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COMMON FIXED POINT THEOREM FOR FOUR
MAPPINGS DEFINED ON MENGER PM-SPACES

WITH NONLINEAR CONTRACTIVE TYPE
CONDITION

Nataša A. Babačev1

Abstract. This paper presents a common fixed point theorem for two
pairs of self-mappings of which one is compatible and the other weakly
compatible, defined on Menger PM-spaces, satisfying nonlinear general-
ized contractive type condition involving Φ-functions.
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1. Introduction

The notion of statistical metric spaces, as a generalization of metric spaces,
was introduced by K. Menger [11] in 1942. Schweizer and Sklar [16] studied
the properties of spaces introduced by K. Menger and gave some basic results
on these spaces. They studied topology, convergence of sequences, continuity
of mappings, defined the completeness of these spaces, etc. Following A. N.
Šerstnev [20], H. Sherwood gave a notion of probabilistic metric spaces [18]
and also proved a theorem of a characterization of nested, closed sequence of
nonempty sets in complete probabilistic metric space.

Fixed point and common fixed point properties for mappings defined on
probabilistic spaces were studied by many authors ([1], [17], [5], [19], [14], [8]).
Most of the properties which provide the existence of fixed point and common
fixed point are of linear contractive type conditions. On the other hand, there
are many generalizations ([15], [19]) of commutativity for the functions defined
on spaces with non-deterministic distances (probabilistic metric spaces, fuzzy
metric spaces, etc.) which have an important role in the statements providing
the existence of a common fixed point.

The results in fixed point theory including nonlinear type contractive con-
ditions were given by D.W. Boyd and J.S.W. Wong [2], S.N. Ješić and N.A.
Babačev [6], D. O’Regan and R. Sadaati [14] and recently by S.N. Ješić et al.

Altering distance functions in Menger PM-spaces have been recently con-
sidered by B.S. Choudhury and K. Das [3]. Some fixed point results involving
altering distances in Menger PM-spaces were given by D. Miheţ in [12].

The purpose of this paper is to prove a common fixed point theorem for
four mappings satisfying nonlinear contractive type condition involving altering
distances in Menger PM-spaces.
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2. Preliminaries

In the standard notation, let D+ be the set of all distribution functions
F : R → [0, 1], such that F is a nondecreasing, left-continuous mapping, which
satisfies F (0) = 0 and supx∈R F (x) = 1. The space D+ is partially ordered by
the usual point-wise ordering of functions, i.e., F ≤ G if and only if F (t) ≤ G(t)
for all t ∈ R. The maximal element for D+ in this order is the distribution
function given by

ε0(t) =

{
0, t ≤ 0,
1, t > 0.

Definition 2.1. ([16]) A binary operation T : [0, 1]× [0, 1] → [0, 1] is a contin-
uous t-norm if T satisfies the following conditions:

(a) T is commutative and associative;
(b) T is continuous;
(c) T (a, 1) = a for all a ∈ [0, 1];
(d) T (a, b) ≤ T (c, d) whenever a ≤ c and b ≤ d, and a, b, c, d ∈ [0, 1].

Examples of t-norm are T (a, b) = min{a, b} and T (a, b) = ab.

The t-norms are defined recursevly by T 1 = T and

Tn(x1, . . . , xn+1) = T (Tn−1(x1, . . . , xn), xn+1).

for n ≥ 2 and xi ∈ [0, 1] for all i ∈ {1, . . . , n+ 1}.

Definition 2.2. A Menger probabilistic metric space (briefly, Menger PM-
space) is a triple (X,F , T ) where X is a nonempty set, T is a continuous
t-norm, and F is a mapping from X × X into D+ such that, if Fx,y denotes
the value of F at the pair (x, y), the following conditions hold:

(PM1) Fx,y(t) = ε0(t) if and only if x = y;
(PM2) Fx,y(t) = Fy,x(t);
(PM3) Fx,z(t+ s) ≥ T (Fx,y(t), Fy,z(s)) for all x, y, z ∈ X and s, t ≥ 0.

Remark 2.3. [17] Every metric space is a PM-space. Let (X, d) be a metric
space and T (a, b) = min{a, b} is a continuous t-norm. Define Fx,y(t) = ε0(t−
d(x, y)) for all x, y ∈ X and t > 0. The triple (X,F , T ) is a PM-space induced
by the metric d.

Definition 2.4. Let (X,F , T ) be a Menger PM-space.

(1) A sequence {xn}n in X is said to be convergent to x in X if, for every
ε > 0 and λ > 0 there exists a positive integer N such that Fxn,x(ε) > 1 − λ
whenever n ≥ N.

(2) A sequence {xn}n in X is called Cauchy sequence if, for every ε > 0 and
λ > 0 there a exists positive integer N such that Fxn,xm(ε) > 1 − λ whenever
n,m ≥ N.

(3) A Menger PM-space is said to be complete if every Cauchy sequence in X
is convergent to a point in X.
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The (ε, λ)-topology ([16]) in the Menger PM-space (X,F , T ) is introduced
by the family of neighbourhoods Nx of a point x ∈ X given by

Nx = {Nx(ε, λ) : ε > 0, λ ∈ (0, 1)}

where
Nx(ε, λ) = {y ∈ X : Fx,y(ε) > 1− λ}.

The (ε, λ)-topology is a Hausdorff topology. In this topology the function f is
continuous in x0 ∈ X if and only if for every sequence xn → x0 it holds that
f(xn) → f(x0).

The following lemma is proved by B. Schweizer and A. Sklar.

Lemma 2.5. [16] Let (X,F , T ) be a Menger PM-space. Then the function F
is lower semi-continuous for every fixed t > 0, i.e. for every fixed t > 0 and
every two convergent sequences {xn}, {yn} ⊆ X such that xn → x, yn → y it
follows that

lim inf
n→∞

Fxn,yn(t) = Fx,y(t).

Definition 2.6. Let (X,F , T ) be a Menger PM-space and A ⊆ X. Closure of
the set A is the smallest closed set containing A, denoted by A.

Obviously, having in mind the Hausdorff topology and the definition of
converging sequences we have that the next remark holds.

Remark 2.7. x ∈ A if and only if there exists a sequence {xn} in A such that
xn → x.

Definition 2.8. [4] Let (X,F , T ) be a Menger PM-space and A ⊆ X. The
probabilistic diameter of set A is given by

δA(t) = inf
x,y∈A

sup
ε< t

Fx,y(ε).

The diameter of the set A is defined by

δA = sup
t>0

inf
x,y∈A

sup
ε< t

Fx,y(ε).

If there exists λ ∈ (0, 1) such that δA = 1 − λ, the set A will be called proba-
bilistic semi-bounded. If δA = 1, the set A will be called probabilistic bounded.

Lemma 2.9. Let (X,F , T ) be a Menger PM-space. A set A ⊆ X is proba-
bilistic bounded if and only if for each λ ∈ (0, 1) there exists t > 0 such that
Fx,y(t) > 1− λ for all x, y ∈ A.

Proof. The proof follows from the definitions of supA and inf A of non-empty
sets.

It is not difficult to see that every metrically bounded set is also probabilistic
bounded if it is considered in an induced PM-space.

H. Sherwood has proved the following theorem.
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Theorem 2.10. [18] Let (X,F , T ) be a Menger PM-space and {Fn} a nested
sequence of nonempty, closed subsets of X such that δFn → ε0 as n → ∞.
Then, there is exactly one point x0 ∈ Fn, for every n ∈ N.

It is easy to show that the following lemma is satisfied.

Lemma 2.11. Let (X,F , T ) be a Menger PM-space. A collection {Fn}n∈N has
probabilistic diameter zero i.e. for each r ∈ (0, 1) and each t > 0 there exists
n0 ∈ N such that Fx,y(t) > 1 − r for all x, y ∈ Fn0 if and only if δFn → ε0 as
n → ∞.

Lemma 2.12. Let (X,F , T ) be a Menger PM-space with the continuous t-norm
T which satisfies T (a, a) ≥ a for every a ∈ [0, 1]. Then, for every x, y, z ∈ X
and all t > 0 holds

(1) Fx,y(2t) ≥ min{Fx,z(t), Fy,z(t)}.

Proof. For every t-norm T which satisfies T (a, a) ≥ a, for every a, b ∈ [0, 1]
it holds T (a, b) ≥ T (min{a, b},min{a, b}) ≥ min{a, b}. From the previous,
property (PM3) and the fact that T is nondecreasing we have that for every
x, y, z ∈ X and all t > 0 holds Fx,y(2t) ≥ min{Fx,z(t), Fy,z(t)}.

Khan et al. in [10] introduced the concept of altering distance functions
that alter the distance between two points in metric spaces. Recently, B.S.
Choudhury and K. Das extended this concept to the probabilistic fixed point
theory in [3], and proved a fixed point theorem for the t-norm T = min. D.
Miheţ proved some fixed point results that generalize the results given in [3],
considering continuous t-norm.

Definition 2.13. [3] A function ϕ : [0,∞) → [0,∞) is said to be a Φ-function
if the following conditions hold:

(i) ϕ(t) = 0 if and only if t = 0 ;
(ii) ϕ is strictly increasing and ϕ(t) → ∞ as t → ∞ ;
(iii) ϕ is left-continuous in (0,∞);
(iv) ϕ is continuous at 0.

The class of all ϕ-functions will be denoted by Φ.

Lemma 2.14. Let (X,F , T ) be a Menger PM-space. Let ϕ : [0,∞) → [0,∞)
be a Φ-function. Then, the following statement holds.

If for x, y ∈ X, 0 < c < 1, we have that Fx,y(t) ≥ Fx,y(ϕ(s/c)) for all t > 0
and some s > 0 such that t > ϕ(s) > 0, then x = y.

Proof. Since ϕ(0) = 0 and ϕ is continuous in 0, there exists s > 0 such that t >
ϕ(s) > 0. From the fact that ϕ is strictly increasing, and since c ∈ (0, 1), by in-
duction we get that Fx,y(t) ≥ Fx,y(ϕ(s)) ≥ Fx,y(ϕ(s/c)) ≥ · · · ≥ Fx,y(ϕ(s/c

n)).
Taking lim inf as n → ∞ we get Fx,y(t) ≥ 1, i.e. x = y.

In fixed point theory, a very important role is played by the generalizations
of commutativity. The concept of compatible mappings was introduced by
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G. Jungck ([9]) and S.N. Mishra ([13]). There are many generalizations of
compatibility in different senses. Recently, B. Singh et al. introduced the
concept of weak compatibility in [19].

Definition 2.15. [13] Let (X,F , T ) be a Menger PM-space and S and R
self-mappings on X. We say that the mappings S and R are compatible if

(2) lim inf
n→∞

FSRxn,RSxn(t) = 1 for every t > 0,

holds whenever (xn)n∈N is a sequence in X such that lim
n→∞

Sxn = lim
n→∞

Rxn =

z ∈ X holds.

Definition 2.16. [19] Let (X,F , T ) be a Menger PM-space and S and R self-
mappings on X. We say that the mappings S and R are weakly compatible if
for some z ∈ X holds that Sz = Rz then SRz = RSz.

It is easy to see that the class of compatible mappings is broader than
the class of commuting mappings. Indeed, every pair of commuting mappings
is also compatible, while the converse is not true ([19]). Also, every pair of
compatible mappings is weakly compatible, as the following remark shows.

Remark 2.17. Let S and R be compatible mappings on a Menger PM-space
(X,F , T ). Then, the following holds:

If for some z ∈ X we have Sz = Rz then SRz = RSz.

Proof. This follows directly from Definition 2.15 taking xn = z for every n ∈ N
for some point z ∈ X.

Examples of compatible and weak compatible mappings can be found in
[9], [13] and [19].

3. Main results

Lemma 3.1. Let (X,F , T ) be a Menger PM-space with continuous t-norm T
which satisfies T (a, a) ≥ a for every a ∈ [0, 1] and S and R compatible self-
mappings on X and let Sxn and Rxn converge to some point z ∈ X for a
sequence {xn}n∈N in X. If S is continuous, then lim

n→∞
RSxn = Sz.

Proof. Let λ ∈ (0, 1) and t > 0 be arbitrary. Since S and R are compatible,
it follows that FRSxn,SRxn(t) > 1 − λ for n ∈ N large enough. Also, Sxn and
Rxn converge to z, so FRxn,z(t) > 1− λ and FSxn,z(t) > 1− λ. From Lemma
2.12 and the continuity of S it follows that

FRSxn,Sz(2t) ≥ min{FRSxn,SRxn(t), FSRxn,Sz(t)} ≥ min{1− λ, 1− λ} = 1− λ

holds. Since λ ∈ (0, 1) is arbitrary, we get that lim inf
n→∞

FRSxn,Sz(t) = 1, i.e.

lim
n→∞

RSxn = Sz.
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Theorem 3.2. Let (X,F , T ) be a complete Menger PM-space with continuous
t-norm T which satisfies T (a, a) ≥ a for every a ∈ [0, 1], let c ∈ (0, 1) be fixed
and let A,B, S and R be self-mappings on X and there exists x0 ∈ X such
that O(A, x0) = {Anx0, n ∈ N ∪ {0}} and O(B, x0) = {Bnx0, n ∈ N ∪ {0}} are
probabilistic bounded sets. Let the following conditions hold:

(a) A(X) ⊆ R(X), B(X) ⊆ S(X),
(b) One of the mappings A and S is continuous,
(c) The pair {A,S} is compatible and {B,R} is weakly compatible,
(d) There exists a Φ-function ϕ such that

(3) FAx,By(ϕ(t)) ≥ FSx,Ry(ϕ(t/c)),

for every t > 0 and all x, y ∈ X. Then A,B, S and R have a unique common
fixed point.

Proof. From (a) it follows that, for x0 there exists x1 ∈ X such that A(x0) =
R(x1) and for such a point x1 there exists x2 ∈ X such that B(x1) = S(x2).
By induction we can construct the following sequence {zn}n∈N

(4)

{
z2n−1 = Rx2n−1 = Ax2n−2

z2n = Sx2n = Bx2n−1
.

Let us consider a nested sequence of non-empty, closed sets defined by

Fn = {zn, zn+1, . . .}, n ∈ N.

We now prove that the family {Fn}n∈N has the probabilistic diameter zero.
Let λ ∈ (0, 1) and t > 0 be arbitrary. From Fk ⊆ O(A, x0) ∪ O(B, x0), it

follows that Fk is a probabilistic bounded set for arbitrary k ∈ N.
Let x, y ∈ Fk be arbitrary. There are sequences {zn(i)}, {zn(j)} in Fk

(n(i), n(j) ≥ n, i, j ∈ N) such that lim
i→∞

zn(i) = x and lim
j→∞

zn(j) = y.

Case I. Let us assume that n(i) ∈ 2N − 1 and n(j) ∈ 2N or vice-versa, for
large enough i, j ∈ N i.e. zn(i) = Axn(i)−1 and zn(j) = Bxn(j)−1.

Since ϕ(0) = 0 and ϕ is continuous in 0, there exists r > 0 such that
t > ϕ(r) > 0. From (3) and the fact that F is nondecreasing, it follows that

Fzn(i),zn(j)
(t) = FAxn(i)−1,Bxn(j)−1

(t) ≥ FAxn(i)−1,Bxn(j)−1
(ϕ(r))

≥ FSxn(i)−1,Rxn(j)−1
(ϕ(r/c)) = FAxn(j)−2,Bxn(i)−2

(ϕ(r/c))

= Fzn(i)−1,zn(j)−1
(ϕ(r/c)).

By induction, for m ∈ N, we get that

Fzn(i),zn(j)
(t) ≥ Fzn(i)−m,zn(j)−m

(ϕ(r/cm)).

Since {zn(i)−m}, {zn(j)−m} are sequences in Fk we have that

Fzn(i)−m,zn(j)−m
(ϕ(r/cm)) ≥ δFk

(ϕ(r/cm))
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holds. Since Fk is probabilistic bounded and ϕ is a Φ-function, letting m → ∞
we get

Fzn(i),zn(j)
(t) ≥ δFk

(ϕ(r/cm)) → ϵ0.

It follows that

(5) Fzn(i),zn(j)
(t) > 1− λ, for n(i) ∈ 2N− 1, n(j) ∈ 2N, or vice-versa.

Case II. Let us assume that both n(i) and n(j) are from the set 2N − 1 and
let n(l) ≥ k be an arbitrary positive integer and n(l) ∈ 2N.

Analoguously as in Case I, by replacing t with t
2 , we show that

FAxn(j)−1,Bxn(l)−1
(t/2) > 1− λ and FAxn(i)−1,Bxn(l)−1

(t/2) > 1− λ.

From Lemma 2.12 and the previous, we conclude that

Fzn(i),zn(j)
(t) = FAxn(i)−1,Axn(j)−1

(t)

≥ min
{
FAxn(i)−1,Bxn(l)−1

(t/2) , FAxn(j)−1,Bxn(l)−1
(t/2)

}
≥ min{1− λ, 1− λ} = 1− λ

holds, i.e.

(6) Fzn(i),zn(j)
(t) ≥ 1− λ, for n(i), n(j) ∈ 2N− 1.

Similarly we can prove that (6) holds for n(i), n(j) ∈ 2N.

Finally, from (5) and (6) we conclude that

Fzn(i),zn(j)
(t) ≥ 1− λ

holds for every i, j ∈ N. Taking liminf when i, j → ∞ and applying Lemma 2.5
we get that Fx,y(t) > 1 − λ for every x, y ∈ Fk. From Lemma 2.11 it follows
that the collection {Fn}n∈N has probabilistic diameter zero.

Applying Theorem 2.10 we conclude that this collection has a non-empty
intersection that consists of exactly one point z. Since the collection {Fn}n∈N
has probabilistic diameter zero and z ∈ Fn for every n ∈ N, then for every
λ ∈ (0, 1) and for all t > 0 there exists n0 ∈ N such that for every n ≥ n0 we
have that Fzn,z(t) > 1 − λ. From this it follows that for every λ ∈ (0, 1) we
have that lim inf

n→∞
Fzn,z(t) > 1− λ. Taking λ → 0 we get that

lim inf
n→∞

Fzn,z(t) = 1

i.e. lim
n→∞

zn = z. From the definition of the sequences {Ax2n−2}, {Sx2n},
{Bx2n−1} and {R2n−1} it follows that every one of these sequences converges
to z.

We shall prove that z is a common fixed point of the mappings A,B, S and
R. Let us first assume that S is continuous. Then we have that lim

n→∞
SSx2n =
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Sz. From the compatibility of the pair {A,S} and from Lemma 3.1 it follows
that lim

n→∞
ASx2n = Sz.

From the properties of the function ϕ it follows that there exists r > 0 such
that t > ϕ(r) > 0. Using the condition (3) we get that the following inequality
holds:

FASx2n,Bx2n−1(t) ≥ FASx2n,Bx2n−1(ϕ(r)) ≥ FSSx2n,Rx2n−1(ϕ(r/c)).

Taking lim inf as n → ∞ we get that

FSz,z(t) ≥ FSz,z(ϕ(r/c)).

From Lemma 2.14 it follows that Sz = z. Using condition (3) again, we get
that

FAz,Bx2n−1(t) ≥ FAz,Bx2n−1(ϕ(r)) ≥ FSz,Rx2n−1(ϕ(r/c))

and taking lim inf as n → ∞ we get that

FAz,z(t) ≥ FSz,z(ϕ(r/c)) = Fz,z(ϕ(r/c)) = 1.

This means that Az = z. Since A(X) ⊆ R(X), there exists a point u ∈ X such
that z = Az = Ru and we have that

Fz,Bu(t) ≥ Fz,Bu(ϕ(r)) = FAz,Bu(ϕ(r)) ≥ FSz,Ru(ϕ(r/c)) = Fz,z(ϕ(r/c)) = 1,

which means that Bu = z. From the weak compatibility of the pair {B,R} it
follows that Rz = RBu = BRu = Bz. Also, from (3) it follows that

FAx2n,Bz(t) ≥ FAx2n,Bz(ϕ(r)) ≥ FSx2n,Rz(ϕ(r/c)).

Taking lim inf when n → ∞ and from Lemma 2.14, we get that Bz = z. Thus,
z is a common fixed point of the mappings A,B, S and R.

Now, let us assume that A is a continuous mapping. Then we have that
lim

n→∞
AAx2n = Az. From the compatibility of the pair {A,S} and Lemma 3.1

it follows that lim
n→∞

SAx2n = Az. Using the condition (3) we get that

FAAx2n,Bx2n−1(t) ≥ FAAx2n,Bx2n−1(ϕ(r)) ≥ FSAx2n,Rx2n−1(ϕ(r/c)).

Taking lim inf as n → ∞ we get that

FAz,z(t) ≥ FAz,z(ϕ(r/c)).

From Lemma 2.14 it follows that Az = z. Since A(X) ⊆ R(X), there exists a
point v ∈ X such that z = Az = Rv. From (3) we have that

FAAx2n,Bv(t) ≥ FAAx2n,Bv(ϕ(r)) ≥ FSAx2n,Rv(ϕ(r/c)).

Taking lim inf as n → ∞ we get that

FAz,Bv(t) ≥ FAz,Rv(ϕ(r/c)) = Fz,z(ϕ(r/c)) = 1,
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which means that z = Bv. Since the pair {B,R} is weakly compatible we have
that Rz = RBv = BRv = Bz. Also, using condition (3) we have

FAx2n,Bz(t) ≥ FAx2n,Bz(ϕ(r)) ≥ FSx2n,Rz(ϕ(r/c)).

Taking lim inf as n → ∞ we get that

Fz,Bz(t) ≥ Fz,Bz(ϕ(r)) ≥ Fz,Rz(ϕ(r/c)) = Fz,Bz(ϕ(r/c)).

This means that z = Bz = Rz. Since B(X) ⊆ S(X), there exists a point w ∈ X
such that z = Bz = Sw. From (3) it follows that

FAw,z(t) ≥ FAw,z(ϕ(r)) = FAw,Bzϕ(r)) ≥ FSw,Rz(ϕ(r/c)) = Fz,z(ϕ(r/c)) = 1,

i.e. Aw = z. Since the pair {A,S} is compatible and z = Aw = Sw, from
Remark 2.17 we have that Az = ASw = SAw = Sz. Thus, z is a common
fixed point for the mappings A,B, S and R.

Let us now show that z is a unique common fixed point. Let us assume
that there exists another common fixed point y. From (3) it follows that

Fz,y(t) ≥ Fz,y(ϕ(r)) = FAz,By(ϕ(r)) ≥ FSz,Ry(ϕ(r/c)) = Fz,y(ϕ(r/c)).

Finally, from Lemma 2.14 it follows that z = y.

Example 3.3. Let (X,F , T ) be a complete Menger PM-space induced by a
metric d(x, y) = |x − y| on X = [0,+∞) ⊂ R given in Remark 2.3. Let
ϕ(t) = t, t > 0, c = 1

2 and

Ax =
x

1 + x
, Sx = 2x,

Bx =

{
x

1+x , x ∈ [0, 1]

0, x > 1
, Rx =

{
2x, x ∈ [0, 1]
0, x > 1

Note that ϕ is a Φ-function. We shall prove that all the conditions of Theorem
3.2 are satisfied. First notice that A(X) = [0, 1) ⊂ [0, 2] = R(X) and B(X) =
[0, 1

2 ) ⊂ [0,+∞) = S(X). The sets A(X) and B(X) are metrically bounded,
i.e. probabilistic bounded as subsets of the Menger PM-space. Because ASx =
2x

1+2x and SAx = 2x
1+x we conclude that A and S are not commuting.

We now prove that they are compatible mappings. Note that

FASx,SAx(t) = ε0

(
t− 2x2

(1 + 2x)(1 + x)

)
and FAx,Sx(t) = ε0

(
t− 2x2 + x

1 + x

)
Since 2x2

(1+x)(1+2x) ≤
x+2x2

1+x holds for all x ≥ 0 we get

FASx,SAx(t) ≥ FSx,Ax(t)

for all x, t ≥ 0. For a sequence {xn} in [0,+∞) such that lim
n→∞

Axn =

lim
n→∞

Sxn = z, from the previous inequality it follows that

lim inf
n→∞

FASxn,SAxn(t) = 1.
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Now we prove that the mappings B and R are weakly compatible. If Bz =
Rz then z = 0 or z > 1. In the case when z = 0 we get RB(0) = BR(0) = 0.
On the other hand, if z > 1 then RB(z) = R(0) = 0 and BR(z) = B(0) = 0,
i.e. the condition RBz = BRz from Definition 2.16 is satisfied.

We now prove that the condition (3) is satisfied, too. Note that for all
x, y ∈ X we have that 1

(1+x)(1+y) ≤ 1.

a) For x, y ∈ [0, 1] we get

FAx,By(t) = ε0

(
t− |x− y|

(1 + x)(1 + y)

)
≥ ε0(2t− 2|x− y|) = FSx,Ry(2t).

b) For x > 1 and y > 1 we get

FAx,By(t) = ε0

(
t− x

1 + x

)
≥ ε0(2t− 2x) = FSx,Ry(2t).

c) If x ∈ [0, 1] and y > 1 the proof is reduced to b). If x > 1 and y ∈ [0, 1]
the proof is reduced to a).
From the above we conclude that condition (3) is satisfied. We get that all the
mappings have a unique common fixed point. It is easy to see that this point
is x = 0.

Acknowledgement

This research was supported by Ministry of Education, Science and Tech-
nological Development of the Republic of Serbia, Project grant number 174032.

References

[1] Bharucha-Reid, A., Fixed point theorems in probabilistic analysis. Bull. Amer.
Math. Soc. 82 (1976), 641–657.

[2] Boyd, D.W., Wong J.S.W., On nonlinear contractions. Proc. Amer. Math. Soc.
20 (1969), 458–464.

[3] Choudhury, B.S., Das K., A new contraction principle in Menger spaces. Acta
Mathematica Sinica 24 (2008), 1379–1386.

[4] Egbert, R.J., Products and quotients of probabilistic metric spaces. Pacific Jour-
nal of Mathematics 24 (1968), 437–455.
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