N),
n5(H/N)t = n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since
n5(A5) = 6, n5(G) = 6t. Then m5 = n5(G) × 4 = 24t = 1344 and t = 56.
So, by Lemma 2.5, 56× |NN (P5)| = |N |. Since |N | | 26 × 3× 7, n7(N) = 1, 8
or 64. So, the number of elements of order 7 in G is 6, 48 or 384, which is a
contradiction.

Suppose that H/N ∼= A6. If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N),
n5(H/N)t = n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since
n5(A6) = 36, n5(G) = 36t. Then m5 = n5(G)× 4 = 144t = 1344 and t = 28/3,
which is a contradiction.

Suppose that H/N ∼= L2(7). If P7 ∈Syl7(G), then P7N/N ∈Syl7(H/N),
n7(H/N)t = n7(G) for some positive integer t and 7 - t, by Lemma 2.5. Since
n7(L2(7)) = 8, n7(G) = 8t. Thus m7 = n7(G) × 6 = 48t = 5760 and t = 120.
So, by Lemma 2.5, 120×|NN (P7)| = |N |. Since |N | | 24×32×5, n5(N) = 1 or 6.
So, the number of elements of order 5 in G is 4 or 24, which is a contradiction.

Suppose that H/N ∼= L2(8). If P7 ∈Syl7(G), then P7N/N ∈Syl7(H/N),
n7(H/N)t = n7(G) for some positive integer t and 7 - t, by Lemma 2.5. Since
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n7(L2(7)) = 36, n7(G) = 36t. Thus m7 = n7(G) × 6 = 216t = 5760 and
t = 80/3, a contradiction.

Hence H/N is simple K4−group. By Lemma 2.7, H/N is isomorphic to
A7, A8 or L3(4).

Suppose that H/N ∼= A7. If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N),
n5(H/N)t = n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since
n5(A7) = 126, n5(G) = 126t. Thus m5 = n5(G)×4 = 504t = 1344 and t = 8/3,
a contradiction.

Suppose that H/N ∼= L3(4). If P5 ∈Syl5(G), then P5N/N ∈Syl5(H/N),
n5(H/N)t = n5(G) for some positive integer t and 5 - t, by Lemma 2.5. Since
n5(L3(4)) = 2016, n5(G) = 2016t. Thus m5 = n5(G) × 4 = 8064t = 1344, a
contradiction.

Hence H/N ∼= A8. Now set H := H/N ∼= A8 and G := G/N . On the other
hand, we have

A8
∼= H ∼= HCG(H)/CG(H) ≤ G/CG(H) = NG(H)/CG(H) ≤Aut(H).

Let K = {x ∈ G | xN ∈ CG(H)}. Thus G/K ∼= G/CG(H) and A8 ≤
G/K ≤Aut(A8). Then G/K ∼= A8 or G/K ∼= S8.

If G/K ∼= A8, then |K| = 2. We have N ≤ K and N is a maximal solvable
normal subgroup of G, then N = K. Thus H/N ∼= A8 and |N | = 2. Then G
has a normal subgroup N of order 2, generated by a central involution z. Let x
be an element of order 7 in G. Since xz = zx and (o(x), o(z)) = 1, o(xz) = 14.
Hence 14 ∈ πe(G). We know 14 /∈ πe(G), a contradiction.

If G/K ∼= S8, then |K| = 1 and G ∼= S8. Now the proof of the main theorem
is complete.
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