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ON THE W2-CURVATURE TENSOR OF THE
SEMI-SYMMETRIC NON-METRIC CONNECTION

IN A KENMOTSU MANIFOLD

R. N. Singh1 and Gieshwari Pandey2

Abstract. The objective of the present paper is to study the W2-
curvature tensor of the semi-symmetric non-metric connection in a Ken-
motsu manifold. It is shown that if in Mn, W ∗

2 = 0, then Mn is iso-
metric to the hyperbolic space Hn(−1), where W ∗

2 is the W2-curvature
tensor of the semi-symmetric non-metric connection. Also, locally W2-ϕ-
symmetric Kenmotsu manifold and W2-ϕ-recurrent Kenmotsu manifold
with respect to the semi-symmetric non-metric connection have been
studied.
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1. Introduction

In 1924, A. Friedmann and J.A. Schouten [6] introduced the notion of semi-
symmetric linear connection on a differentiable manifold. In 1930, Bartolotti
[4] gave a geometrical meaning of such a connection. In 1932, H.A. Hayden
[7] defined and studied semi-symmetric metric connection. In 1970, K. Yano
[19], started a systematic study of the semi-symmetric metric connection in a
Riemannian manifold, and this was further studied by various authors.

A linear connection ∇∗ on a Riemannian manifold Mn is called semi-
symmetric if its torsion tensor

T ∗(X,Y ) = ∇∗
XY −∇∗

Y X − [X,Y ]

satisfies
T ∗(X,Y ) = η(Y )X − η(X)Y,

where η is a non-zero 1-form associated with a vector field ξ defined by η(X) =
g(X, ξ). A semi-symmetric connection ∇∗ is called semi-symmetric metric con-
nection [7] if it further satisfies ∇∗

Xg = 0; otherwise it is non-metric.
In 1975, Prvanović [14] introduced the concept of semi-symmetric non-

metric connection with the name pseudo-metric, which was further studied
by Andonie ([2], [3]). The study of semi-symmetric non-metric connection
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is much older than the nomenclature ’non-metric’ was introduced. In 1992,
Agashe and Chafle [1] introduced a semi-symmetric connection ∇∗ satisfying
∇∗

Xg ̸= 0, and called such a connection as semi-symmetric non-metric connec-
tion. Semi-symmetric connections were further studied by several authors such
as Sengupta, De and Binh [15], Pathak and De [11], Singh and Pandey [16],
Singh, Pandey and Pandey [17], and many others.

Semi-symmetric connections play an important role in the study of Rie-
mannian manifolds. There are various physical problems involving the semi-
symmetric metric connection. For example, if a man is moving on the surface
of the earth always facing one definite point, say Jaruselam or Mekka or the
North pole, then this displacement is semi-symmetric and metric [6].

On the other hand, in 1972, K. Kenmotsu [9] studied a class of contact
Riemannian manifolds satisfying some special conditions. We call it Kenmotsu
manifold. Kenmotsu proved that if in a Kenmotsu manifold the condition
R(X,Y ).R = 0 holds, then the manifold is of negative curvature −1, where R
is the curvature tensor of type (1, 3) and R(X,Y ) denotes the derivations of the
tensor algebra at each point of the the tangent space. A Riemannian manifold
satisfying the condition R(X,Y ).R = 0 is called semi-symmetric [18]. In [8],
Jun, De and Pathak have studied some relations about semi-symmetric, Ricci
semi-symmetric or Weyl semi-symmetric conditions in Riemannian manifolds.
In [20], Yildiz and De have studied W2-semi-symmetric Kenmotsu manifolds.
They have classified Kenmotsu manifolds which satisfy P.W2 = 0, I.W2 = 0,
C.W2 = 0 and C̃.W2 = 0, where P, I, C and C̃ are the projective curvature
tensor, concircular curvature tensor, conformal curvature tensor and quasi-
conformal curvature tensor respectively.

In 1970, Pokhariyal and Mishra [13] have introduced new tensor fields, called
W2 and E-tensor fields in a Riemannian manifold and studied their properties.
Again, Pokhariyal [12] have studied some properties of these tensor fields in a
Sasakian manifolds. Recently, Matsumoto, Ianus and Mihai [10] have studied
P-Sasakian manifolds admitting W2 and E-tensor fields. Also, De and Sarkar
[5], Yildiz and De [20] have studied W2-curvature tensor. The curvature tensor
′W2 is defined by
(1.1)

′W2(X,Y, Z, U) = ′R(X,Y, Z, U)+
1

n− 1
{g(X,Z)Ric(Y,U)−g(Y,Z)Ric(X,U)},

where Ric is the Ricci tensor of type (0, 2) and

′W2(X,Y, Z, U) = g(W2(X,Y )Z,U)

and
′R(X,Y, Z, U) = g(R(X,Y )Z,U),

for the arbitrary vector fields X, Y, Z and U.
Motivated by the above studies, in the present paper, we consider the W2-

curvature tensor of a semi-symmetric non-metric connection and study some
curvature conditions. The present paper is organized as follows: In Section 2,
some preliminary results regarding Kenmotsu manifold are recalled. In Section
3, we obtain the curvature tensor, Ricci tensor and scalar curvature of the
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semi-symmetric non-metric connection. Section 4 is devoted to the study of the
W2-curvature tensor of semi-symmetric non-metric connection in the Kenmotsu
manifold. In this section is shown that, ifW ∗

2 = 0 inMn thenMn is isomorphic
to hyperbolic space Hn(−1), where W ∗

2 is the W2-curvature tensor of the semi-
symmetric non-metric connection ∇∗ . Also, R∗(ξ,X).W ∗

2 = 0, W ∗
2 (ξ,X).R∗ =

0 and W ∗
2 (ξ,X).Ric∗ = 0 have been studied and obtained in each case that

Mn is an Einstein manifold, where R∗ and Ric∗ are the curvature tensor and
Ricci tensor respectively of the semi-symmetric non-metric connection ∇∗. In
Section 5, a locally W2-ϕ-symmetric Kenmotsu manifold with respect to semi-
symmetric non-metric connection have been studied. The last section is devoted
to the study of the W2-ϕ-recurrent Kenmotsu manifold with respect to the
semi-symmetric non-metric connection.

2. Preliminaries

If on an odd-dimensional differentiable manifoldMn of differentiability class
Cr+1 , there exists a vector valued real linear function ϕ, a 1-form η, the
associated vector field ξ and the Riemannian metric g satisfying

(2.1) ϕ2X = −X + η(X)ξ,

(2.2) η(ϕX) = 0,

(2.3) g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ),

for arbitrary vector fields X and Y, then the structure (ϕ, ξ, η, g) is called an
almost contact metric structure and the manifold Mn with this structure is
called an almost contact metric manifold. In view of equations (2.1), (2.2) and
(2.3), we have

(2.4) η(ξ) = 1, g(X, ξ) = η(X), ϕξ = 0.

An almost contact metric manifold is called Kenmotsu manifold ([9]) if

(2.5) (∇Xϕ) = −η(Y )ϕX − g(X,ϕY )ξ,

(2.6) ∇Xξ = X − η(X)ξ,

where ∇ is the Levi-Civita connection. Also the following relations hold in the
Kenmotsu manifolds

(2.7) (∇Xη)(Y ) = g(X,Y ) + η(X)η(Y ),

(2.8) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.9) R(ξ,X)Y = −R(X, ξ)Y = η(Y )X − g(X,Y )ξ,
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(2.10) η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y,Z)η(X),

(2.11) Ric(X, ξ) = −(n− 1)η(X),

(2.12) Qξ = −(n− 1)ξ, r = −n(n− 1),

where Q is the Ricci operator, i.e.

g(QX,Y ) = Ric(X,Y ),

and r is the scalar curvature of the connection ∇,

(2.13) Ric(ϕX, ϕY ) = Ric(X,Y ) + (n− 1)η(X)η(Y ),

for the arbitrary vector fields X,Y,Z on Mn.
A Kenmotsu manifold is said to be an η-Einstein manifold if its Ricci tensor
Ric is of the form

(2.14) Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

for the vector fields X and Y, where a and b are functions on Mn.
Let Mn be an n-dimensional Kenmotsu manifold and ∇ be the Levi-Civita

connection on Mn. A linear connection ∇∗ [19] on Mn is given by

(2.15) ∇∗
XY = ∇XY + η(Y )X.

Using equation (2.15), the torsion tensor T ∗ of Mn with respect to the connec-
tion ∇∗ is given by

(2.16) T ∗(X,Y ) = ∇∗
XY −∇∗

Y X − [X,Y ] = η(Y )X − η(X)Y,

which shows that the linear connection defined in equation (2.15) is a semi-
symmetric connection.
Moreover, using equation (2.15) we have, for all vector fields X, Y, Z

(∇∗
Xg)(Y, Z) = ∇∗

Xg(Y, Z)− g(∇∗
XY,Z)− g(Y,∇∗

XZ)

= −η(Y )g(X,Z)− η(Z)g(X,Y ).
(2.17)

A linear connection ∇∗ defined in equation (2.15) satisfies equations (2.16) and
(2.17), and therefore we call ∇∗ a semi-symmetric non-metric connection.

3. Curvature tensor of semi-symmetric non-metric con-
nection in a Kenmotsu manifold

The curvature tensor R∗ of the semi-symmetric non-metric connection ∇∗

in Mn is defined by

(3.1) R∗(X,Y )Z = ∇∗
X∇∗

Y Z −∇∗
Y ∇∗

XZ −∇∗
[X,Y ]Z.
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Using equations (2.7) and (2.15) in the above equation, we get

R∗(X,Y )Z = R(X,Y )Z + {g(X,Z)Y − g(Y, Z)X}
+ 2η(Z){η(Y )X − η(X)Y },

(3.2)

where R is the Riemannian curvature tensor of ∇. From the above equation,
we have

′R
∗
(X,Y, Z, U) = ′R(X,Y, Z, U) + {g(X,Z)g(Y,U)− g(Y, Z)g(X,U)}

+ 2η(Z){η(Y )g(X,U)− η(X)g(Y, U)},
(3.3)

where ′R
∗
(X,Y, Z, U) = g(R∗(X,Y )Z,U).

Putting X = U = ei in the above equation and taking summation over i,
1 ≤ i ≤ n, we get

(3.4) Ric∗(Y,Z) = Ric(Y, Z)− (n− 1)g(Y, Z) + 2(n− 1)η(Y )η(Z),

where Ric∗ and Ric are the Ricci tensors of the connections ∇∗ and ∇ respec-
tively.
This gives

(3.5) Q∗Y = QY − (n− 1)Y + 2(n− 1)η(Y )ξ.

Contracting the above equation, we get

(3.6) r∗ = r − n2 + 3n− 2,

where r∗ and r are the scalar curvatures of the connections ∇∗ and ∇ respec-
tively. Putting X = ξ in equation (3.2) and using equations (2.4) and (2.9), we
get

(3.7) R∗(ξ, Y )Z = −R∗(Y, ξ)Z = 2{η(Y )η(Z)− g(Y, Z)}ξ.

4. W2-Curvature Tensor of Semi-Symmetric Non-Metric
Connection in a Kenmotsu Manifold

From equation (1.1), we have

(4.1) W2(X,Y )Z = R(X,Y )Z +
1

n− 1
{g(X,Z)QY − g(Y, Z)QX}.

The W2- curvature tensor of the semi-symmetric non-metric connection ∇∗ in
a Kenmotsu manifold Mn is given by

(4.2) W ∗
2 (X,Y )Z = R∗(X,Y )Z +

1

n− 1
{g(X,Z)Q∗Y − g(Y,Z)Q∗X}.

Using equations (3.2) and (3.5) in the above equation, we get

W ∗
2 (X,Y )Z = R(X,Y )Z + 2η(Z){η(Y )X − η(X)Y }

+ 2{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ + 1

n− 1
{g(X,Z)QY − g(Y,Z)QX},

(4.3)
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which on using equation (4.1), gives

W ∗
2 (X,Y )Z =W2(X,Y )Z + 2{η(Y )X − η(X)Y }η(Z)

+ 2{g(X,Z)η(Y )− g(Y, Z)η(X)}ξ.
(4.4)

Putting Z = ξ in the above equation and using equations (2.4), (2.8) and (4.1),
we get

(4.5) W ∗
2 (X,Y )ξ = {η(Y )X − η(X)Y }+ 1

n− 1
{η(X)QY − η(Y )QX},

which gives

(4.6) η(W ∗
2 (X,Y )ξ) = 0.

Again, putting X = ξ in equation (4.4) and using equations (2.4), (2.9), (3.5)
and (4.1), we get

W ∗
2 (ξ, Y )Z =−W ∗

2 (Y, ξ)Z

=− η(Z)Y +
1

(n− 1)
η(Z)QY + 4η(Y )η(Z)ξ − 2g(Y, Z)ξ.

(4.7)

Lemma 4.1. An η-Einstein Kenmotsu manifold of the form

Ric(X,Y ) = ag(X,Y ) + bη(X)η(Y )

is an Einstein manifold, where a or b are constants [8].

Theorem 4.2. In a Kenmotsu manifold Mn, if W2-curvature tensor of the
semi-symmetric non-metric connection vanishes, then it is isomorphic to the
hyperbolic space Hn(−1).

Proof. Let W ∗
2 = 0. In view of equation (4.3), we have

R(X,Y )Z = 2{η(X)Y − η(Y )X}η(Z)− 2{g(X,Z)η(Y )

− g(Y, Z)η(X)}ξ − 1

n− 1
{g(X,Z)QY − g(Y, Z)QX}.

(4.8)

Taking the inner product of the above equation with ξ and using equation (2.4),
we get

(4.9) g(R(X,Y )Z, ξ) = −[g(X,Z)g(Y, ξ)− g(Y,Z)g(X, ξ)],

which gives

(4.10) R(X,Y, Z, U) = −[g(X,Z)g(Y, U)− g(Y,Z)g(X,U)].

This shows that Mn is isomorphic to the hyperbolic space Hn(−1).

Theorem 4.3. A Kenmotsu manifold Mn with the semi-symmetric non-metric
connection ∇∗ satisfying R∗(ξ,X).W ∗

2 = 0, is an η-Einstein manifold.
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Proof. Let (R∗(ξ, Z).W ∗
2 )(X,Y )U = 0. Then, we have

R∗(ξ, Z)W ∗
2 (X,Y )U −W ∗

2 (R
∗(ξ, Z)X,Y )U

−W ∗
2 (X,R∗(ξ, Z)Y )U −W ∗

2 (X,Y )R∗(ξ, Z)U = 0,
(4.11)

which on using equation (3.7), gives

η(Z)η(W ∗
2 (X,Y )U)ξ)− g(Z,W ∗

2(X,Y )U)ξ − η(X)η(Z)W ∗
2 (ξ, Y )U

+ g(X,Z)W ∗
2 (ξ, Y )U − η(Y )η(Z)W ∗

2 (ξ,X)U + g(Y, Z)W ∗
2 (X, ξ)U

− η(Z)η(U)W ∗
2 (X,Y )ξ + g(Z,U)W ∗

2 (Y,Z)ξ = 0.

(4.12)

Now, using equations (4.4), (4.5) and (4.7) in the above equation, we get

η(Z)η(W2(X,Y )U)ξ)− g(Z,W2(X,Y )U)ξ − 2g(Z, Y )η(X)η(U)ξ

+ 2g(Z,X)η(Y )η(U)ξ + 2η(X)η(Z)η(U)Y − 2

n− 1
η(X)η(Z)η(U)QY

+ 2g(Y, U)η(X)η(Z)ξ − g(Z,X)η(U)Y +
1

n− 1
g(Z,X)η(U)QY

− 2g(Z,X)g(Y, U)ξ − 2η(Y )η(Z)η(U)X +
2

n− 1
η(Y )η(Z)η(U)QX

− 2g(X,U)η(Y )η(Z)ξ + g(Z, Y )η(U)X − 1

n− 1
g(Z, Y )η(U)QX

+ 2g(Z, Y )g(X,U)ξ + g(Z,U)η(Y )X − g(Z,U)η(X)Y

+
1

n− 1
g(Z,U)[η(X)QY − η(Y )QX] = 0.

(4.13)

Taking the inner product of the above equation with ξ, we get

η(Z)η(W2(X,Y )U)− g(Z,W2(X,Y )U)− 2g(X,U)η(Y )η(Z)

+ 2g(Y, U)η(X)η(Z)− 2g(Z,X)g(Y, U) + 2g(Z, Y )g(X,U) = 0.
(4.14)

Using equation (4.2) in the above equation, we get

′R(X,Y, U, Z) = 2[g(Y,U)η(X)− g(X,U)η(Y )]η(Z)

− 1

n− 1
[Ric(Y, Z)g(X,U)−Ric(X,Z)g(Y,U)]

− 2[g(Z,X)g(Y, U)− g(Y,Z)g(X,U)].

(4.15)

Putting X = Z = ei in the above equation and taking summation over i,
1 ≤ i ≤ n, we get

(4.16) Ric(Z,U) = ag(Y,U) + bη(Y )η(U),

where a = (4−3n)(n−1)
n and b = −2(n−1)

n . This shows that Mn is an η-Einstein
manifold.
This completes the proof.

Now, in view of Lemma 4.1, we can state as follows
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Corollary 4.4. A Kenmotsu manifold Mn with the semi-symmetric non-
metric connection ∇∗ satisfying R∗(ξ,X).W ∗

2 = 0, is an Einstein manifold.

Theorem 4.5. A Kenmotsu manifold Mn with the semi-symmetric non-metric
connection ∇∗ satisfying W ∗

2 (ξ, Z).R∗ = 0, is an η-Einstein manifold.

Proof. Consider (W ∗
2 (ξ, Z).R∗)(X,Y )ξ = 0. Then, we have

W ∗
2(ξ, Z)R∗(X,Y )ξ −R∗(W ∗

2(ξ, Z)X,Y )ξ

−R∗(X,W ∗
2(ξ, Z)Y )ξ −R∗(X,Y )W ∗

2(ξ, Z)ξ = 0,
(4.17)

which on using equation (4.7), gives

− η(R∗(X,Y, U)Z) +
1

n− 1
η(R∗(X,Y, U)QZ) + 4η(Z)η(R∗(X,Y, U)ξ)

− 2g(Z,R∗(X,Y, U))ξ + η(X)R∗(Z, Y, U)− 1

n− 1
η(X)R∗(QZ, Y, U)

− 4η(X)η(Z)R∗(ξ, Y, U) + 2g(X,Z)R∗(ξ, Y, U) + η(Y )R∗(X,Z,U)

− 1

n− 1
η(Y )R∗(X,QZ,U)− 4η(Y )η(Z)R∗(X, ξ, U) + 2g(Y,Z)R∗(X, ξ, U)

+ η(U)R∗(X,Y, Z)− 1

n− 1
η(U)R∗(X,Y,QZ)− 4η(Z)η(U)R∗(X,Y )ξ

+ 2g(Z,U)R∗(X,Y )ξ = 0.

(4.18)

Now, using equation (3.2) in the above equation, we get

2′R(X,Y, U, Z)ξ = −η(R(X,Y, U))Z +
1

n− 1
η(R(X,Y, U))QZ

+ 4η(Z)η(R(X,Y, U))ξ − 2g(Y, U)g(Z,X)ξ − 4η(Y )η(U)g(Z,X)ξ

+ η(X)R(Z, Y, U) + g(Z,U)η(X)Y − 4η(X)η(Z)η(U)Y

− 1

n− 1
η(X)R(QZ, Y, U)− 1

n− 1
η(X)Ric(Z,U)Y + 4η(X)η(Z)g(Y, U)ξ

− 4g(X,Z)g(Y, U)ξ + 2g(X,Z)η(U)Y + 4g(X,Z)η(Y )η(U)ξ

+ η(Y )R(X,Z,U)− g(Z,U)η(Y )X − 1

n− 1
η(Y )R(X,QZ,U)

+
1

n− 1
η(Y )Ric(Z,U)X − 4η(Y )η(Z)g(X,U)ξ + 2g(Y, Z)g(X,U)ξ

+ η(U)R(X,Y, Z) + 4η(Y )η(Z)η(U)X − 1

n− 1
η(U)R(X,Y,QZ)

− 1

n− 1
Ric(X,Z)η(U)Y +

1

n− 1
Ric(Y,Z)η(U)X.

(4.19)
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Taking the inner product of the above equation with ξ, we get

2′R(X,Y, U, Z) = 2η(Z)η(R(X,Y, U))− 6g(X,Z)g(Y, U)

+ 2η(X)η(R(Z, Y, U))− 1

n− 1
Ric(Z,U)η(X)η(Y ) + 4η(X)η(Z)g(Y,U)

+ 2g(X,Z)η(Y )η(U) + 2η(Y )η(R(X,Z,U)) +
1

n− 1
η(X)η(Y )Ric(Z,U)

− 4η(Y )η(Z)g(X,U) + 2g(Y,Z)g(X,U) + 2η(U)η(R(X,Y, Z))

− 1

n− 1
Ric(X,Z)η(Y )η(U) +

1

n− 1
Ric(Y, Z)η(X)η(U).

(4.20)

Putting X = Z = ei in the above equation and taking summation over i,
1 ≤ i ≤ n, we get

(4.21) Ric(Y, U) = ag(Y,U) + bη(Y )η(U),

where a = −(3n − 1) and b = 3n−1
2 . This shows that Mn is an η-Einstein

manifold.
This completes the proof.

Now by Lemma 4.1, we can state as follows

Corollary 4.6. A Kenmotsu manifold Mn with the semi-symmetric non-
metric connection ∇∗ satisfying
W ∗

2 (ξ, Z).R∗ = 0, is an Einstein manifold.

Theorem 4.7. A Kenmotsu manifold Mn with the semi-symmetric non-metric
connection ∇∗ satisfying
(W ∗

2 (ξ, Z).Ric∗)(X,Y ) = 0, is an η-Einstein manifold.

Proof. Consider (W ∗
2 (ξ, Z).Ric∗)(X,Y ) = 0. Then, we have

(4.22) Ric∗(W ∗
2 (ξ, Z)X,Y ) +Ric∗(X,W ∗

2 (ξ, Z)Y ) = 0,

which on using equations (3.4) and (4.7), gives

− 3Ric(Y,Z)η(X)− 3Ric(X,Z)η(Y )

+ (n− 1)g(Y, Z)η(X) + (n− 1)g(X,Z)η(Y ) = 0.
(4.23)

Now, puttingX = ξ in the above equation and using equations (2.4) and (2.11),
we get

(4.24) Ric(Y,Z) = ag(Y, Z) + bη(Y )η(Z),

where a = (n−1)
3 and b = 4(n−1)

3 .
This shows that Mn is an η-Einstein manifold.
This completes the proof.

Now by Lemma 4.1, we can state as follows

Corollary 4.8. A Kenmotsu manifold Mn with the semi-symmetric non-
metric connection ∇∗ satisfying W ∗

2(ξ, Z).Ric∗(X,Y ) = 0, is an Einstein
manifold.
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5. Locally W2-ϕ-symmetric Kenmotsu manifold with
semi-symmetric non-metric connection

Definition 5.1. An n-dimensional Kenmotsu manifold Mn is said to be locally
W2-ϕ-symmetric, if

(5.1) ϕ2((∇UW2)(X,Y )Z) = 0,

for all vector fields X, Y, Z and U orthogonal to ξ.

Definition 5.2. An n-dimensional Kenmotsu manifold Mn is said to be locally
W2-ϕ-symmetric with respect to the semi-symmetric non-metric connection if

(5.2) ϕ2((∇∗
UW

∗
2 )(X,Y )Z) = 0,

for all vector fields X, Y, Z and U orthogonal to ξ, whereW ∗
2 is theW2-curvature

tensor of the semi-symmetric non-metric connection ∇∗.

Theorem 5.3. A Kenmotsu manifold Mn is locally W2-ϕ-symmetric with re-
spect to the semi-symmetric non-metric connection ∇∗ if and only if it is so
with respect to the Levi-Civita connection ∇.

Proof. From equation (2.15), we have

(5.3) (∇∗
UW

∗
2 )(X,Y )Z = (∇UW

∗
2 )(X,Y )Z + η(W ∗

2 (X,Y )Z)U.

Now, differentiating equation (4.4) covariantly with respect to U, we get

(∇UW
∗
2 )(X,Y )Z = (∇UW2)(X,Y )Z − 2(∇Uη)(X)η(Z)Y

− 2(∇Uη)(Z)η(X)Y + 2(∇Uη)(Y )η(Z)X + 2(∇Uη)(Z)η(Y )X

+ 2(∇Uη)(Y )g(X,Z)ξ − 2(∇Uη)(X)g(Y,Z)ξ.

(5.4)

Now, using equation (5.4) in equation (5.3), we get

(∇∗
UW

∗
2 )(X,Y )Z = (∇UW2)(X,Y )Z − 2(∇Uη)(X)η(Z)Y

− 2(∇Uη)(Z)η(X)Y + 2(∇Uη)(Y )η(Z)X + 2(∇Uη)(Z)η(Y )X

+ 2(∇Uη)(Y )g(X,Z)ξ − 2(∇Uη)(X)g(Y,Z)ξ

+ 2g(X,Z)η(Y )U − 2g(Y, Z)η(X)U.

(5.5)

Using equation (2.7) in the above equation, we get

(∇∗
UW

∗
2 )(X,Y )Z = (∇UW2)(X,Y )Z − 2g(U,X)η(Z)Y

+ 2g(U, Y )η(Z)X + 2g(U,Z)η(Y )X − 2g(U,Z)η(X)Y

+ 2g(X,Z)η(Y )U − 2g(Y, Z)η(X)U + 2g(X,Z)g(Y, U)ξ

− 2g(Y, Z)g(U,X)ξ + 2g(Y,Z)η(X)η(U)ξ − 2g(X,Z)η(Y )η(U)ξ

+ 4η(X)η(Z)η(U)Y − 4η(Y )η(Z)η(U)X.

(5.6)
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Applying ϕ2 on both sides of the above equation and using equations (2.1) and
(2.2), we get

ϕ2((∇∗
UW

∗
2 )(X,Y )Z) = ϕ2((∇UW2)(X,Y )Z) + 2g(U,X)η(Z)Y

− 2g(U,X)η(Y )η(Z)ξ − 2g(U, Y )η(Z)X + 2g(U, Y )η(X)η(Z)ξ

− 2g(U,Z)η(Y )X − 2g(U,Z)η(X)Y − 2g(X,Z)η(Y )U

+ 2g(X,Z)η(Y )η(U)ξ + 2g(Y,Z)η(X)U − 2g(Y, Z)η(X)η(U)ξ

− 4η(X)η(Z)η(U)Y + 4η(Y )η(Z)η(U)X.

(5.7)

Now, if X, Y, Z, U are orthogonal to ξ , then the above equation reduces to

(5.8) ϕ2((∇∗
UW

∗
2 )(X,Y )Z) = ϕ2((∇UW2)(X,Y )Z).

This completes the proof.

6. W2-ϕ-recurrent Kenmotsu manifold with
semi-symmetric non-metric connection

Definition 6.1. An n-dimensional Kenmotsu manifold Mn is said to be W2-
ϕ-recurrent, if

(6.1) ϕ2((∇WW2)(X,Y )Z) = A(W )W2(X,Y )Z,

for the arbitrary vector fields X, Y, Z and W, where A is non-zero 1-form.

Definition 6.2. An n-dimensional Kenmotsu manifold Mn is said to be W2-
ϕ-recurrent with respect to the semi-symmetric non-metric connection if

(6.2) ϕ2((∇∗
WW ∗

2 )(X,Y )Z) = A(W )W ∗
2 (X,Y )Z,

for arbitrary vector fields X, Y, Z and W.

Theorem 6.3. A W2- ϕ-recurrent Kenmotsu manifold with respect to a semi-
symmetric non-metric connection is an η-Einstein manifold.

Proof. From equations (2.1) and (6.2), we have

(6.3) − ((∇∗
WW ∗

2 )(X,Y )Z) + η((∇∗
WW ∗

2 )(X,Y )Z)ξ = A(W )W ∗
2 (X,Y )Z),

which reduces to
(6.4)
−g((∇∗

WW ∗
2 )(X,Y )Z,U)+η((∇∗

WW ∗
2 )(X,Y )Z)η(U) = A(W )g(W ∗

2 (X,Y )Z,U).
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Using equations (4.4) and (5.6) in the above equation, we get

− g((∇WR)(X,Y )Z,U)− 1

n− 1
[(∇WRic)(Y, U)g(X,Z)− (∇WRic)(X,U)g(Y, Z)]

+ 2g(W,X)g(Y, U)η(Z)− 2g(W,Y )g(X,U)η(Z)− 2g(W,Z)g(X,U)η(Y )

+ 2g(W,Z)g(Y,U)η(X)− 2g(X,Z)g(W,U)η(Y ) + 2g(Y, Z)g(W,U)η(X)

− 4g(Y,U)η(X)η(Z)η(W ) + 4g(X,U)η(Y )η(Z)η(W ) + 2g(X,Z)η(Y )η(W )η(U)

− 2g(Y,Z)η(X)η(W )η(U) + η((∇WR)(X,Y )Z)η(U)− (∇W η)(Y )η(U)g(X,Z)

+ (∇W η)(X)η(U)g(Y,Z)− 2g(W,X)η(Y )η(Z)η(U) + 2g(W,Y )η(X)η(Z)η(U)

= A(W )g(W2(X,Y )Z,U)− 2A(W ){η(X)g(Y,U)− η(Y )g(X,U)}η(Z)

+ 2A(W ){η(Y )g(X,Z)− η(X)g(Y,Z)}η(U).

(6.5)

Let {ei}, i = 1, 2, . . . , n be an orthonormal basis of the tangent space at any
point of the manifold. Then, putting X = U = ei in equation (6.5) and taking
summation over i, 1 ≤ i ≤ n, we get

− n

n− 1
(∇WRic)(Y, Z) + η((∇WR)(ei, Y )Z)η(ei) +

1

n− 1
g(Y, Z)(∇W r)

+ (4n− 4)η(Y )η(Z)η(W )− 2ng(W,Z)η(Y )− (∇W η)(Y )η(Z)

+ (4− 2n)g(W,Y )η(Z) =
n

n− 1
A(W )Ric(Y,Z)− (r + 2n− 2)

n− 1
A(W )g(Y, Z)

+ 2nA(W )η(Y )η(Z).

(6.6)

Putting Z = ξ in the above equation, we get

− n

n− 1
(∇WRic)(Y, ξ) + η((∇WR)(ei, Y )ξ)η(ei) +

1

n− 1
η(Y )(∇W r)

+ (2n− 4)η(Y )η(W )− (∇W η)(Y ) + (4− 2n)g(W,Y )

=
n2 − 3n− r + 2

n− 1
A(W )η(Y ).

(6.7)

The second term on L.H.S. of equation (6.7) takes the form

(6.8) E = η((∇WR)(ei, Y )ξ)η(ei) = g((∇WR)(ei, Y )ξ, ξ)g(ei, ξ),

which is denoted by λ. In this case λ vanishes. Namely, we have

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)

− g(R(ei,∇WY )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ).
(6.9)

at p ∈ Mn. In the local coordinates ∇W ei = W jΓh
jieh, where Γh

ji are the
Christoffel symbols. Since {ei} is an orthonormal basis, the metric tensor
gij = δij , where δij is the Kronecker delta and hence the Christoffel symbols
are zero. Therefore, ∇W ei = 0. Also, we have

(6.10) g(R(ei,∇WY )ξ, ξ) = 0,
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since R is skew-symmetric. Using equation (6.10) and ∇W ei = 0 in equation
(6.9), we get

(6.11) g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ).

In view of g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0 and ∇W g = 0, we have

(6.12) g(∇WR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0,

which implies

g((∇WR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ)− g(R(ei, Y )∇W ξ, ξ).

Since R is skew-symmetric, we have

(6.13) g((∇WR)(ei, Y )ξ, ξ) = 0.

Using equation (6.13) in equation (6.7), we get

(∇WRic)(Y, ξ) = nη(Y )(∇W r) +
(2n− 4)(n− 1)

n
η(Y )η(W )

− n− 1

n
(∇W η)(Y )− (2n− 4)(n− 1)

n
g(W,Y ) +

(n2 − 3n− r + 2)

n
A(W )η(Y ).

(6.14)

Now, we have

(6.15) (∇WRic)(Y, ξ) = ∇WRic(Y, ξ)−Ric(∇WY, ξ)−Ric(Y,∇W ξ),

which on using equations (2.6) and (2.11) takes the form

(6.16) (∇WRic)(Y, ξ) = −(n− 1)g(Y,W )−Ric(Y,W ).

Form equations (6.14) and (6.16), we have

Ric(Y,W ) =
(n2 − 5n+ 4

n

)
g(Y,W )−

(2n2 − 6n+ 4

n

)
η(Y )η(W )

−
(n2 − 3n− r + 2

n

)
A(W )η(Y )− nη(Y )(∇W r) +

n− 1

n
(∇W η)(Y ).

(6.17)

Replacing Y and W by ϕY and ϕW respectively in the above equation and
using equations (2.2), (2.3) and (2.13), we get

(6.18) Ric(Y,W ) =
n2 − 5n+ 4

n
g(Y,W )− 2n2 − 6n+ 4

n
η(Y )η(W ),

which shows that Mn is an η−Einstein manifold.

Theorem 6.4. In a W2-ϕ-recurrent Kenmotsu manifold Mn admitting semi-
symmetric non-metric connection, the characteristic vector field ξ and the vec-
tor field ρ associated with 1-form A are co-directional and the 1-form A is given
by

A(W ) = η(ρ)η(W ).
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Proof. By virtue of equations (2.1) and (6.2), we have

(6.19) (∇∗
WW ∗

2 )(X,Y )Z = η(∇∗
WW ∗

2 )(X,Y )Z)ξ −A(W )W ∗
2 (X,Y )Z.

Using equations (4.4) and (5.6) in the above equation, we get

(∇WW2)(X,Y )Z − 2g(W,X)η(Z)Y + 2g(W,Y )η(Z)X

+ 2g(W,Z)η(Y )X − 2g(W,Z)η(X)Y + 2g(X,Z)η(Y )W

− 2g(Y, Z)η(X)W + 2g(X,Z)g(Y,W )ξ − 2g(Y, Z)g(W,X)ξ

+ 2g(Y, Z)η(X)η(W )ξ − 2g(X,Z)η(Y )η(W )ξ + 4η(X)η(Z)η(W )Y

− 4η(Y )η(Z)η(W )X = η((∇WW2)(X,Y )Z)ξ − 2g(W,X)η(Y )η(Z)ξ

+ 2g(W,Y )η(X)η(Z)ξ + 2g(X,Z)g(Y,W )ξ − 2g(Y, Z)g(W,X)ξ

−A(W )W2(X,Y )Z − 2A(W ){η(Y )X − η(X)Y }η(Z)

− 2A(W ){g(X,Z)η(Y )− g(Y, Z)η(X)}ξ.

(6.20)

Taking the inner product of the above equation with ξ and using equation (4.2),
we get

(6.21) A(W )η(R(X,Y )Z) = A(W )[g(Y, Z)η(X)− g(X,Z)η(Y )].

Writing two more equations by the cyclic permutations of W, X and Y from
equation (6.21) and adding them to equation (6.21), we get

A(W )η(R(X,Y )Z) +A(X)η(R(Y,W )Z) +A(Y )η(R(W,X)Z)

= A(W )[g(Y, Z)η(X)− g(X,Z)η(Y )] +A(X)[g(W,Z)η(Y )

− g(Y,Z)η(W )] +A(Y )[g(X,Z)η(W )− g(W,Z)η(X)].

(6.22)

Using equation (2.10) in the above equation,we get

A(W )[g(X,Z)η(Y )− g(Y, Z)η(X)] +A(X)[g(Y, Z)η(W )− g(W,Z)η(Y )]

+A(Y )[g(W,Z)η(X)− g(X,Z)η(W )] = 0.

(6.23)

Putting Y=Z=ei in the above equation and taking summation over i, 1 ≤ i ≤ n,
we get

(6.24) A(W )η(X) = A(X)η(W ),

for all vector fields X and W. Replacing X by ξ in the above equation, we get

(6.25) A(W ) = η(ρ)η(W ),

for all vector fields W, where A(ξ) = g(ξ, ρ) = η(ρ), ρ being the vector field
associated to the 1-form A, i.e.

(6.26) g(X, ρ) = A(X).

This completes the proof.
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