UNIFICATION OF λ -CLOSED SETS VIA GENERALIZED TOPOLOGIES

Bishwambhar Roy¹², Takashi Noiri³

Abstract. In this paper we introduce and study a new type of sets called $(\bigwedge, \mu\nu)$ -closed sets by using the concept of generalized topology introduced by A. Császár.

AMS Mathematics Subject Classification (2010): 54A05, 54D10, 54E55 Key words and phrases: \bigwedge_{μ} -set, $(\bigwedge, \mu\nu)$ -closed set, $\mu\nu g$ -closed set, $g \bigwedge_{\mu\nu}$ -set

1. Introduction

For the last couple of years, different forms of open sets are being studied. Recently, a significant contribution to the theory of generalized open sets has been presented by A. Császár [10, 11, 12]. Especially, the author defined some basic operators on generalized topological spaces. It is observed that a large number of papers are devoted to the study of generalized open sets like open sets of a topological space, containing the class of open sets and possessing properties more or less similar to those of open sets.

We recall some notions defined in [10]. Let X be a non-empty set and let expX denote the power set of X. We call a class $\mu \subseteq expX$ a generalized topology [10], (briefly, GT) if $\emptyset \in \mu$ and unions of elements of μ belong to μ . A set X with a GT μ on it is called a generalized topological space (briefly, GTS) and is denoted by (X, μ) . The θ -closure, $cl_{\theta}(A)$ [23] (resp. δ -closure, $cl_{\delta}(A)$ [23]) of a subset A of a topological space (X, τ) is defined by $\{x \in X : clU \cap A \neq \emptyset$ for all $U \in \tau$ with $x \in U$ (resp. $\{x \in X : A \cap U \neq \emptyset$ for all regular open sets U containing x}, where a subset A is said to be regular open if A = int(cl(A)). A is said to be δ -closed [23] (resp. θ -closed [23]) if $A = cl_{\delta}A$ (resp. $A = cl_{\theta}A$) and the complement of a δ -closed set (resp. θ -closed) set is known as a δ -open (resp. θ -open) set. A subset A of a topological space (X, τ) is said to be preopen [20] (resp. semi-open [17], α -open [21], b-open [1]) if $A \subseteq int(cl(A))$ (resp. $A \subset cl(int(A)), A \subset int(cl(int(A))), A \subset cl(int(A)) \cup int(cl(A)))$. The complement of a semi-open set is called a semi-closed set. The semi-closure [18] of A, denoted by scl(A), is the intersection of all semi-closed sets containing A. A point $x \in X$ is called a semi- θ -cluster point [18] of a set A if $scl U \cap A \neq \emptyset$ for each semi-open set U containing x. The set of all semi- θ -cluster points of A is denoted by $scl_{\theta}A$. If $A = scl_{\theta}A$, then A is known as semi- θ -closed and

¹Department of Mathematics, Women's Christian College, 6, Greek Church Row, Kolkata-700026, INDIA, e-mail: bishwambhar_roy@yahoo.co.in

²The author acknowledges the financial support from UGC, New Delhi.

³2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, JAPAN, e-mail: t.noiri@nifty.com

the complement of a semi- θ -closed set is called a semi- θ -open set [18]. We note that for any topological space (X, τ) , the collection of all open (resp. preopen, semi-open, δ -open, α -open, θ -open, semi- θ -open) sets is denoted by τ (resp. PO(X), SO(X), $\delta O(X)$, $\alpha O(X)$, BO(X) or $\gamma O(X)$, $\theta O(X)$, $S\theta O(X)$). Each of these collections is a generalized topology on X.

For a GTS (X, μ) , the elements of μ are called μ -open sets and the complements of μ -open sets are called μ -closed sets. For $A \subseteq X$, we denote by $c_{\mu}(A)$ the intersection of all μ -closed sets containing A, i.e., the smallest μ -closed set containing A; and by $i_{\mu}(A)$ the union of all μ -open sets contained in A, i.e., the largest μ -open set contained in A (see [10, 11]).

It is easy to observe that i_{μ} and c_{μ} are idempotent and monotonic, where the operator $\gamma : expX \to expX$ is said to be idempotent if $A \subseteq X$ implies $\gamma(\gamma(A)) = \gamma(A)$ and monotonic if $A \subseteq B \subseteq X$ implies $\gamma(A) \subseteq \gamma(B)$. It is also well known from [11, 12] that if μ is a GT on $X, x \in X$ and $A \subseteq X$, then $x \in c_{\mu}(A)$ iff $x \in M \in \mu \Rightarrow M \cap A \neq \emptyset$ and $c_{\mu}(X \setminus A) = X \setminus i_{\mu}(A)$.

As the final prerequisites, we wish to recall a few definitions and results from [14].

Definition 1.1. [14] Let (X, μ) be a GTS and $A \subseteq X$. Then, the subset $\bigwedge_{\mu}(A)$ is defined as follows:

$$\bigwedge_{\mu}(A) = \begin{cases} \bigcap \{G : A \subseteq G, G \in \mu\}, & \text{if there exists } G \in \mu \text{ such that } A \subseteq G; \\ X & \text{otherwise.} \end{cases}$$

Proposition 1.2. [14] Let A, B and $\{B_{\alpha} : \alpha \in \Omega\}$ be subsets of a GTS (X, μ) . Then the following properties hold:

$$(a) \ B \subseteq \bigwedge_{\mu}(B);$$

$$(b) \ If \ A \subseteq B, \ then \ \bigwedge_{\mu}(A) \subseteq \bigwedge_{\mu}(B);$$

$$(c) \ \bigwedge_{\mu}(\bigwedge_{\mu}(B)) = \bigwedge_{\mu}(B);$$

$$(d) \ \bigwedge_{\mu}[\bigcup_{\alpha \in \Omega} B_{\alpha}] = \bigcup_{\alpha \in \Omega} [\bigwedge_{\mu}(B_{\alpha})];$$

$$(e) \ If \ A \in \mu, \ then \ A = \bigwedge_{\mu}(A);$$

$$(f) \ \bigwedge_{\mu}[\bigcap_{\alpha \in \Omega} B_{\alpha}] \subseteq \bigcap_{\alpha \in \Omega} [\bigwedge_{\mu}(B_{\alpha})];$$

Definition 1.3. [14] In a GTS (X, μ) , a subset B is called a \bigwedge_{μ} -set if $B = \bigwedge_{\mu} (B)$.

Theorem 1.4. [14] If (X, μ) is a GTS, then the intersection of \bigwedge_{μ} -sets is a \bigwedge_{μ} -set.

2. $(\Lambda, \mu\nu)$ -closed sets and associated separation axioms

Definition 2.1. Let μ and ν be two GT's on X. A subset A of X is said to be $(\bigwedge, \mu\nu)$ -closed if $A = U \cap F$, where U is a \bigwedge_{μ} -set and F is a ν -closed set. The family of all $(\bigwedge, \mu\nu)$ -closed sets of (X, μ, ν) is denoted by $\bigwedge_{\mu\nu c}$.

Remark 2.2. In a topological space (X, τ) , if $\mu = \nu = \tau$ (resp. SO(X), $\alpha O(X)$, $\theta O(X)$, $\delta O(X)$, $S\theta O(X)$), then a $(\bigwedge, \mu\nu)$ -closed set reduces to a λ -closed [2]

(resp. semi- λ -closed [13], (Λ, α) -closed [6], (Λ, θ) -closed [5], (Λ, δ) -closed [16], $(\Lambda, s\theta)$ -closed [4]) set. On the other hand, if in a bi *m*-space (X, m_X, n_X) , $\mu = m_X$ and $\nu = n_X$, then a $(\Lambda, \mu\nu)$ -closed set reduces to a (Λ, mn) -closed [22] set.

Lemma 2.3. Let μ and ν be two GT's on X, then the following properties are equivalent:

(a) A is $(\bigwedge, \mu\nu)$ -closed; (b) $A = U \cap c_{\nu}(A)$, where U is a \bigwedge_{μ} -set; (c) $A = \bigwedge_{\mu}(A) \cap c_{\nu}(A)$.

Proof. (a) \Rightarrow (b): Let $A = U \cap F$, where U is a \bigwedge_{μ} -set and F is a ν -closed set of X. Since $A \subseteq F$, we have $c_{\nu}(A) \subseteq F$. Thus $A \subseteq U \cap c_{\nu}(A) \subseteq U \cap F = A$.

(b) \Rightarrow (c): Let $A = U \cap c_{\nu}(A)$, where U is a \bigwedge_{μ} -set. Since $A \subseteq U$, we have by Proposition 1.2, $\bigwedge_{\mu}(A) \subseteq \bigwedge_{\mu}(U) = U$ and hence, $A \subseteq \bigwedge_{\mu}(A) \cap c_{\nu}(A) \subseteq U \cap c_{\nu}(A) = A$. Thus, we obtain $A = \bigwedge_{\mu}(A) \cap c_{\nu}(A)$.

(c) \Rightarrow (a): We know that $c_{\nu}(A)$ is a ν -closed set and by Proposition 1.2(c), we have $\bigwedge_{\mu}(A)$ is a \bigwedge_{μ} -set. Thus by (c), we have $A = \bigwedge_{\mu}(A) \cap c_{\nu}(A)$ and hence A is a $(\bigwedge, \mu\nu)$ -closed set.

It thus follows from Definition 2.1 that

Remark 2.4. Every \bigwedge_{μ} -set is $(\bigwedge, \mu\nu)$ -closed and every ν -closed set is $(\bigwedge, \mu\nu)$ -closed.

Example 2.5. Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a\}, \{a, b\}\}$ and $\nu = \{\emptyset, \{b\}, \{a, b\}\}$. Then, μ and ν are two GT's on X. It is easy to see that $\{a, c\}$ is a $(\bigwedge, \mu\nu)$ -closed set but it is not a \bigwedge_{μ} -set and $\{a, b\}$ is a $(\bigwedge, \mu\nu)$ -closed set but it is not a ν -closed set.

Proposition 2.6. Let μ and ν be two GT's on a set X. Then $\bigwedge_{\mu\nu c}$ is closed under arbitrary intersections.

Proof. Suppose that $\{A_{\alpha} : \alpha \in I\}$ is a family of $(\bigwedge, \mu\nu)$ -closed subsets of X. Then, for each $\alpha \in I$ there exist a \bigwedge_{μ} -set U_{α} and a ν -closed F_{α} such that $A_{\alpha} = U_{\alpha} \cap F_{\alpha}$. Hence we have $\bigcap_{\alpha \in I} A_{\alpha} = \bigcap_{\alpha \in I} (U_{\alpha} \cap F_{\alpha}) = (\bigcap_{\alpha \in I} U_{\alpha}) \cap (\bigcap_{\alpha \in I} F_{\alpha})$. We note that $\bigcap_{\alpha \in I} U_{\alpha}$ is a \bigwedge_{μ} -set (by Theorem 1.4) and $\bigcap_{\alpha \in I} F_{\alpha}$ is ν -closed. Thus by Definition 2.1, it follows that $\bigcap_{\alpha \in I} A_{\alpha}$ is a $(\bigwedge, \mu\nu)$ -closed set. \Box

Example 2.7. Let $X = \{a, b, c\}$. Consider two GT's on X as $\mu = \{\emptyset, \{a\}, \{a, b\}\}$ and $\nu = \{\emptyset, \{a, b\}\}$. It is easy to see that $\{a\}$ and $\{c\}$ are two $(\bigwedge, \mu\nu)$ -closed subsets of X but their union $\{a, c\}$ is not a $(\bigwedge, \mu\nu)$ -closed set.

Definition 2.8. Let μ and ν be two GT's on X. Then a subset A of X is said to be generalized $\mu\nu$ -closed (briefly, $\mu\nu g$ -closed) if $c_{\nu}(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \mu$.

Observation 2.9. Let μ and ν be two GT's on X and A, B be two subsets of X.

(i) If A is ν -closed, then A is $\mu\nu g$ -closed.

(ii) If A is $\mu\nu g$ -closed and μ -open, then A is ν -closed.

(iii) If A is $\mu\nu g$ -closed and $A \subseteq B \subseteq c_{\nu}(A)$, then B is $\mu\nu g$ -closed.

(iv) A is $\mu\nu g$ -closed if and only if $c_{\nu}(A) \subseteq \bigwedge_{\mu}(A)$.

Proof. The proofs of (i), (ii) and (iii) are straightforward, and we shall only prove (iv). Let A be a $\mu\nu g$ -closed set and U be any μ -open set such that $A \subseteq U$. Then $c_{\nu}(A) \subseteq U$ and hence we obtain $c_{\nu}(A) \subseteq \Lambda_{\mu}(A)$.

Then $c_{\nu}(A) \subseteq U$ and hence we obtain $c_{\nu}(A) \subseteq I$, μ_{μ} , Conversely, suppose that $c_{\nu}(A) \subseteq \bigwedge_{\mu}(A)$ and $A \subseteq U \in \mu$. Then $c_{\nu}(A) \subseteq \bigwedge_{\mu}(A) \subseteq U$. This shows that A is $\mu\nu g$ -closed.

Example 2.10. Let $\mu = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$ and $\nu = \{\emptyset, \{a\}, \{a, c\}\}$ be two GT's on a set $X = \{a, b, c\}$. Then it is easy to see that $\{c\}$ is a $\mu\nu g$ -closed set which is not a ν -closed set. Also, $\{b\}$ is a ν -closed set which is not a μ -open set.

Proposition 2.11. Let μ and ν be two GT's on a set X. Then a subset A of X is ν -closed if and only if A is $\mu\nu g$ -closed and $(\Lambda, \mu\nu)$ -closed.

Proof. One part follows from Observation 2.9(i) and Remark 2.4. Conversely, let A be a $\mu\nu g$ -closed as well as a $(\bigwedge, \mu\nu)$ -closed set. Then by Observation 2.9(iv), $c_{\nu}(A) \subseteq \bigwedge_{\mu}(A)$. Thus by hypothesis and Lemma 2.3, $A = \bigwedge_{\mu}(A) \cap c_{\nu}(A) = c_{\nu}(A)$. So A is a ν -closed set.

Definition 2.12. Let μ and ν be two GT's on a set X. Then (X, μ, ν) is said to be

(i) μν-T₀ if for any two distinct points x, y ∈ X, there exists a μ-open set U of X containing x but not y or a ν-open set V of X containing y but not x.
(ii) μν-T_{1/2} if every singleton {x} is either ν-open or μ-closed.

Theorem 2.13. Let μ and ν be two GT's on a set X. Then (X, μ, ν) is $\mu\nu$ -T₀ if and only if for each $x \in X$, the singleton $\{x\}$ is $(\bigwedge, \mu\nu)$ -closed.

Proof. Suppose that (X, μ, ν) be $\mu\nu T_0$. For each $x \in X$, we have $\{x\} \subseteq \bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\})$. Let $y \neq x$. Then there exists a μ -open set U of X containing x but not y or a ν -open set V of X containing y but not x. In the first case, $y \notin \bigwedge_{\mu}(\{x\})$ and we have $y \notin \bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\})$. In the second case, $y \notin c_{\nu}(\{x\})$ and we have $y \notin \bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\})$. Thus $\bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\}) \subseteq \{x\}$. Hence we have $\bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\}) = \{x\}$. Hence by Lemma 2.3, $\{x\}$ is a $(\bigwedge, \mu\nu)$ -closed set.

Conversely, suppose that (X, μ, ν) is not $\mu\nu$ - T_0 . Thus there exist distinct points $x, y \in X$ such that (i) $y \in U$ for every μ -open set U containing x and (ii) $x \in V$ for every ν -open set V containing y. Thus by (i) and (ii), $y \in \bigwedge_{\mu}(\{x\})$ and $y \in c_{\nu}(\{x\})$, respectively. Then by Lemma 2.3, $y \in \bigwedge_{\mu}(\{x\}) \cap c_{\nu}(\{x\}) =$ $\{x\}$. This contradicts the fact that $x \neq y$.

Theorem 2.14. Let μ and ν be two GT's on a set X. Then the following statements are equivalent:

- (a) (X, μ, ν) is $\mu\nu T_{1/2}$;
- (b) Every $\mu\nu q$ -closed subset of X is ν -closed:
- (c) Every subset of X is $(\Lambda, \mu\nu)$ -closed.

Proof. (a) \Rightarrow (b): Let (X, μ, ν) be $\mu\nu T_{1/2}$. Suppose that there exists a $\mu\nu g$ closed set A of X which is not ν -closed. So, there exists $x \in c_{\nu}(A) \setminus A$. If $\{x\}$ is ν -open, then $x \in A$, which is a contradiction. In the case $\{x\}$ is μ -closed, we have $x \in X \setminus A$, and so $A \subseteq X \setminus \{x\} \in \mu$. So, by $\mu \nu g$ -closedness of A, $c_{\nu}(A) \subseteq X \setminus \{x\}$, which is a contradiction.

(b) \Rightarrow (a): Suppose that $\{x\}$ is not μ -closed. If X is not μ -open, then we have nothing to show. If $X \in \mu$, then the only μ -open set containing $X \setminus \{x\}$ is X. Thus $c_{\nu}(X \setminus \{x\}) \subseteq X$ and hence $X \setminus \{x\}$ is $\mu \nu g$ -closed. Thus, by (b), $X \setminus \{x\}$ is ν -closed. So $\{x\}$ is ν -open. Therefore, (X, μ, ν) is $\mu\nu T_{1/2}$.

(a) \Rightarrow (c): Suppose that (X, μ, ν) is $\mu\nu$ - $T_{1/2}$ and $A \subseteq X$. Then, for each $x \in X, \{x\}$ is ν -open or μ -closed. Let $B_{\nu} = \cap \{X \setminus \{x\} : x \in X \setminus A, \{x\}\}$ is ν -open} and $C_{\mu} = \cap \{X \setminus \{x\} : x \in X \setminus A, \{x\} \text{ is } \mu\text{-closed}\}$. Then, B_{ν} is ν -closed, C_{μ} is a \bigwedge_{μ} -set and $A = B_{\nu} \cap C_{\mu}$. Therefore, A is $(\bigwedge, \mu\nu)$ -closed.

(c) \Rightarrow (a): Suppose that A is a $\mu\nu g$ -closed subset of X. Then, by the hypothesis, A is $(\Lambda, \mu\nu)$ -closed. Thus, by Proposition 2.11, A is ν -closed. Therefore, (X, μ, ν) is $\mu\nu$ - $T_{1/2}$ (by (a) \Leftrightarrow (b)).

$g \bigwedge_{uu}$ -sets 3.

Definition 3.1. Let μ and ν be two GT's on a set X. Then a subset A of X is called a $g \bigwedge_{\mu\nu}$ -set if $\bigwedge_{\mu}(A) \subseteq F$ whenever $A \subseteq F$ and F is a ν -closed set.

The family of all $g \bigwedge_{\mu\nu}$ -sets is denoted by $g \bigwedge_{\mu\nu}$. The complement of a $g \bigwedge_{\mu\nu}$ -set is called $g \bigwedge_{\mu\nu}^*$ -set.

Remark 3.2. Let (X, τ) be a topological space. If $\mu = \nu = \tau$ (resp. SO(X), $PO(X), BO(X), \delta O(X)$ then a $g \bigwedge_{\mu\nu}$ -set is a generalized \bigwedge -set [19] (resp. generalized \bigwedge_{s} -set [3], generalized pre- \bigwedge -set [15], $g \bigwedge_{b}$ -set [8], $g \bigwedge_{\delta}$ -set [7]).

Proposition 3.3. Let μ and ν be two GT's on a set X and A and B be two subsets of X, then the following properties hold:

- (a) If A is a \bigwedge_{μ} -set, then A is a $g \bigwedge_{\mu\nu}$ -set. (b) If A is a $g \bigwedge_{\mu\nu}$ -set and ν -closed, then A is a \bigwedge_{μ} -set.

(c) If A is a $g \bigwedge_{\mu\nu}^{\cdot}$ -set and $A \subseteq B \subseteq \bigwedge_{\mu}(A)$, then \tilde{B} is a $g \bigwedge_{\mu\nu}$ -set.

Proof. (a) Suppose that A is a \bigwedge_{μ} -set and $A \subseteq F$, where F is a ν -closed set. Then $\bigwedge_{\mu}(A) = A \subseteq F$. Thus A is a $g \bigwedge_{\mu\nu}$ -set.

(b) Let A be a $g \bigwedge_{\mu\nu}$ -set and ν -closed. Then $\bigwedge_{\mu}(A) \subseteq A$. Thus, by Proposition 1.2(a), $\bigwedge_{\mu}(A) = \dot{A}$ i.e., A is a \bigwedge_{μ} -set.

(c) Let $B \subseteq F$, where F is a ν -closed set. Then, $A \subseteq F$ and A is a $g \bigwedge_{\mu\nu}$ set. Therefore, $\bigwedge_{\mu}(A) \subseteq F$. Now, by Proposition 1.2 we have, $\bigwedge_{\mu}(A) \subseteq F$.

 $\bigwedge_{\mu}(B) \subseteq \bigwedge_{\mu}(\bigwedge_{\mu}(A)) = \bigwedge_{\mu}(A). \text{ Thus } \bigwedge_{\mu}(A) = \bigwedge_{\mu}(B) \text{ and hence } \bigwedge_{\mu}(B) \subseteq F.$ Therefore, B is a $g \bigwedge_{\mu\nu}$ -set. \Box

Example 3.4. Let $X = \{a, b, c\}, \mu = \{\emptyset, \{a, b\}\}$ and $\nu = \{\emptyset, \{c\}, \{a, c\}\}$. Then μ and ν are two GT's on X. It is easy to check that $\{a\}$ is a $g \bigwedge_{\mu\nu}$ -set which is not a \bigwedge_{μ} -set. We also note that $\{a, b\}$ and $\{b, c\}$ are two $g \bigwedge_{\mu\nu}$ -sets but their intersection $\{b\}$ is not a $g \bigwedge_{\mu\nu}$ -set.

Proposition 3.5. Let μ and ν be two GT's on a set X. Then a subset A is a $g \bigwedge_{\mu\nu}$ -set if and only if $\bigwedge_{\mu}(A) \cap U = \emptyset$ whenever $A \cap U = \emptyset$ and $U \in \nu$.

Proof. Suppose that A is a $g \bigwedge_{\mu\nu}$ -set. Let $A \cap U = \emptyset$ and $U \in \nu$. Then $A \subseteq X \setminus U$ and $X \setminus U$ is ν -closed. Therefore, $\bigwedge_{\mu}(A) \subseteq X \setminus U$ and hence $\bigwedge_{\mu}(A) \cap U = \emptyset$.

Conversely, let $A \subseteq F$ and F be ν -closed. Then $A \cap (X \setminus F) = \emptyset$ and $X \setminus F \in \nu$. So, by the hypothesis we have $\bigwedge_{\mu}(A) \cap (X \setminus F) = \emptyset$ and hence $\bigwedge_{\mu}(A) \subseteq F$. This shows that A is a $g \bigwedge_{\mu\nu}$ -set. \Box

Proposition 3.6. Let μ and ν be two GT's on a set X. Then a subset A of X is a $g \bigwedge_{\mu\nu}$ -set if and only if $\bigwedge_{\mu}(A) \subseteq c_{\nu}(A)$.

Proof. Suppose that A is a $g \bigwedge_{\mu\nu}$ -set and $x \notin c_{\nu}(A)$. Then there exists a ν -open set U containing x such that $A \cap U = \emptyset$. Thus by Proposition 3.5, $\bigwedge_{\mu}(A) \cap U = \emptyset$ (as A is a $g \bigwedge_{\mu\nu}$ -set). Hence $x \notin \bigwedge_{\mu}(A)$ and so we obtain $\bigwedge_{\mu}(A) \subseteq c_{\nu}(A)$.

Conversely, suppose that $\bigwedge_{\mu}(A) \subseteq c_{\nu}(A)$ and $A \subseteq F$, where F is ν -closed. Then $\bigwedge_{\mu}(A) \subseteq c_{\nu}(A) \subseteq F$ and thus A is a $g \bigwedge_{\mu\nu}$ -set. \Box

Proposition 3.7. Let μ and ν be two GT's on a set X. If $A_{\alpha} \in g \bigwedge_{\mu\nu}$ for each $\alpha \in I$, then $\bigcup_{\alpha \in I} A_{\alpha} \in g \bigwedge_{\mu\nu}$.

Proof. Let $\bigcup_{\alpha \in I} A_{\alpha} \subseteq F$ and F be ν -closed. Then $A_{\alpha} \subseteq F$ and hence $\bigwedge_{\mu}(A_{\alpha}) \subseteq F$ for each $\alpha \in I$, since A_{α} is a $g \bigwedge_{\mu\nu}$ -set. Thus by Proposition 1.2, we have $\bigwedge_{\mu}(\bigcup_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} \bigwedge_{\mu}(A_{\alpha}) \subseteq F$. This shows that $\bigcup_{\alpha \in I} A_{\alpha} \in g \bigwedge_{\mu\nu}$. \Box

Proposition 3.8. Let μ and ν be two GT's on a set X and A be a $g \bigwedge_{\mu\nu}$ -set of X. Then, for every ν -closed set F such that $(X \setminus \bigwedge_{\mu}(A)) \cup A \subseteq F$, F = X holds.

Proof. Let A be a $g \bigwedge_{\mu\nu}$ -set and F a ν -closed set such that $(X \setminus \bigwedge_{\mu}(A)) \cup A \subseteq F$. Since $A \subseteq F$, $\bigwedge_{\mu}(A) \subseteq F$ and $X = (X \setminus \bigwedge_{\mu}(A)) \cup \bigwedge_{\mu}(A) \subseteq F$. Therefore, we have X = F.

Proposition 3.9. Let μ and ν be two GT's on a set X and A a $g \bigwedge_{\mu\nu}$ -set of X. Then, $(X \setminus \bigwedge_{\mu}(A)) \cup A$ is ν -closed if and only if A is a \bigwedge_{μ} -set.

Proof. By Proposition 3.8, $(X \setminus \bigwedge_{\mu}(A)) \cup A = X$. Thus, $\bigwedge_{\mu}(A) \cap (X \setminus A) = \emptyset$ i.e., $\bigwedge_{\mu}(A) \subseteq A$. Thus by Proposition 1.2(a), $\bigwedge_{\mu}(A) = A$ i.e., A is a \bigwedge_{μ} -set.

Conversely, if A is a \bigwedge_{μ} -set, then $A = \bigwedge_{\mu} (A)$. So $(X \setminus \bigwedge_{\mu} (A)) \cup A = (X \setminus A) \cup A = X$ which is ν -closed. \Box

Proposition 3.10. Let μ and ν be two GT's on a set X. Then, for each $x \in X$,

(a) $\{x\}$ is either ν -open or $X \setminus \{x\}$ is a $g \bigwedge_{\mu\nu}$ -set in X;

(b) $\{x\}$ is either a ν -open set or a $g \bigwedge_{\mu\nu}^*$ -set in X.

Proof. (a) Suppose that $\{x\}$ is not ν -open. Then, the only ν -closed set F containing $X \setminus \{x\}$ is X. Thus, $\bigwedge_{\mu} (X \setminus \{x\}) \subseteq F = X$ and hence $X \setminus \{x\}$ is a $g \bigwedge_{\mu\nu}$ -set.

(b) Follows from (a) and Definition 3.1.

Theorem 3.11. Let μ and ν be two GT's on a set X. Then (X, μ, ν) is $\mu\nu$ - $T_{1/2}$ if and only if every $g \bigwedge_{\mu\nu}$ -set is a \bigwedge_{μ} -set.

Proof. Let (X, μ, ν) be $\mu\nu$ - $T_{1/2}$. Suppose that there exists a $g \bigwedge_{\mu\nu}$ -set A in X which is not a \bigwedge_{μ} -set. Then, there exists $x \in \bigwedge_{\mu}(A)$ such that $x \notin A$. Now since (X, μ, ν) is $\mu\nu$ - $T_{1/2}$, $\{x\}$ is either ν -open or μ -closed. If $\{x\}$ is ν -open, then $A \subseteq X \setminus \{x\}$, where $X \setminus \{x\}$ is ν -closed. Since A is a $g \bigwedge_{\mu\nu}$ -set, $\bigwedge_{\mu}(A) \subseteq X \setminus \{x\}$, and this is a contradiction. On the other hand, if $\{x\}$ is μ -closed then $A \subseteq X \setminus \{x\}$, where $X \setminus \{x\}$ is μ -open. Thus by Proposition 1.2, $\bigwedge_{\mu}(A) \subseteq \bigwedge_{\mu}(X \setminus \{x\}) = X \setminus \{x\}$. This is again a contradiction. Thus, every $g \bigwedge_{\mu\nu}$ -set is a \bigwedge_{μ} -set.

Conversely, assume that every $g \bigwedge_{\mu\nu}$ -set is a \bigwedge_{μ} -set. Suppose that (X, μ, ν) is not $\mu\nu$ - $T_{1/2}$. Then by Theorem 2.14, there exists a $\mu\nu g$ -closed set A which is not ν -closed. Since A is not ν -closed, there exists a point $x \in c_{\nu}(A)$ such that $x \notin A$. Thus, by Proposition 3.10, the singleton $\{x\}$ is either ν -open or $X \setminus \{x\}$ is a $g \bigwedge_{\mu\nu}$ -set.

<u>Case - 1</u>: $\{x\}$ is ν -open: Then, since $x \in c_{\nu}(A), x \in A$. This is a contradiction. <u>Case - 2</u>: $X \setminus \{x\}$ is a $g \bigwedge_{\mu\nu}$ -set: $\{x\}$ is either μ -closed or not μ -closed. If $\{x\}$ is not μ -closed, $X \setminus \{x\}$ is not μ -open and hence $\bigwedge_{\mu}(X \setminus \{x\}) = X$. Therefore, $X \setminus \{x\}$ is not a \bigwedge_{μ} -set, which is a contradiction. If $\{x\}$ is μ -closed, then $A \subseteq X \setminus \{x\} \in \mu$ and A is $\mu\nu g$ -closed. Hence, $c_{\nu}(A) \subseteq X \setminus \{x\}$ (by Definition 2.8). Thus, $x \notin c_{\nu}(A)$, which is a contradiction.

References

- [1] Andrijević, D., On b-open sets. Mat. Vesnik, 48 (1996), 59-64.
- [2] Arenas, F. G., Dontchev, J., Ganster, M., On λ-sets and the dual of generalized continuity. Questions Answers Gen. Topology, 15 (1997), 3-13.
- [3] Caldas, M., Dontchev, J., $G. \bigwedge_s$ -sets and $G. \bigvee_s$ -sets. Mem. Fac. Sci. Kochi Univ. Ser, Math., 21 (2000), 21-30.
- [4] Caldas, M., Ganster, M., Georgiou, D. N., Jafari, S., Popa, V., On generalizations of closed sets. Kyungpook J. Math., 47 (2007), 155-164.
- [5] Caldas, M., Georgiou, D. N., Jafari, S., Noiri, T., On (Λ, θ)-closed sets. Questions Answers Gen. Topology, 23 (1) (2005), 69-87.
- [6] Caldas, M., Georgiou, D. N., Jafari, S., Study of (Λ, α)-closed sets and the related notions in topological spaces. Bull. Malays. Math. Sci. Soc. (2) 30 (1) (2007), 23-36.

- [7] Caldas, M., Jafari, S., Generalized Λ_δ-sets and related topics. Georgian Math. J., 16 (2) (2009), 247-256.
- [8] Caldas, M., Jafari, S., Noiri, T., On \bigwedge_b sets and the associated topology τ^{\wedge_b} . Acta Math. Hungar., 110 (2006), 337-345.
- [9] Cammaroto, F., Noiri, T., On ∧_m-sets and related topological spaces. Acta Math. Hungar., 109 (2005), 261-279.
- [10] Császár, Á., Generalized topology, generalized continuity. Acta Math. Hungar., 96 (2002), 351-357.
- [11] Császár, Á., Generalized open sets in generalized topologies. Acta Math. Hungar., 106 (2005), 53-66.
- [12] Császár, Å., δ-and θ-modifications of generalized topologies. Acta Math. Hungar., 120 (2008), 275-279.
- [13] Dontchev, J., Maki, H., On sg-closed sets and semi- λ -closed sets. Questions Answers Gen. Topology, 15 (1997), 259-266.
- [14] Ekici, E., Roy, B., New generalized topologies on generalized topological spaces due to Császár. Acta Math. Hungar., 132 (2011), 117-124.
- [15] Ganster, M., Jafari, S., Noiri, T. On pre-∧-sets and pre-∨-sets. Acta Math. Hungar., 95 (2002), 337-343.
- [16] Georgiou, D. N., Jafari, S., Noiri, T., Properties of (Λ, δ) -closed sets in topological spaces. Boll. Un. Mat. Ital. Sez. B Artic. Ric. Mat., (8) 7 (3)(2004), 745-756.
- [17] Levine, N., Semi-open sets and semi-continuity in topological spaces. Amer. Math. Monthly, 70 (1963), 36-41.
- [18] Di Maio, G., and Noiri, T., On s-closed spaces. Indian J. Pure Appl. Math., 18
 (3) (1987), 225-233.
- [19] Maki, H., Generalized ∧-sets and the associated closure operator. The special issue in commemoration of Prof. Kazusada IKEDA's retirement, 1986, 139-146.
- [20] Mashhour, A.S., Abd-El Monsef, M. E., El-Deeb, S. N., On precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [21] Njåstad, O., On some classes of nearly open sets. Pacific J. Math., 15 (1965), 961-970.
- [22] Sanabria, J., Rosas, E., Carpintero, C., The further unified theory for modifications of λ -closed sets and $g \bigwedge$ -sets using minimal structures. Rend. Circ. Mat. Palermo, 58 (2009), 453-465.
- [23] Veličko, N. V., H-closed topological spaces. Mat. Sb., 70 (1966), 98-112.

Received by the editors November 4, 2011