ORTHOGONALITY OF OPERATORS ON $\left(\mathbb{R}^{n},\| \|_{\infty}\right)^{\text {II }}$

Kallol Paul ${ }^{[\square]}$ and Debmalya Sain ${ }^{[1]}$

Abstract

We study the orthogonality of two linear operators S, T on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ in the sense of Birkhoff-James [$[4]$. We find a necessary and sufficient condition for S to be orthogonal to T in the sense of BirkhoffJames with certain conditions on S. We give a sufficient condition for the existence of two operators S, T on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ with $S \perp_{B} T$ such that there does not exist any $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1, S x \perp_{B} T x$ and $\|S x\|_{\infty}=\|S\|_{\infty}$. We find a sufficient condition on S so that if $S \perp_{B} T$ then there exists $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $S x \perp_{B} T x$ and $\|S x\|_{\infty}=\|S\|_{\infty}$. We also obtain the relations between the orthogonality of vectors in $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ and the orthogonality of operators on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$, both in the sense of Birkhoff-James.

AMS Mathematics Subject Classification (2010): Primary 47A30, Secondary 47A99.
Key words and phrases: Orthogonality, norm of linear operator.

1. Introduction

Let $(X,\| \|)$ be a normed linear space. For any two elements x, y in X, x is said to be orthogonal to y in the sense of Birkhoff-James[[$]$, written as $x \perp_{B} y$ iff $\|x\| \leq\|x+\lambda y\|$ for all $\lambda \in K(=\mathbb{R}$ or $\mathbb{C})$. In [[5, [6, [7] James studied many important properties related to the notion of orthogonality. Let $B(X, X)$ denote the Banach algebra of all bounded linear operators from $(X,\| \|)$ to $(X,\| \|)$. For any two elements S, T in $B(X, X), S$ is orthogonal to T in the sense of Birkhoff-James, written as $S \perp_{B} T$, iff $\|S\| \leq\|S+\lambda T\|$ for all $\lambda \in K$.

In a finite dimensional Hilbert space X, Bhatia and \check{S} emrl[3] and Paul et. al. [12] independently proved that $S \perp_{B} T$ iff there exists $x \in X$ with $\|x\|=1$ such that $\|S x\|=\|S\|$ and $S x \perp_{B} T x$. Bhatia and \check{S} emrl in their paper conjectured that if X is a finite dimensional normed linear space and $S \perp_{B} T$ then there exists $x \in X$ with $\|x\|=1$ such that $\|S x\|=\|S\|$ and $S x \perp_{B} T x$. Li and Schneider [$[9]$ and Paul and Das [II] gave examples of normed spaces ($X,\| \|$) in which there exist operators $S, T: X \longrightarrow X$ such that $S \perp_{B} T$ but there exists no $x \in X,\|x\|=1$ such that $\|S x\|=\|S\|$ and $S x \perp_{B} T x$, which shows that the conjecture of Bhatia and \check{S} emrl is not true. The notion of orthogonality has been studied by many mathematicians over the time, a few of them are Alonso and Soriano [[T], Benitez et. al. [Z], Kapoor and Prasad [8] and Partington [III].

[^0]In this paper we study the orthogonality of operators on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ in the sense of Birkhoff-James. We find a necessary and sufficient condition for an operator S on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ to be orthogonal to T in the sense of Birkhoff-James with certain conditions on S. If $S \perp_{B} T$ then it is not necessarily true that there exists $x,\|x\|_{\infty}=1$ with $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$. We find a sufficient condition on S and T so that $S \perp_{B} T$, but there exists no such $x,\|x\|_{\infty}=1$ for which $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$. We also find a sufficient condition on S and T so that $S \perp_{B} T$ implies that there exists $x,\|x\|_{\infty}=1$ for which $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

2. Main Results

We first find a necessary and sufficient condition for two linear operators S and T on $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ to be orthogonal in the sense of Birkhoff-James.

Theorem 2.1. Suppose $S=\left(a_{i j}\right)_{n \times n}$ and $T=\left(b_{i j}\right)_{n \times n}$ are two linear operators on $\left(\mathbb{R}^{n},\|\cdot\|_{\infty}\right)$ and there exists $i_{0} \in\{1,2, \cdots, n\}$ such that $a_{i_{0} j} \neq 0$ for all $j \in\{1,2, \cdots, n\}$ and
$\left|a_{i_{0} 1}\right|+\left|a_{i_{0} 2}\right|+\cdots+\left|a_{i_{0} n}\right|>\left|a_{i 1}\right|+\left|a_{i 2}\right|+\cdots+\left|a_{\text {in }}\right| \quad$ for all $i \in\{1,2, \ldots n\}-\left\{i_{0}\right\}$.
Then

$$
\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}, \text { for all } \lambda \in \mathbb{R}
$$

iff $\left(\operatorname{sgn} a_{i_{0} 1}\right) b_{i_{0} 1}+\cdots+\left(\operatorname{sgn} a_{i_{0} n}\right) b_{i_{0} n}=0$ where

$$
\begin{aligned}
\operatorname{sgn}\left(a_{i j}\right) & =+1, \text { if } a_{i j}>0 \\
& =-1, \text { if } a_{i j}<0 \\
& =0, \text { if } a_{i j}=0
\end{aligned}
$$

Proof. Let $\left(\operatorname{sgn} a_{i_{0} 1}\right) b_{i_{0} 1}+\cdots+\left(\operatorname{sgn} a_{i_{0} n}\right) b_{i_{0} n}=0$.
Now, $S+\lambda T=\left(a_{i j}+\lambda b_{i j}\right)_{n \times n}$ and

$$
\begin{aligned}
& \|S+\lambda T\|_{\infty} \\
& \quad \geq\left|a_{i_{0} 1}+\lambda b_{i_{0} 1}\right|+\cdots+\left|a_{i_{0} n}+\lambda b_{i_{0} n}\right| \\
& \quad=\left|\left(\operatorname{sgn} a_{i_{0} 1}\right)\left(a_{i_{0} 1}+\lambda b_{i_{0} 1}\right)\right|+\cdots+\left|\left(\operatorname{sgn} a_{i_{0} n}\right)\left(a_{i_{0} n}+\lambda b_{i_{0} n}\right)\right| \\
& \quad=\left|\left|a_{i_{0} 1}\right|+\lambda\left(\operatorname{sgn} a_{i_{0} 1}\right) b_{i_{0} 1}\right|+\cdots+\left|\left|a_{i_{0} n}\right|+\lambda\left(\operatorname{sgn} a_{i_{0} n}\right) b_{i_{0} n}\right| \\
& \quad \geq\left|\left(\left|a_{i_{0} 1}\right|+\cdots+\left|a_{i_{0} n}\right|\right)+\lambda\left(\left(\operatorname{sgn} a_{i_{0} 1}\right) b_{i_{0} 1}+\cdots+\left(\operatorname{sgn} a_{i_{0} n}\right) b_{i_{0} n}\right)\right| \\
& \quad=\left|a_{i_{0} 1}\right|+\cdots+\left|a_{i_{0} n}\right| \\
& \quad=\|S\|_{\infty} \quad \text { for all } \lambda \in \mathbb{R}
\end{aligned}
$$

Hence $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$.
Conversely, let $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$ and without loss of generality we assume that $i_{0}=1$ i.e.,

$$
\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|>\left|a_{i 1}\right|+\cdots+\left|a_{i n}\right| \quad \text { for all } i \in\{2,3, \cdots, n\} .
$$

Thus S attains its norm at the point $\left(\left(\operatorname{sgn} a_{11}\right), \cdots,\left(\operatorname{sgn} a_{1 n}\right)\right)$ and

$$
\|S\|_{\infty}=\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|
$$

We choose λ such that

$$
\begin{equation*}
|\lambda|<\frac{\left(\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|\right)-\max _{2 \leq i \leq n}\left(\left|a_{i 1}\right|+\cdots+\left|a_{i n}\right|\right)}{2 \max _{2 \leq i \leq n}\left(\left|b_{i 1}\right|+\cdots+\left|b_{i n}\right|\right)} \tag{1}
\end{equation*}
$$

Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ and $\|x\|_{\infty}=1$. Then

$$
(S+\lambda T)\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(\sum_{j=1}^{n}\left(a_{1 j}+\lambda b_{1 j}\right) x_{j}, \cdots, \sum_{j=1}^{n}\left(a_{n j}+\lambda b_{n j}\right) x_{j}\right)
$$

Therefore, for any λ satisfying ($\mathbb{(})$, any $i \in\{2,3, \cdots, n\}$ and $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ with $\|x\|_{\infty}=1$, we have,

$$
\begin{aligned}
& \left.\mid \sum_{j=1}^{n}\left(a_{i j}+\lambda b_{i j}\right) x_{j}\right) \mid \\
& \quad \leq\left|a_{i 1}+\lambda b_{i 1}\right|\left|x_{1}\right|+\cdots+\left|a_{i n}+\lambda b_{i n}\right|\left|x_{n}\right| \\
& \quad \leq\left|a_{i 1}+\lambda b_{i 1}\right|+\cdots+\left|a_{i n}+\lambda b_{i n}\right| \\
& \quad \leq\left(\left|a_{i 1}\right|+\cdots+\left|a_{i n}\right|\right)+|\lambda|\left(\left|b_{i 1}\right|+\left|b_{i 2}\right|+\cdots+\left|b_{i n}\right|\right) \\
& \quad<\left|a_{11}\right|+\cdots+\left|a_{1 n}\right| \\
& \quad=\|S\|_{\infty}
\end{aligned}
$$

Therefore, when λ satisfies ($\mathbb{(}$), there exists $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathbb{R}^{n}$ with $\left\|\left(x_{1}, x_{2}, \cdots, x_{n}\right)\right\|_{\infty}=1$ such that

$$
\left|\left(a_{11}+\lambda b_{11}\right) x_{1}+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right) x_{n}\right| \geq\left|a_{11}\right|+\cdots+\left|a_{1 n}\right| .
$$

We claim that, $\left(\operatorname{sgn} a_{11}\right) b_{11}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}=0$. If not, then choose λ such that λ satisfies (W), λ is of opposite sign of
$\left(\operatorname{sgn} a_{11}\right) b_{11}+\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}$ and $|\lambda|<\frac{1}{2} \min _{1 \leq j \leq n, b_{1 j} \neq 0} \frac{\left|a_{1 j}\right|}{\left|b_{1 j}\right|}$
and $\left|\lambda\left\{\left(\operatorname{sgn} a_{11}\right) b_{11}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}\right\}\right|<\frac{1}{2}\left(\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|\right)$. Then from

$$
\left|\left(a_{11}+\lambda b_{11}\right) x_{1}+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right) x_{n}\right| \geq\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|,
$$

we have

$$
\left|\left(a_{11}+\lambda b_{11}\right)\left(\operatorname{sgn} a_{11}\right)+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right)\left(\operatorname{sgn} a_{1 n}\right)\right| \geq\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|,
$$

since $a_{1 j}$ and $a_{1 j}+\lambda b_{1 j}$ has the same sign for all $j \in\{1,2 \cdots, n\}$ due to this particular choice of λ.

$$
\begin{aligned}
& \Rightarrow\left|a_{11}\left(\operatorname{sgn} a_{11}\right)+\cdots+a_{1 n}\left(\operatorname{sgn} a_{1 n}\right)+\lambda\left\{b_{11}\left(\operatorname{sgn} a_{11}\right)+\cdots+b_{1 n}\left(\operatorname{sgn} a_{1 n}\right)\right\}\right| \\
& \quad \geq\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|,
\end{aligned}
$$

which is clearly a contradiction as λ is of opposite sign of $b_{11}\left(\operatorname{sgn} a_{11}\right)+\cdots+$ $b_{1 n}\left(\operatorname{sgn} a_{1 n}\right)$ and

$$
\left|\lambda\left\{b_{11}\left(\operatorname{sgn} a_{11}\right)+\cdots+b_{1 n}\left(\operatorname{sgn} a_{1 n}\right)\right\}\right|<\frac{1}{2}\left(\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|\right)
$$

Therefore we must have

$$
\left(\operatorname{sgn} a_{11}\right) b_{11}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}=0
$$

This completes the proof of the theorem.
Example 2.2. Let

$$
S=\left(\begin{array}{ccc}
1 & -2 & -5 \\
2 & 3 & 2 \\
4 & 0 & 1
\end{array}\right) \text { and } T=\left(b_{i j}\right)_{3 \times 3}
$$

Then for S to be orthogonal to T in the sense of Birkhoff-James we must have $b_{11}-b_{12}-b_{13}=0$. In particular, we may choose

$$
T=\left(\begin{array}{ccc}
-4 & -2 & -2 \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
$$

But if we choose

$$
T=\left(\begin{array}{ccc}
5 & -2 & -2 \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)
$$

then S is not orthogonal to T in the sense of Birkhoff-James.
Our main objective is to study if $S \perp_{B} T$ then whether there exists x, with $\|x\|_{\infty}=1$, for which $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$. In general, this is not true. We give below an example in which $S \perp_{B} T$ but there exists no x, with $\|x\|_{\infty}=1$, for which $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Example 2.3. Let

$$
S=\left(\begin{array}{cc}
1 & -4 \\
2 & 3
\end{array}\right) \text { and } T=\left(\begin{array}{cc}
1 & 0 \\
0 & -2
\end{array}\right)
$$

Then $\|S\|_{\infty}=5$ and S attains its norm at the points $\pm(1,1)$ and $\pm(1,-1)$. It is easy to check that $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$, but there exists no $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ with $\|x\|_{\infty}=1$ such that $\|S\|_{\infty}=\|S x\|_{\infty} \leq\|(S+\lambda T) x\|_{\infty}$ for all $\lambda \in \mathbb{R}$.

We next give a sufficient condition for the existence of two operators

$$
S, T:\left(\mathbb{R}^{n},\| \|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{n},\| \|_{\infty}\right)
$$

such that $S \perp_{B} T$ but there does not exist any $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Theorem 2.4. Let $S=\left(a_{i j}\right)_{n \times n}:\left(\mathbb{R}^{n},\| \|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ with $\left|a_{11}\right|+\cdots+$ $\left|a_{1 n}\right|=\left|a_{21}\right|+\cdots+\left|a_{2 n}\right|>\left|a_{i 1}\right|+\cdots+\left|a_{i n}\right|$ for all $i \in\{3,4, \cdots, n\}$ and with $a_{11}, a_{12}, \cdots, a_{1, n-1}>0, a_{1 n}<0$ and $a_{21}, a_{22}, \cdots, a_{2 n}>0$.

Let $T=\left(b_{i j}\right)_{n \times n}:\left(\mathbb{R}^{n},\| \|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ where $b_{11}>0$ and $b_{2 n}<0$ and $b_{i j}=0$ for all other i, j 's. Then $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$ and there does not exist $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Proof. Clearly

$$
\|S\|_{\infty}=a_{11}+a_{12}+\cdots+a_{1, n-1}-a_{1 n}=a_{21}+a_{22}+\cdots+a_{2, n-1}+a_{2 n}
$$

and S attains its norm only at $\pm(1,1, \cdots,-1), \pm(1,1, \cdots, 1,1)$.
Now,

$$
S+\lambda T=\left(\begin{array}{cccccc}
a_{11}+\lambda b_{11} & a_{12} & . & . & . & a_{1 n} \\
a_{21} & a_{22} & . & . & . & a_{2 n}+\lambda b_{2 n} \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
a_{n 1} & a_{n 2} & . & . & . & a_{n n}
\end{array}\right)
$$

Therefore for any $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \|S+\lambda T\|_{\infty} \\
& \quad \geq \max \left\{\left|a_{11}+\lambda b_{11}\right|+\left|a_{12}\right|+\cdots+\left|a_{1 n}\right|,\left|a_{21}\right|+\left|a_{22}\right|+\cdots+\left|a_{2 n}+\lambda b_{2 n}\right|\right\} \\
& \quad=\max \left\{\left|a_{11}+\lambda b_{11}\right|+a_{12}+\cdots-a_{1 n}, a_{21}+a_{22}+\cdots+\left|a_{2 n}+\lambda b_{2 n}\right|\right\} \\
& \quad \geq a_{11}+a_{12}+\cdots+a_{1, n-1}-a_{1 n} \quad\left(=a_{21}+a_{22}+\cdots+a_{2 n}\right) \\
& \quad=\|S\|_{\infty}
\end{aligned}
$$

Therefore $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}, \forall \lambda \in \mathbb{R}$
Now, $(S+\lambda T)(1,1, \cdots, 1,-1)=\left(a_{11}+\lambda b_{11}+a_{12}+\cdots+a_{1, n-1}-a_{1 n}, a_{21}+\right.$ $\left.a_{22}+\cdots+a_{2, n-1}-a_{2 n}-\lambda b_{2 n}, \cdots, a_{n 1}+a_{n 2}+\cdots+a_{n, n-1}-a_{n n}\right)$. Therefore $(\| S+\lambda T)(\pm(1,1, \cdots, 1,-1)) \|_{\infty}<a_{11}+a_{12}+\cdots+a_{1, n-1}-a_{1 n} \quad\left(=a_{21}+\right.$ $a_{22}+\cdots+a_{2 n}=\|S\|_{\infty}$), when λ is -ve and sufficiently small. Also ($S+$ $\lambda T)(1,1, \cdots, 1,1)=\left(a_{11}+\lambda b_{11}+a_{12}+\cdots+a_{1 n}, a_{21}+a_{22}+\cdots+a_{2 n}+\right.$ $\left.\lambda b_{2 n}, \cdots, a_{n 1}+a_{n 2}+\cdots+a_{n n}\right)$. Therefore, $(\| S+\lambda T)(\pm(1,1, \cdots, 1,1)) \|_{\infty}<$ $a_{11}+a_{12}+\cdots+a_{1, n-1}-a_{1 n} \quad\left(=a_{21}+a_{22}+\cdots+a_{2 n}=\|S\|_{\infty}\right)$, when λ is + ve and sufficiently small. Hence $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$ and there does not exist $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S\|_{\infty}=\|S x\|_{\infty}$ and $S x \perp_{B} T x$.

Note. This result negates the following conjecture of Bhatia and Šemrl [3]:
"Given any finite dimensional normed linear space $(X,\| \|)$ if

$$
S, T:(X,\| \|) \rightarrow(X,\| \|)
$$

are two linear operators with $S \perp_{B} T$ then there exists $x \in X$ with $\|x\|=1$ such that $S x \perp_{B} T x$ and $\|S\|=\|S x\|$."

In the next example we show that even if

$$
S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):\left(\mathbb{R}^{2},\| \|_{\infty}\right) \rightarrow\left(\mathbb{R}^{2},\| \|_{\infty}\right)
$$

is such that $|a|+|b|=|c|+|d|$ then it may happen so that for any

$$
T=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right):\left(\mathbb{R}^{2},\| \|_{\infty}\right) \rightarrow\left(\mathbb{R}^{2},\| \|_{\infty}\right)
$$

which is orthogonal to S in the sense of Birkhoff-James, i.e. $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$, there exists $x \in \mathbb{R}^{2}$ with $\|x\|_{\infty}=1$ such that $\|S\|_{\infty}=\|S x\|_{\infty}$ and $S x \perp_{B} T x$.
Example 2.5. Let $S=\left(\begin{array}{cc}1 & -4 \\ -2 & 3\end{array}\right)$. Let

$$
T=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right):\left(\mathbb{R}^{2},\| \|_{\infty}\right) \rightarrow\left(\mathbb{R}^{2},\| \|_{\infty}\right)
$$

be such that $\|S\|_{\infty} \leq\|S+\lambda T\|_{\infty}$ for all $\lambda \in \mathbb{R}$. Clearly, $\|S\|_{\infty}=5$ and S attains its norm at the points $\pm(1,-1)$.

We have

$$
\begin{aligned}
(S+\lambda T)\left(x_{1}, x_{2}\right) & =\left((1+\lambda \alpha) x_{1}+(-4+\lambda \beta) x_{2},(-2+\lambda \gamma) x_{1}+(3+\lambda \delta) x_{2}\right) \\
& =\left(x_{1}-4 x_{2}+\lambda\left(\alpha x_{1}+\beta x_{2}\right),-2 x_{1}+3 x_{2}+\lambda\left(\gamma x_{1}+\delta x_{2}\right)\right)
\end{aligned}
$$

Therefore, $(S+\lambda T)(1,-1)=(5+\lambda(\alpha-\beta),-5+\lambda(\gamma-\delta))$. Clearly, if $\alpha-\beta$ and $\gamma-\delta$ are not of the opposite sign then $5=\|S\|_{\infty}=\|S(1,-1)\|_{\infty} \leq$ $\|(S+\lambda T)(1,-1)\|_{\infty}$ for all $\lambda \in \mathbb{R}$. If possible, suppose that $\alpha-\beta>0$ and $\gamma-\delta<0$.

Now, $\|S+\lambda T\|_{\infty}=\max \{|1+\lambda \alpha|+|-4+\lambda \beta|,|-2+\lambda \gamma|+|3+\lambda \delta|\}$. Then, choosing λ to be sufficiently small and -ve, $\|S+\lambda T\|<5=\|S\|_{\infty}$, a contradiction. Therefore it is not possible to have $\alpha-\beta>0$ and $\gamma-\delta<0$. Similarly, it is not possible to have $\alpha-\beta<0$ and $\gamma-\delta>0$. This proves our claim.

We next find a sufficient condition on S so that if $S \perp_{B} T$, then there exists $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Theorem 2.6. Let $S=\left(a_{i j}\right)_{n \times n}:\left(\mathbb{R}^{n},\| \|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ be such that there exists $i_{0} \in\{1,2, \cdots, n\}$ such that

$$
\left|a_{i_{0} 1}\right|+\cdots+\left|a_{i_{0} n}\right|>\left|a_{i 1}\right|+\cdots+\left|a_{i n}\right| \forall i_{0} \in\{1,2, \ldots, n\}-\left\{i_{0}\right\}
$$

Let $T=\left(b_{i j}\right)_{n \times n}:\left(\mathbb{R}^{n},\| \|_{\infty}\right) \longrightarrow\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ is such that $S \perp_{B} T$. Then there exists $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Proof. Without loss of generality, we assume $i_{0}=1$.
If $a_{1 j} \neq 0 \quad$ for all $j \in\{1,2, \ldots, n\}$ then, from Theorem [2.] we have,

$$
\begin{equation*}
\left(\operatorname{sgn} a_{11}\right) b_{11}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}=0 \tag{2}
\end{equation*}
$$

Then, S attains its norm at the point $x=\left(\operatorname{sgn} a_{11}, \cdots, \operatorname{sgn} a_{1 n}\right)$ i.e. $\|S\|_{\infty}=$ $\|S x\|_{\infty}=\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|$.

Now, for any $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
\|(S+\lambda T) x\|_{\infty} & \geq\left|\left(a_{11}+\lambda b_{11}\right)\left(\operatorname{sgn} a_{11}\right)+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right)\left(\operatorname{sgn} a_{1 n}\right)\right| \\
& =\left|a_{11}\right|+\cdots+\left|a_{1 n}\right|, \quad \text { by } \quad(\nabla) \\
& =\|S x\|_{\infty}
\end{aligned}
$$

So $S x \perp_{B} T x$.
Now we consider the case $a_{11}=0$ and $a_{1 j} \neq 0 \quad \forall j \in\{2,3, \cdots, n\}$. In that case, $\|S\|_{\infty}=\left|a_{12}\right|+\left|a_{13}\right|+\cdots+\left|a_{1 n}\right|$ and S attains its norm at $x=\left(x_{1}, \operatorname{sgn} a_{12}, \cdots, \operatorname{sgn} a_{1 n}\right)$ where $-1 \leq x_{1} \leq 1$. If $\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+$ $\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}=0$, then we are done as before. Let $\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+$ $\left(\operatorname{sgn} a_{1 n}\right) b_{1 n} \neq 0$.

Choose, $x_{1}=-\frac{b_{12}\left(\operatorname{sgn} a_{12}\right)+\cdots+b_{1 n}\left(\operatorname{sgn} a_{1 n}\right)}{b_{11}}$. Now, for any $\lambda \in \mathbb{R}$,

$$
\begin{aligned}
& \|(S+\lambda T) x\|_{\infty} \\
& \geq \quad\left|\lambda b_{11} x_{1}+\left(a_{12}+\lambda b_{12}\right)\left(\operatorname{sgn} a_{12}\right)+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right)\left(\operatorname{sgn} a_{1 n}\right)\right| \\
& \quad=\mid a_{12}\left(\operatorname{sgn} a_{12}\right)+\cdots+a_{1 n}\left(\operatorname{sgn} a_{1 n}\right)+ \\
& \quad \lambda\left(b_{11} x_{1}+b_{12}\left(\operatorname{sgn} a_{12}\right)+\cdots+b_{1 n}\left(\operatorname{sgn} a_{1 n}\right)\right) \mid \\
& \quad=\left|a_{12}\right|+\cdots+\left|a_{1 n}\right| \\
& =\|S x\|_{\infty} \\
& =\|S\|_{\infty} .
\end{aligned}
$$

Therefore, if we can show that $-1 \leq x_{1} \leq 1$ then we have

$$
x=\left(x_{1},\left(\operatorname{sgn} a_{12}\right), \cdots,\left(\operatorname{sgn} a_{1 n}\right)\right) \in \mathbb{R}^{n}
$$

such that $\|x\|_{\infty}=1$ and $\|S\|_{\infty}=\|S x\|_{\infty} \leq\|(S+\lambda T) x\|_{\infty} \quad \forall \lambda \in \mathbb{R}$. Therefore, all we have to show is that

$$
\left|b_{11}\right| \geq\left|\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}\right|
$$

If possible, suppose that

$$
\left|b_{11}\right|<\left|\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\begin{array}{l}
\operatorname{sgn} a_{1 n}
\end{array}\right) b_{1 n}\right|
$$

Now, two cases may arise:
Case I: $\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}>0$.
Choose λ such that λ satisfies ($\mathbb{(1)}$) λ is -ve and λ is sufficiently small so that $a_{1 j}+\lambda b_{1 j}$ and $a_{1 j}$ have the same sign for all $j \in\{2,3, \cdots, n\}$.

Then

$$
\begin{aligned}
\| S & +\lambda T \|_{\infty} \\
& =\left|\lambda b_{11}\right|+\left|a_{12}+\lambda b_{12}\right|+\cdots+\left|a_{1 n}+\lambda b_{1 n}\right| \\
& =-\lambda\left|b_{11}\right|+\left(a_{12}+\lambda b_{12}\right)\left(\operatorname{sgn} a_{12}\right)+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right)\left(\operatorname{sgn} a_{1 n}\right) \\
& =\left(\left|a_{12}\right|+\cdots+\left|a_{1 n}\right|\right)+\lambda\left(-\left|b_{11}\right|+\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}\right) \\
< & \left|a_{12}\right|+\cdots+\left|a_{1 n}\right|, \quad \quad \text { due to this particular choosing of } \lambda \\
& =\|S\|_{\infty}, \quad \text { a contradiction. }
\end{aligned}
$$

Case II: $\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}<0$.
Choose λ such that λ satisfies (\mathbb{T}), λ is $+\mathrm{ve}, \lambda$ is sufficiently small so that $a_{1 j}+\lambda b_{1 j}$ and $a_{1 j}$ have the same sign $\forall j \in\{2,3, \cdots n\}$.

Then

$$
\begin{aligned}
& \|S+\lambda T\|_{\infty} \\
& ==\left|\lambda b_{11}\right|+\left|a_{12}+\lambda b_{12}\right|+\cdots+\left|a_{1 n}+\lambda b_{1 n}\right| \\
& =\lambda\left|b_{11}\right|+\left(a_{12}+\lambda b_{12}\right)\left(\operatorname{sgn} a_{12}\right)+\cdots+\left(a_{1 n}+\lambda b_{1 n}\right)\left(\operatorname{sgn} a_{1 n}\right) \\
& =\left(\left|a_{12}\right|+\cdots+\left|a_{1 n}\right|\right)+\lambda\left(\left|b_{11}\right|+\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}\right) \\
& <\quad\left|a_{12}\right|+\cdots+\left|a_{1 n}\right|, \quad \text { due to this particular choosing of } \lambda \\
& =\|S\|_{\infty}, \quad \text { a contradiction. }
\end{aligned}
$$

Therefore, in any case, we must have $\left|b_{11}\right| \geq\left|\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}\right|$ and so $x=\left(-\frac{\left(\operatorname{sgn} a_{12}\right) b_{12}+\cdots+\left(\operatorname{sgn} a_{1 n}\right) b_{1 n}}{b_{11}}, \operatorname{sgn} a_{12}, \cdots, \operatorname{sgn} a_{1 n}\right) \in \mathbb{R}^{n}$ such that $\|x\|_{\infty}=1$ and $\|S x\|_{\infty} \xlongequal[=]{=} S \|_{\infty}, S x \perp_{B} T x$. Similarly, if $a_{1 j}=0$ for $j \in$ $\{1,2, \cdots, n\}$ then we can find $x \in \mathbb{R}^{n}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

This completes the proof of the theorem.
Example 2.7. Let $S, T:\left(\mathbb{R}^{3}\| \|_{\infty}\right) \rightarrow\left(\mathbb{R}^{3}\| \|_{\infty}\right)$ be given by

$$
S=\left(\begin{array}{ccc}
1 & 4 & -2 \\
3 & 1 & 0 \\
2 & 2 & 2
\end{array}\right) \text { and } T=\left(\begin{array}{ccc}
3 & 2 & 5 \\
1 & 1 & 0 \\
0 & 8 & 3
\end{array}\right)
$$

Then, $S \perp_{B} T$, and there exists $x=(1,1,-1) \in \mathbb{R}^{3}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Example 2.8. Let $S, T:\left(\mathbb{R}^{3}\| \|_{\infty}\right) \rightarrow\left(\mathbb{R}^{3}\| \|_{\infty}\right)$ be given by

$$
S=\left(\begin{array}{ccc}
0 & 1 & 2 \\
1 & 0 & 1 \\
-2 & 0 & 0
\end{array}\right) \text { and } T=\left(\begin{array}{ccc}
3 & 0 & 0 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Then $S \perp_{B} T$ and there exists $x=(0,1,1) \in \mathbb{R}^{3}$ with $\|x\|_{\infty}=1$ such that $\|S x\|_{\infty}=\|S\|_{\infty}$ and $S x \perp_{B} T x$.

Remark 2.9. We have obtained the relations between the orthogonality of vectors in $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$ and the orthogonality of operators on $\left(\mathbb{R}^{n},\| \|_{\infty}\right)$, both in the sense of Birkhoff-James. In the same way we can explore the relations between the orthogonality of vectors in $\left(\mathbb{R}^{n},\| \|_{1}\right)$ and the orthogonality of operators on ($\mathbb{R}^{n},\| \|_{1}$), both in the sense of Birkhoff-James.

Acknowledgement

We would like to thank Professor T. K. Mukherjee for his invaluable suggestion while preparing this paper.

References

[1] Alonso, J., Soriano, M.L., On height orthogonality in normed linear spaces. Rocky Mountain Journal of Mathematics, 29 (1999), 1167-1183.
[2] Benítez, C., Fernández, M., Soriano, M.L., Orthogonality of matrices. Linear Algebra and its Applications, 422 (2007), 155-163.
[3] Bhatia, R., Šemrl, P., Orthogonality of matrices and distance problem. Linear Alg. Appl., 287 (1999), 77-85.
[4] Birkhoff, G., Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169-172.
[5] James, R.C., Inner products in normed linear spaces. Bull. Amer. Math Soc., 53 (1947a), 559-566.
[6] James, R.C., Orthogonality in normed linear spaces. Duke Math. J., 12 (1945), 291-302.
[7] James, R.C., Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61 (1947b), 265-292.
[8] Kapoor, O.P., Prasad, J., Orthogonality and characterizations of inner product spaces. Bull. Austral. Math. Soc., 19 (1978), 403-416.
[9] Li, C.K., Schneider, H., Orthogonality of matrices. Linear Alg. Appl., 47 (2002), 115-122.
[10] Partington, J.R., Orthogonality in normed spaces. Bull. Austral. Math. Soc., 33 (1986), 449-455.
[11] Paul, K., Das, G., On an example related to a conjecture of Rajendra Bhatia and Peter \check{S} emrl. South East Journal of Mathematics and Mathematical Sciences, 6 (2008), 119-120.
[12] Paul, K., Hossein, Sk.M., Das, K.C., Orthogonality on B(H,H) and Minimalnorm Operator. Journal of Analysis and Applications, 6 (2008), 169-178.

Received by the editors April 26, 2012

[^0]: ${ }^{1}$ The research of first author is partially supported by PURSE-DST, Govt. of India and research of second author is supported by UGC, India.
 ${ }^{2}$ Department of Mathematics, Jadavpur University, Kolkata 700032, India e-mail: kalloldada@gmail.com
 ${ }^{3}$ Department of Mathematics, Jadavpur University, Kolkata 700032, India e-mail: saindebmalya@gmail.com

