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THE VARIATION PROBLEM IN GENERALIZED
LAGRANGE-HAMILTON SPACES

Irena Comié®, Radu Miron?

Abstract. Many significant geometers have contributed to the general-
ization of Riemann spaces in different directions. In this way arise Finsler
spaces, Lagrange spaces, Hamilton spaces, k-Lagrange and k-Hamilton
spaces, Lagrange spaces of order k and Hamilton spaces of order k. In
references [IH19] an incomplete selection of papers and books connected
with these spaces is given. In all these spaces the variation problem is
solved. Here, this problem is examined in generalized Lagrange-Hamilton
spaces, (GLH)™ introduced in [9]. All the spaces mentioned above ap-
pear as special cases of (GLH)™).

In the first section, the group of coordinates transformation is given
and the natural bases B and B* of tangent and cotangent spaces
T(GLH)™) and T*(GLH)™ are examined.

In the second section, the solution of the variation problem of the
integral of action for the extreme value of the fundamental function
F(z,y",...,y",p1,...,px) is obtained. Here, the modified Liouville vec-
tors Ia(v,h) are applied. The connection between notations used here
and in [I3-15] can be easily established. The generalized Euler-Lagrange
(E-L) equations in (GLH)"® reduce to the known (E-L) equations in
generalized Lagrange spaces.

In the third section, the generalizations of Craig-Synge covectors
are given and some important theorems connected with this problem
in (GLH)™ are proved. The method of proofs is the same as in [I3].
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1. Group of transformations,
tangent and cotangent spaces

Generalized Lagrange-Hamilton spaces are introduced in [9]. We shall recall
only the basic notions which are necessary for understanding the variation
problem in these spaces.

Let us denote by (LH)") the (2k+ 1)n dimensional C'>® manifold in which
a point (y,p) = (:E = y(0)7 y(1)7 y(2), CER y(k)ap(l)vp(Q)v cee ap(k)) has the coordi-
nates

(xa = y0a7y1a7y2a7 sy yka7p1a7p2aa s 7pka)7 a = 17n'
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Some curve ¢ € (LH)™) is given by ¢ : t € [a,b] — c(t) € (LH)™®. A

point (y,p) € c(t) has the coordinates
(@ (t) = y** (1), 5" (8), ..

where

A
t

(L.1) yhot) = diy™(t) A

paa(t) = dta_lpla(t)v o = 177’

LU (), pra(t), -

s Pra(t)),
dA
= o

dafl

a—1
dy

dra—1"

The allowable coordinate transformations are given by

(1.2) v = xa,(:r“) St = x“(m”/)
yla/ — B‘Lz/yla7 BZ’ — 80a$a/ — axa”
0] = 4 A=0,k Tank(Ba/) =n
Aa  — By“‘“ — Ul a ) — T
o A-1 “15d\ la A-1
y't = (di B )y +
0 1
A-1 a’ Aa _ jA-1 a’
+<14_1)13ay _dt (Ba
ka’ _ k-1 k—1pa’\ 1la k-1
yro= (0>(dt Ba )y +<1)(
k-1 a’ ka k—1 a’
+ (k _ 1> oy =di (Bay
Pia’ = Bg/pla B:zz/ = 8Oa’xa = Ou 7
oz®
. a—1 a1 ma a—1
Paa’ - ( 0 >(dt Ba/)pla + ( 1
-
a—1
k—1 1a k-1
Pka’ = ( 0 )(df 1Ba’)p1a + < 1 )(

k—1
k—1

- < >Bg,p,m.

)

(i B )y + -

yla)7"'7

di B P

1a)
)

= BY%(1),...,

> (df B )p2a + - -

d; "B )paa + -
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Theorem 1.1. The transformations of type (C2) on the common domain form
a group.

Definition 1.1. The generalized Lagrange-Hamilton space (GLH)™®) of order
kisa (LH)(”’“) space, where the group of allowable transformations is given by
(2), and in which a fundamental function

F(]},y(l),y@), e 'ay(k)7p(l)7p(2)7 s 7p(k3))

is given, where F : U — R is differentiable on U (rank [y**] = 1, rank [p1a] = 1)
and continuous at those points of U, where y'* and p1, are equal to zero, U is
a domain in (GLH)™®).

The natural basis, Bry of T(GLH)™) | as usual, consists of partial deriva-
tives of variables, i.e.

(13) BLH = {80a781aa"'78ka781aa62a7"'56ka}7
0 0 0 — 0
Do =0 =52 = 5 s =5 Fooo= g a=Tk

Theorem 1.2. The elements of Bry transform in the following way:
(1.4)

A0a = (80ay° )00ar + (80ay™® )1ar + (00ay>* )2ar + (0ay>* V347 + - + (B0ay*® ) Opar
+ (80aP1a)0 + (90aP247)0* + (B0aP3a’ )03 + -+ + (GoaPrqer)O*Y

O1a = (0109 )010r + (105> D20 + (0129 )030r + -+ + (819" ) Opar

+(01aP201)0%" + (01ap3a )03 + -+ + (Draprar )0 . ..
Opa = (O™ )Opar
ole = (019D )M + (0192002 + (01p3a )03 + - 4 (01 ppgr )OF
02 = (029pa )0 + (0293 )P + -+ (029pgar )R ..,
oke = (% pgar) 0.

The natural basis of T*(GLH)(") is

BZH = {dy0a7 dy1a7 ) dykaa dp1a7 dan; LR dpka}'
Theorem 1.3. The elements of B}y transform in the following way:

(1.5)
dyOa’ _ (80ay0a’)dy0a
dyla’ _ (aO(Lyla')dyOa + (alayla')dyla, o

dylca' (a)ayka/)dyOa + (alayka')dyla 4t (akayka')dylm7

dprar = (Ooapra)dY"" + (0" p1ar)dpias
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dpaar = (80ap2a/)dy0a + (alap2a’)dyla + (alap2a’)dp1a + (52ap2a/)dp2a, cees
dprar = (DoaPra’)AY " + (O1aPra )y + -+ + (Op—1)alrar )dyF D" +

(81apka/)dp1a +-+ (akapka’)dpkw

It is obvious that the elements of Bry and B}, are not transforming as
tensors (except for dpq, 0 and dy®). Using the J structure in [d], special
adapted bases Bry and B, are constructed, such that their elements are
tensors. Here, these bases will not be used, so their construction is omit-
ted. For the further application we shall define the special Lagrange-Hamilton
(SLH)™) spaces by

Definition 1.2. The (SLH)"™®) are such (LH)™) spaces in which the group
of transformation is reduced to a linear group, i.e. elements of the matriz (BZ)
are real numbers.

From Definition T2 and () it follows that in (SLH)™*) the group of
transformation is given by:

(16) yOa’ _ B;z/yOa7 yla’ _ Bg’yla’ o 7yka/ _ Bg'yka’

Pila’ = Bg/pm, co oy Pka’ = Bg/pka-

From (ICH) it follows that in (SLH )™ the elements of Bsyp and B are
the same as the corresponding elements of By g and Bj ;. But, their elements
are transforming as tensors, namely from (I4) and (C3) it follows

(1.7) Boa = B 8ot - -, Oa = BE Ogar, BE = 90ay®®
gle — Z/am” L9k = g,/aka'
dy* = BZ dy™, ... dy*" = B dy*,
dprar = Bgidpia, - - -, dprar = Bgrdpga-

2. The variation problem in (GLH )™
Let us consider the differentiable curve
¢ tel0,1] = ¢*(t) cU c (GLH)™
U is an open set and

() = r(t) =y""(t)0oa + ¥y “(t)01a + -+

o4 yka(t)aka + pla(t)ala + - +pka(t)8ka7

yet) = diy*(t), A=1F, Paa(t) = d¥ 'pia(t), a=2,k.
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The integral of action I+ for the fundamental function

F(yoayla"'ayk7p17"'7pk)

is given by

1
21) L= /F(y‘“(t),y“(t)y.-.,y’““(t),pm(t)7...,pka<t>)dt.
0
The curve ci(t) = r(t) + eor(t) is given by ¢* : t € [0,1] = ¢&(¢t) C U C
(GLH)(™¥)  where for
(2.2) 0r(t) = 0" (t)Boq +0 4 (t)O1a+- - -V (1) Opath1a )OI+ - -+ hpq (1) 05

the following relations are valid:

(2.3) vAet) = dM'(t), A=T1,k, haa(t) = do T hia(t), o =2k

*

We shall suppose that the curves ¢ () for every small enough e (positive or
negative) such that I'mc} C U, have the same endpoint and initial point as the
curve c*(t), i.e.

cz(0) =¢(0), (1) = (D).

This will be satisfied if

(2.4) v19(0) =v4(1) =0, A=T1,k haa(0) = haa(1) =0, «a =2k

The integral of action I.. of F is

(2.5)

.= / Py () 20" (1), ..,y (DHevh (8), pra(EHehia(t), . . Pratehia(£))dt.
0

Using Taylor’s formula we get

(2.6) Is — Ipe = 61+ 6°1 4+ ° Ry,
where
1
ol = /dth
0

1
(2.7) = ¢ / (00%0pq + V1010 + - + VO + h140 + - - - + B 0" Ft,
0

1
1
521 = §/d2th
0
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52

1
= 5 /[anaOa + 'Ulaala + -+ Ukaaka + hlaala + -+ hkaaka]det.
0

As e may be a positive or negative small number, so the necessary condition
that .« — I~ has the same signature for all € is that 4/ be equal to zero. If
0I =0, 621 > 0, then I is minimum, if 61 = 0, 6?1 < 0, then I.. is maximum.

The sufficient condition that §I = 0 is that the expression under integral
(E22) is equal to zero, but it is not a tensor equation. It will be a tensor for
some special case of dr, namely if

dy?® = vA%dt, A=0,k, dPaa = haedt, o =1,k.
In this case the sufficient condition for 61 = 0 is
[dyoaaOa + dylaala +-+ dykaaka + dplaala +---+ dpkaaka]F = 07

which can be written in the form

d ka d .
y1a80a+y2aala+,_.+%aka_i_p&lala_i_ pk gkl F—op
or IF
— =01 F=0
dt k :

where Ty, is defined in [9].
In some books, the notatlon vie = gyAe =0,k is used and it is called
the variation of the variable y4¢. Sometlmes 1t is written as dx, 0, 0%, . . ..
For the further examination we shall introduce the notations:

(28) L= (i) W0,

1
= (4
k—2 k-1
Ig(h’) = <k _ 2) hlaa(kil)a + <k . 2) h2aaka7 L)

2 k—1
I]/C/(h) < )hlaaza (1> h2aa3a 4+ 4 ( 1 )h(k_l)aaka

If the space (GLH)"™) reduces to the generalized Lagrange space (GL)(")
from (ER) we can see that I} (v),I5(v),...,I}(v) are equal to IV,I%,...,I"“,

used by R. Miron in [I3,14] if we substitute v% by V* and L " by yA
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Let us introduce the notations:

(2.9) E% = 8yy — dOrg + d209q — - - - + (=1)FdF O,

f‘; _ 81(1 _ d%aQa + dtQaBa ¥ (_l)kfld?—laka.
Using the above notations we can state the important identity given by
Theorem 2.1. The following relation is valid:

(2.10) 094 + v1%q + - - 4+ Ve + h1a0M F -+ hp O =
_ —a
VO EY 4 o By + df (I (v) + I/ (h)) — d (I, (v) + I}, (h)) +

A (SO (I3(0) + I (R) + (1) T (v).

Remark. In (GL)(™¥) (Z1M) is shorter, because in this space h1,0' +- - -+
hra0* =0,E, = 0,1} (k) = 0,1} ;(h) =0,...,I§(h) = 0.

Proof. For the general case the proof is based on the following property of

binomial coefficients:
n=>b
n\ (b
—1)" = b

a,be {0,1,2,...}.

From (277) and (2710) we get
1
(2.11) oI = / (009 E% + hy B, )Fdt.
0

O

Theorem 2.2. The sufficient condition that I.- be the extremal value of I
in (GLH)") is the following equation:

_ 1
2.12 v EY + hio E,)F = 0.
( a 1
For the special case we have

Theorem 2.3. For v°% = y'® and hig = paq in (GLH)("k) we have

’

ylaEg + p2aE1 = yla/Egl +p2a’E1 >
i.e. the left-hand side of (E12) is a scalar field.

— —_—=a
Moreover, EY and E, will be given in the next section.
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3. Craig-Synge vectors and covectors

In 1935, Craig and Synge defined covector fields %a, i=0,k,in [4] and [19]
which were connected with the higher order Finsler spaces. Similar covector
fields are given in R. Miron’s books [[3], [[d], ... and they are connected
with Lagrange spaces of order k. Here, they will be examined in generalized
Lagrange-Hamilton spaces (GLH)("*). In these spaces we obtain two kinds of
families: one of vector fields and the other ”covector” fields.

Let us consider the curve ¢* : ¢t € [0,1] — ¢*(t) € (GLH)™ and the
differentiable fundamental function F = F(y° y',..., 4% p1,...,px). Now we
have

Definition 3.1. The Craig-Synge ”covectors” in (GLH)™) along the curve
c*(t) are defined by

(3.1)
EO(F) = [(6)00a — () did1a + (§)d72a — -+ (= 1)* (§)df Oa | (F),
EL(F) = [~ ()00 + () did2a — -+ (=1)F () df ' Oha| (F),
B2(F) = ()00 =+ (D B) 00| (P,
B (F) = (=1)* () Oka (F).

Formally, E2, A =0,k are the same as the corresponding covectors in the
Lagrange spaces of order k (see (8.4.1) in [[3], only here y% = d1y°*). The
main difference is the fact, that in (GLH)™) 94,, A = 0,k have different
transformation law (see (IA)). From this it follows

Theorem 3.1. In (GLH)"™) E? defined by (B) is not covector.

Proof. Let us restrict the proof for kK = 1. Then, using () we get

(3.2) EY = 0y —d}o1,

a

’

(8anoa,)60a’ + (aanla/)ala’ + (oaprar) 0™ —

*dtl [alayla,)ala/]-
‘We have
y'¥ = BYyle, BY =90y, Owy' = BY,
(aanla )ala’ = ngylbala’

d} (919" )O1] = (BLY'™")01ar + BE d} 1.

Substituting the last two equations into (B2) we get

’

B = B (0w — d'01ar) + (Ooaprar )0

a
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= Bg’/Eg/ + (80ap1a/)81“/

The above equation proves Theorem 3.1. O

If (GLH)™®) reduces to (GL)(™®) then in (I3) terms of the form daqpaar
a > A do not appear, and we obtain the known result: (see [[3])

Theorem 3.2. E?, defined by (632) in generalized Lagrange space (GL)™),
18 a covector.

Proposition 3.1. If ¢ = ¢(°,y',...,y",p1,p2,...,0k) is a differentiable
function in (GLH)™) | such that Opep = 0, 9**¢ = 0, then

(3.3) Doad; ¢ = (d; Ooa ),
D1adid = (Ooa + dyD1a) 0,
D2adid = (O1q + dyD2a) b, - .,
A—1)adi® = (Ok-2)a + A4 Oe—1)a) b,

8kad%¢) = a(k—l)a¢’a

(3.4) 9'(dy¢) = (d;0'")9,
0%(dy¢) = (9" + d; "), ...,
oke(alg) = (9D 4 a}o- D),
ok (d}g) = 0%,

Proof. Using the assumptions 9ye¢ = 0, 9"9¢ = 0, we have

(3.5) dip = [y +y* 0+ + Yy 0k_1y) +
(pop0™® + p3pd®® + -+ + ppd* V)9,

60ad% = [(ylbaoaaob + y%aoa@u; + -+ ykbao{za(kfl)b) +

(P260020"° + P3p90ad?’ + - - - + PipOa O F 1.

From the above two equations it follows dyad} ¢ = d} Do, ¢, which is the first
equation of (B3). From (B3) it follows

O1adid = [0oa + (¥'"01a00p + y**01a010 + - -+ + Y012 0_11) +

(p26D100° + P3p01a0% + - - - + PrpD1a0F V)]
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From the above equation it follows
O1adid = (Boa + d{ 1),
which is the second equation of (B3). As Oke¢ = 0, from (B3) it follows
Oka(d; 8) = (Oray™)O-1p6 = Ot—1)a®,

which is the last equation of (8B33). (84) can be proved using the same method.
O

Proposition 3.2. If ¢ = ¢(y°,y*, ..., 9", p1,...,px) is a differentiable func-
tion in (GLH)™) | such that Oped = 0, 0F?¢ = 0, then

(3.6) E%dlp) =0
By (did) = —EJ(9)
Bi(did) = —E4(9), ...,
Eg(di¢) = —E g,

The above equations are the extensions of the results of Caratheodory [3].
Proof. Using (B3) and (Bl) we obtain:
E)(did) = (0o —didra + djdzq + - + (=1)"dfOa) (d} )
= [d{ o0 — d} (Qoa + d{ O10) + d} (D1q + d} Daa)
—d}(D2q + di03a) + -+ (=) T (O—2)0 + di Ok—1)a)
+(*1)kdfa(k—1)a]¢’-
From the above it follows
Eq(di¢) =0.
Using the well known relation: (})+ (,",) = (") (60) and (833) we have:

k-1

Eqo(d;9)

- (1) B + (?) L850 — (i’) 830 + -+ (—1)’C <I;) df_laka}(dthﬁ)

1 2 3
[— <1) (Boa + diD1a) + (1) di (Ora + di D2a) — <1> d; (Doa + diD3a) + - - -

o (k=1) . E\ (o
+(-1)* 1( 1 )df ?(Ok-2)a + diOk-17a) + (—1)" <1>d§k V0—1)ald
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- - <8) Boa + [(f) - G)]diam - [(i’) - G)]d%aga 4 [(1‘) - (i’)]di’aga -
Jr(l)k[(]lc) - (k I 1)]d?18(k1)a + (=1)*H! (g) dy Ora)o.

The last term is equal to zero, because Ji,¢ = 0, so we obtain

- 0 1 2 3
Ey(di¢) = —[<O>8oa - <O>d§61a + <O)d382a + <O>d§aga s
kE—1\ ,_ k
(M a0+ (10 () bl

Ey(dy¢) = —Eq¢.

The other relations from (B@) can be proved in the same way. O

i.e.

n (GLH)™) we can define vector fields by

Definition 3.2. If F(v°,y%,...,y*,p1,...,px) is a differentiable function in

(ELH)("’“), then along the curve c*(t) the Craig-Synge vector fields E 2,
1,k, are defined by

(3.7

Ela(F) = ((g)ala _ (é)d}@za + (é)d?a&}a .. -1) k— l(kgl)dkilak“ Ia
E(F) = (~()ee + ()P — ot (1R (7)) i 20ke
fSa(F): ((3)3&1 _..._|_ _1 k— 1(k51) 71; 3 gka .
Eka(F) = ( 1) (Z:})akaF

Proposition 3.3. If ¢(3°, 9%, ...,v", p1,...,pr) is a differentiable function in
(GLH)™®) | such that Opqe¢ = 0, O%%¢ = 0, then

(3.8) Ed}¢) =0
E5(di¢) = —E{(9)
B (d¢) = —E5(9)
Ef(do) = =B (9).
Proof. Using (84), (87) we have
Ef(d}o)

(01 — a}oPe + d20P — -+ (—1) L0k (dko)
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= (O A0 )+ O - df) +

o4 (_l)k—ldffla(k—l)a)qs =0.

E5(dlg)

= (- G) 9% + (f) dio** — G) Ao 4 ()M (k N 3> di20%) (d} ¢)

- - G) (0" + d} (6%) + G) dLo™ + dlot) G’) (5% — d}o') + 1o
= (g)o+1(3) - (o = 1(3) - (e 20 = -Br0)....

E&dg) = [(—U’“‘l(Zj)a““‘”“

(= (5 ot (ot (3 D aioko,

The last term, which was added, is equal to zero because 8*¢¢ = 0. So we
obtain

Consequence:

Theorem 3.3. In (GLH)"™") the integrals of actions

=

Ic* = /F(y()?ylwuaykapl,'"?pk)

(=)

1
I(/,* = /[F(y()?ylv"'aykapla"'vpk)+d%¢(y0’y17"'7yk71ap17"'7pk—1)]dt
0

have the same extremal curves for any differentiable fundamental function F
and any differentiable function ¢, for which

a® =0, 0"¢=0.
Proof. The extremal curves of I« are the solution of

(V" EY + hlafl‘l)F =0
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and those of I.- satisfy
(0" E0 + h1, EL)(F + dl¢) = 0.

As EX(d}¢) = 0, ff(d%gﬁ) = 0, (see (B@) and (BX)), the extremal curves
for both integrals are the solution of the same differential equation. O

Proposition 3.4. If ¢ = ¢(t) and F = F(y°,y*,...,v*, p1,...,pr) are differ-
entiable functions in (GLH)™*) | then the following relations are valid

(3.9) EJ(¢F) = @EQ(F)+ (di¢)EL(F)+--+

(d ') BV (F) + (df o) Eg
Proof. From

EJ(pF) = [(3) doa — <(1)) dyO1a + (5) 204 — <g) d3 054 +

<g) diOsa + -+ (- 1)F (](;) % 0kal(0F).

and ¢ = ¢(t) we have
00a(@F) = (()#00aF,

@1 (6F)) = ~dh(@01aF) = ~[()) (@ $)0ra + () s} oralF,

1

B 60aF) = 1(2)(@0)02a + (3)@ho)kona + (2ot onal F,

~ @ 60aF) = ~1(7)(@)sa + () (@6)d} s

+ (i’) (df ¢)d793a + (3) 6d3834)F, ...,

(DM @) = (~DM(}) (@ 6)0ka

+(k f 1)df*1¢d%aka o (ﬁ)qﬁdfaka“"

The addition of former equations results (in the first line are the last terms,
and so on) in

EQ(¢F) = ¢[(2)00a — (})diOra + (2)d702a — (3)d}0sa + -+ + (=1)*(£) dF Ora) F+
(di¢)[—(i)6la+(3)d%82a—()dtaga + (1) (¥)dr Ora] F+

(@2)[(2) D20 — (3)diDsa + -+ + (—1)F (5) dF20pa) F+

(diD)[=(3) 030 + -+ + (=1)* (5) df > Oha] F+

+ (dF ) (=1)* () Ona F.
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The comparison of the above equation with (BI) gives (B9). O
As a consequence of the previous proposition we have:

Proposition 3.5. In (GLH)"*), the following relations are valid
(3.10) Eq(F) = Eg(F),
EO(tF) = tES(F) + EL(F),
E2(#*F) = PE)(F) + 2tE,(F) + 2!E2(F),
EothF) =t*E%(F) + kt* 'ELF + .- + KIEFF.

Theorem 3.4. If (GLH)") is reduced to (GL)™), then EO,E} ... E* are
covectors.

Proof. Tt is known that E? in (GL)™*) is covector (Theorem 3.2). From the
second equation of (BI) we get

Ej(F) = EQ(tF) — tEY(F) = By (EY (tF) — tEQ(F)) = BY EL(F), ...
From the above it follows that E! is a covector. For ¢ = t? we get
EY(#*F) = t*EY(F) + 2tEL(F) + 2E%(F),
from which we conclude that E? is a covector, and so on. O

Theorem 3.5. If (GLH)™*) is reduced to (SLH)"™) then E°,E},... EF are
covectors.

Proof. From (1) we have:

Opa =BY0re, A=0,kd'BY =0,A=0,k.
O

Proposition 3.6. If ¢ = ¢(t) and F = F(3°,y*,...,v", p1,...,pr) are differ-
entiable functions in (GLH)™) | then the following relations are valid

(3.11)  EX$F) = ¢EL(F) + (d}¢)ES (F) + -+ + (d" Vo) EF(F).

Proof. As ¢ = ¢(t) we have 0%¢(¢F) = p0“*F, o = 1,k. We get

B (oF) = [(8) gle _ ((1)) dLo% 4 (3) 20—y (—1)F (k S 1) d¥19M) (6 F).

If we add all the following equations

(arwr) = (J)so'r,
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,<é>d%82a(¢p) 7(1>[<1> (d%d))am i (é)¢dt182a]F7

0

+(§)d383“<¢F ) = (5)[(;)(df¢)83’“ + (i)dwd}a%

+(§)¢>d§a3a]m o

k-1

(71)1@—1( ;

Jatoreory = 0t (MO ) @ o

+(]/z _ ;) (df2)dior + -+ (k ; 1) d*10MF,

we obtain

Brer) = ol())o" — ()dior + () azor -

k—1

e Cr (B )b e
2

1)d,}63a+~~-

@ol-(;)o* + (
.“_i_(_l)kfl(kz1)dfflaka}F+“.+

k—1

@ o) (o

The comparison of the above equation with (877) gives (BTI).
Theorem 3.6. In (GLH)(”’C)ET, . ,fz are vector fields.

Proof. ftll is a vector field because 9'%,0%?,..., 0% in (GLH)™*) have the

similar transformation law as Oog, .. ., Ok in (GL)™) where (daqpaa) = 0,
A< . O
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