COEFFICIENT ESTIMATES FOR A CLASS OF ANALYTIC AND BI-UNIVALENT FUNCTIONS

Serap Bulut ${ }^{\text {II }}$

Abstract

In this paper, we introduce and investigate an interesting subclass $\mathcal{B}_{\Sigma}^{h, p}$ of analytic and bi-univalent functions in the open unit disk \mathbb{U}. For functions belonging to the class $\mathcal{B}_{\Sigma}^{h, p}$ we obtain estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The results presented in this paper would generalize and improve some recent work of Brannan and Taha [IT].

AMS Mathematics Subject Classification (2010): 30C45
Key words and phrases: Analytic functions, Univalent functions, Biunivalent functions, Taylor-Maclaurin series expansion, Coefficient bounds and coefficient estimates, Taylor-Maclaurin coefficients

1. Introduction

Let $\mathbb{R}=(-\infty, \infty)$ be the set of real numbers, \mathbb{C} be the set of complex numbers and

$$
\mathbb{N}:=\{1,2,3, \ldots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers.
Let \mathcal{A} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

We also denote by \mathcal{S} the class of all functions in the normalized analytic function class \mathcal{A} which are univalent in \mathbb{U}.

Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk \mathbb{U}. In fact, the Koebe onequarter theorem [2$]$ ensures that the image of \mathbb{U} under every univalent function $f \in \mathcal{S}$ contains a disk of radius $1 / 4$. Thus every function $f \in \mathcal{A}$ has an inverse f^{-1}, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f\left(f^{-1}(w)\right)=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)
$$

[^0]In fact，the inverse function f^{-1} is given by

$$
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in \mathcal{A}$ is said to be bi－univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U} ．

Let Σ denote the class of bi－univalent functions in \mathbb{U} given by（■－\｜）．For a brief history and interesting examples of functions in the class Σ ，see［3］．

Brannan and Taha［［ ］introduced the following two subclasses of the bi－ univalent function class Σ and obtained non－sharp estimates on the first two Taylor－Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ of functions in each of these sub－ classes．

Definition 1．（see［T］）A function $f(z)$ given by（［．］）is said to be in the class $\mathcal{S}_{\Sigma}^{*}[\alpha](0<\alpha \leq 1)$ if the following conditions are satisfied：

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U}) \tag{1.3}
\end{equation*}
$$

where the function g is given by

$$
\begin{equation*}
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.4}
\end{equation*}
$$

We call $\mathcal{S}_{\Sigma}^{*}[\alpha]$ the class of strongly bi－starlike functions of order α ．
Theorem 1．1．（see［1］）Let the function $f(z)$ given by the Taylor－Maclaurin series expansion（ㄸ．ᅦ）be in the class $\mathcal{S}_{\Sigma}^{*}[\alpha](0<\alpha \leq 1)$ ．Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{1+\alpha}} \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2 \alpha \tag{1.6}
\end{equation*}
$$

Definition 2．（see［⿴囗 $]$ ）A function $f(z)$ given by（■．］）is said to be in the class $\mathcal{S}_{\Sigma}^{*}(\beta)(0 \leq \beta<1)$ if the following conditions are satisfied：

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{w g^{\prime}(w)}{g(w)}\right\}>\beta \quad(w \in \mathbb{U}) \tag{1.8}
\end{equation*}
$$

where the function g is defined by（［．，廿）．We call $\mathcal{S}_{\Sigma}^{*}(\beta)$ the class of bi－starlike functions of order β ．

Theorem 1.2. (see [1]) Let the function $f(z)$, given by the Taylor-Maclaurin series expansion (■-】), be in the class $\mathcal{S}_{\Sigma}^{*}(\beta)(0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{2(1-\beta)} \tag{1.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq 2(1-\beta) \tag{1.10}
\end{equation*}
$$

Here, in our present sequel to some of the aforecited works (especially [[]]), we introduce the following subclass of the analytic function class \mathcal{A}, analogously to the definition given by Xu et al. [4].

Definition 3. Let the functions $h, p: \mathbb{U} \rightarrow \mathbb{C}$ be so constrained that

$$
\min \{\Re(h(z)), \Re(p(z))\}>0 \quad(z \in \mathbb{U}) \quad \text { and } \quad h(0)=p(0)=1
$$

Also let the function f, defined by (■.) , be in the analytic function class \mathcal{A}. We say that $f \in \mathcal{B}_{\Sigma}^{h, p}$ if the following conditions are satisfied:

$$
\begin{equation*}
f \in \Sigma \quad \text { and } \quad \frac{z f^{\prime}(z)}{f(z)} \in h(\mathbb{U}) \quad(z \in \mathbb{U}) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{w g^{\prime}(w)}{g(w)} \in p(\mathbb{U}) \quad(w \in \mathbb{U}) \tag{1.12}
\end{equation*}
$$

where the function g is defined by ([..4).
Remark 1. There are many choices of the functions h and p which would provide interesting subclasses of the analytic function class \mathcal{A}. For example, if we let

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad p(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

or

$$
h(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad p(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

it is easy to verify that the functions $h(z)$ and $p(z)$ satisfy the hypotheses of Definition []. If $f \in \mathcal{B}_{\Sigma}^{h, p}$, then

$$
f \in \Sigma \quad \text { and } \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

and

$$
\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, w \in \mathbb{U})
$$

or

$$
f \in \Sigma \quad \text { and } \quad \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

and

$$
\Re\left(\frac{w g^{\prime}(w)}{g(w)}\right)>\beta \quad(0 \leq \beta<1, w \in \mathbb{U})
$$

where the function g is defined by (ㄸ.4). This means that

$$
f \in \mathcal{S}_{\Sigma}^{*}[\alpha] \quad(0<\alpha \leq 1)
$$

or

$$
f \in \mathcal{S}_{\Sigma}^{*}(\beta) \quad(0 \leq \beta<1)
$$

Motivated and stimulated especially by the work of Brannan and Taha [I], we propose to investigate the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}$ introduced here in Definition [${ }^{3}$ and derive coefficient estimates on the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for a function $f \in \mathcal{B}_{\Sigma}^{h, p}$ given by (■.D). Our results for the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}$ would generalize and improve the related work of Brannan and Taha [II].

2. A Set of General Coefficient Estimates

In this section we state and prove our general results involving the biunivalent function class $\mathcal{B}_{\Sigma}^{h, p}$ given by Definition [3].

Theorem 2.1. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (【.]), be in the bi-univalent function class $\mathcal{B}_{\Sigma}^{h, p}$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\sqrt{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}}, \sqrt{\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}, \frac{3\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}\right\} \tag{2.2}
\end{equation*}
$$

Proof. First of all, we write the argument inequalities in (떼) and ([.]2) in their equivalent forms as follows:

$$
\frac{z f^{\prime}(z)}{f(z)}=h(z) \quad(z \in \mathbb{U})
$$

and

$$
\frac{w g^{\prime}(w)}{g(w)}=p(w) \quad(w \in \mathbb{U})
$$

respectively, where $h(z)$ and $p(w)$ satisfy the conditions of Definition [3] Furthermore, the functions $h(z)$ and $p(w)$ have the following Taylor-Maclaurin series expensions:

$$
h(z)=1+h_{1} z+h_{2} z^{2}+\cdots
$$

and

$$
p(w)=1+p_{1} w+p_{2} w^{2}+\cdots
$$

respectively. Now, upon equating the coefficients of $\frac{z f^{\prime}(z)}{f(z)}$ with those of $h(z)$ and the coefficients of $\frac{w g^{\prime}(w)}{g(w)}$ with those of $p(w)$, we get

$$
\begin{gather*}
a_{2}=h_{1} \tag{2.3}\\
2 a_{3}-a_{2}^{2}=h_{2} \tag{2.4}\\
-a_{2}=p_{1} \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
3 a_{2}^{2}-2 a_{3}=p_{2} \tag{2.6}
\end{equation*}
$$

From (2.3) and (2.5), we obtain

$$
\begin{equation*}
h_{1}=-p_{1} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 a_{2}^{2}=h_{1}^{2}+p_{1}^{2} \tag{2.8}
\end{equation*}
$$

Also, from (2.4$]$) and (2.61), we find that

$$
\begin{equation*}
2 a_{2}^{2}=h_{2}+p_{2} \tag{2.9}
\end{equation*}
$$

Therefore, we find from the equations (L.E) and (L.XI) that

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}
$$

and

$$
\left|a_{2}\right|^{2} \leq \frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{4}
$$

respectively. So we get the desired estimate on the coefficient $\left|a_{2}\right|$ as asserted in (2.11)

Next, in order to find the bound on the coefficient $\left|a_{3}\right|$, we subtract (2.6) from (2.4). We thus get

$$
\begin{equation*}
4 a_{3}-4 a_{2}^{2}=h_{2}-p_{2} \tag{2.10}
\end{equation*}
$$

Upon substituting the value of a_{2}^{2} from ([2.8) into (2.10) , it follows that

$$
a_{3}=\frac{h_{1}^{2}+p_{1}^{2}}{2}+\frac{h_{2}-p_{2}}{4} .
$$

We thus find that

$$
\left|a_{3}\right| \leq \frac{\left|h^{\prime}(0)\right|^{2}+\left|p^{\prime}(0)\right|^{2}}{2}+\frac{\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (2.9) into (2.]I), it follows that

$$
a_{3}=\frac{3 h_{2}+p_{2}}{4}
$$

We thus obtain

$$
\left|a_{3}\right| \leq \frac{3\left|h^{\prime \prime}(0)\right|+\left|p^{\prime \prime}(0)\right|}{8}
$$

This evidently completes the proof of Theorem [2].

3. Corollaries and Consequences

If we set

$$
h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad \text { and } \quad p(z)=\left(\frac{1-z}{1+z}\right)^{\alpha} \quad(0<\alpha \leq 1, z \in \mathbb{U})
$$

in Theorem [2.1, we can readily deduce the following corollary.
Corollary 3.1. Let the function $f(z)$, given by the Taylor-Maclaurin series expansion $\left(\mathbb{\square}\right.$), be in the bi-univalent function class $\mathcal{S}_{\Sigma}^{*}[\alpha](0<\alpha \leq 1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2} \alpha
$$

and

$$
\left|a_{3}\right| \leq 2 \alpha^{2}
$$

Remark 2. It is easy to see that

$$
\sqrt{2} \alpha \leq \frac{2 \alpha}{\sqrt{1+\alpha}} \quad(0<\alpha \leq 1)
$$

and

$$
2 \alpha^{2} \leq 2 \alpha \quad(0<\alpha \leq 1)
$$

which, in conjunction with Corollary [.]. would obviously yield an improvement of Theorem I.D.

If we set

$$
h(z)=\frac{1+(1-2 \beta) z}{1-z} \quad \text { and } \quad p(z)=\frac{1-(1-2 \beta) z}{1+z} \quad(0 \leq \beta<1, z \in \mathbb{U})
$$

in Theorem [.], we can readily deduce the following corollary.
Corollary 3.2. Let the function $f(z)$ given by the Taylor-Maclaurin series expansion (ㄸ.ᅦ) be in the bi-univalent function class $\mathcal{S}_{\Sigma}^{*}(\beta)(0 \leq \beta<1)$. Then

$$
\left|a_{2}\right| \leq \sqrt{2(1-\beta)}
$$

and

$$
\left|a_{3}\right| \leq\left\{\begin{array}{cl}
2(1-\beta) & , \quad 0 \leq \beta \leq \frac{3}{4} \\
4(1-\beta)^{2}+(1-\beta) & , \quad \frac{3}{4} \leq \beta<1
\end{array}\right.
$$

Remark 3. It is easy to see that
(i) if $0 \leq \beta \leq \frac{3}{4}$, then

$$
\left|a_{3}\right| \leq 2(1-\beta) ;
$$

(ii) if $\frac{3}{4} \leq \beta<1$, then

$$
\left|a_{3}\right| \leq 4(1-\beta)^{2}+(1-\beta) \leq 2(1-\beta)
$$

Thus, clearly, Corollary [3.2 is an improvement of Theorem ㄴ.2.

References

[1] Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions. Mathematical analysis and its applications (Kuwait, 1985), 53-60, KFAS Proc. Ser., 3, Pergamon, Oxford, 1988. see also Studia Univ. Babeş-Bolyai Math. 31 (2) (1986), 70-77.
[2] Duren, P.L., Univalent Functions. In: Grundlehren der Mathematischen Wissenschaften, vol. 259, New York: Springer, 1983.
[3] Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 23 (2010), 1188-1192.
[4] Xu, Q.-H., Gui, Y.-C., Srivastava, H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Appl. Math. Lett. 25 (2012), 990-994.

Received by the editors December 12, 2011

[^0]: ${ }^{1}$ Kocaeli University, Civil Aviation College, Arslanbey Campus, 41285 İzmit-Kocaeli, Turkey, e-mail: serap.bulut@kocaeli.edu.tr

