LOCAL CLOSURE FUNCTIONS IN IDEAL TOPOLOGICAL SPACES

Ahmad Al-Omari¹ and Takashi Noiri²

Abstract. In this paper, (X, τ, \mathcal{I}) denotes an ideal topological space. Analogously to the local function [2], we define an operator $\Gamma(A)(\mathcal{I}, \tau)$ called the local closure function of A with respect to \mathcal{I} and τ as follows: $\Gamma(A)(\mathcal{I}, \tau) = \{x \in X : A \cap Cl(U) \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$. We investigate properties of $\Gamma(A)(\mathcal{I}, \tau)$. Moreover, by using $\Gamma(A)(\mathcal{I}, \tau)$, we introduce an operator $\Psi_{\Gamma} : \mathcal{P}(X) \to \tau$ satisfying $\Psi_{\Gamma}(A) = X - \Gamma(X - A)$ for each $A \in \mathcal{P}(X)$. We set $\sigma = \{A \subseteq X : A \subseteq \Psi_{\Gamma}(A)\}$ and $\sigma_0 = \{A \subseteq X : A \subseteq Int(Cl(\Psi_{\Gamma}(A)))\}$ and show that $\tau_{\theta} \subseteq \sigma \subseteq \sigma_0$.

AMS Mathematics Subject Classification (2010): 54A05, 54C10

 $Key\ words\ and\ phrases:$ ideal topological space, local function, local closure function

1. Introduction and preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , Cl(A) and Int(A) denote the closure and the interior of A in (X, τ) , respectively. An ideal \mathcal{I} on a topological space (X, τ) is a non-empty collection of subsets of X which satisfies the following properties:

1. $A \in \mathcal{I}$ and $B \subseteq A$ implies that $B \in \mathcal{I}$.

2. $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on Xand is denoted by (X, τ, \mathcal{I}) . For a subset $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : A \cap U \notin \mathcal{I}\}$ for every open set U containing $x\}$ is called the local function of A with respect to \mathcal{I} and τ (see [1], [2]). We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no chance for confusion. For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology $\tau^*(\mathcal{I})$, finer than τ , generating by the base $\beta(\mathcal{I}, \tau) = \{U - J : U \in \tau\}$ and $J \in \mathcal{I}\}$. It is known in Example 3.6 of [2] that $\beta(\mathcal{I}, \tau)$ is not always a topology. When there is no ambiguity, $\tau^*(\mathcal{I})$ is denoted by τ^* . Recall that A is said to be *-dense in itself (resp. τ^* -closed, *-perfect) if $A \subseteq A^*$ (resp. $A^* \subseteq A$, $A = A^*$). For a subset $A \subseteq X$, $Cl^*(A)$ and $Int^*(A)$ will denote the closure and the interior of A in (X, τ^*) , respectively. In 1968, Veličko [6] introduced the class of θ -open sets. A set A is said to be θ -open [6] if every point of A

¹Al al-Bayt University, Faculty of Sciences, Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan, e-mail: omarimutah1@yahoo.com

²2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan, e-mail: t.noiri@nifty.com

has an open neighborhood whose closure is contained in A. The θ -interior [6] of A in X is the union of all θ -open subsets of A and is denoted by $Int_{\theta}(A)$. Naturally, the complement of a θ -open set is said to be θ -closed. Equivalently, $Cl_{\theta}(A) = \{x \in X : Cl(U) \cap A \neq \phi \text{ for every } U \in \tau(x)\}$ and a set A is θ -closed if and only if $A = Cl_{\theta}(A)$. Note that all θ -open sets form a topology on Xwhich is coarser than τ , and is denoted by τ_{θ} and that a space (X, τ) is regular if and only if $\tau = \tau_{\theta}$. Note also that the θ -closure of a given set need not be a θ -closed set.

In this paper, analogously to the local function $A^*(\mathcal{I}, \tau)$, we define an operator $\Gamma(A)(\mathcal{I}, \tau)$ called the local closure function of A with respect to \mathcal{I} and τ as follows: $\Gamma(A)(\mathcal{I}, \tau) = \{x \in X : A \cap Cl(U) \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$. We investigate properties of $\Gamma(A)(\mathcal{I}, \tau)$. Moreover, we introduce an operator $\Psi_{\Gamma} : \mathcal{P}(X) \to \tau$ satisfying $\Psi_{\Gamma}(A) = X - \Gamma(X - A)$ for each $A \in \mathcal{P}(X)$. We set $\sigma = \{A \subseteq X : A \subseteq \Psi_{\Gamma}(A)\}$ and $\sigma_0 = \{A \subseteq X : A \subseteq Int(Cl(\Psi_{\Gamma}(A)))\}$ and show that $\tau_{\theta} \subseteq \sigma \subseteq \sigma_0$.

2. Local closure functions

Definition 2.1. Let (X, τ, \mathcal{I}) be an ideal topological space. For a subset A of X, we define the following operator: $\Gamma(A)(\mathcal{I}, \tau) = \{x \in X : A \cap Cl(U) \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$. In case there is no confusion $\Gamma(A)(\mathcal{I}, \tau)$ is briefly denoted by $\Gamma(A)$ and is called the local closure function of A with respect to \mathcal{I} and τ .

Lemma 2.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $A^*(\mathcal{I}, \tau) \subseteq \Gamma(A)(\mathcal{I}, \tau)$ for every subset A of X.

Proof. Let $x \in A^*(\mathcal{I}, \tau)$. Then, $A \cap U \notin \mathcal{I}$ for every open set U containing x. Since $A \cap U \subseteq A \cap Cl(U)$, we have $A \cap Cl(U) \notin \mathcal{I}$ and hence $x \in \Gamma(A)(\mathcal{I}, \tau)$.

Example 2.3. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}$, and $\mathcal{I} = \{\phi, \{c\}\}$. Let $A = \{b, c, d\}$. Then $\Gamma(A) = \{a, b, c, d\}$ and $A^* = \{b, d\}$.

Example 2.4. Let (X, τ) be the real numbers with the left-ray topology, i.e. $\tau = \{(-\infty, a) : a \in X\} \cup \{X, \phi\}$. Let \mathcal{I}_f be the ideal of all finite subsets of X. Let A = [0, 1]. Then $\Gamma(A) = \{x \in X : A \cap Cl(U) = A \notin \mathcal{I}_f \text{ for every } U \in \tau(x)\} = X$ and $-1 \notin A^*$ which shows $A^* \subset \Gamma(A)$.

Lemma 2.5. Let (X, τ) be a topological space and A be a subset of X. Then

- 1. If A is open, then $Cl(A) = Cl_{\theta}(A)$.
- 2. If A is closed, then $Int(A) = Int_{\theta}(A)$.

Theorem 2.6. Let (X, τ) be a topological space, \mathcal{I} and \mathcal{J} be two ideals on X, and let A and B be subsets of X. Then the following properties hold:

1. If $A \subseteq B$, then $\Gamma(A) \subseteq \Gamma(B)$.

- 2. If $\mathcal{I} \subseteq \mathcal{J}$, then $\Gamma(A)(\mathcal{I}) \supseteq \Gamma(A)(\mathcal{J})$.
- 3. $\Gamma(A) = Cl(\Gamma(A)) \subseteq Cl_{\theta}(A)$ and $\Gamma(A)$ is closed.
- 4. If $A \subseteq \Gamma(A)$ and $\Gamma(A)$ is open, then $\Gamma(A) = Cl_{\theta}(A)$.
- 5. If $A \in \mathcal{I}$, then $\Gamma(A) = \emptyset$.

Proof. (1) Suppose that $x \notin \Gamma(B)$. Then there exists $U \in \tau(x)$ such that $B \cap Cl(U) \in \mathcal{I}$. Since $A \cap Cl(U) \subseteq B \cap Cl(U)$, $A \cap Cl(U) \in \mathcal{I}$. Hence $x \notin \Gamma(A)$. Thus $X \setminus \Gamma(B) \subseteq X \setminus \Gamma(A)$ or $\Gamma(A) \subseteq \Gamma(B)$.

(2) Suppose that $x \notin \Gamma(A)(\mathcal{I})$. There exists $U \in \tau(x)$ such that $A \cap Cl(U) \in \mathcal{I}$. Since $\mathcal{I} \subseteq \mathcal{J}, A \cap Cl(U) \in \mathcal{J}$ and $x \notin \Gamma(A)(\mathcal{J})$. Therefore, $\Gamma(A)(\mathcal{J}) \subseteq \Gamma(A)(\mathcal{I})$. (3) We have $\Gamma(A) \subseteq Cl(\Gamma(A))$ in general. Let $x \in Cl(\Gamma(A))$. Then $\Gamma(A) \cap U \neq \emptyset$ for every $U \in \tau(x)$. Therefore, there exists some $y \in \Gamma(A) \cap U$ and $U \in \tau(y)$. Since $y \in \Gamma(A), A \cap Cl(U) \notin \mathcal{I}$ and hence $x \in \Gamma(A)$. Hence we have $Cl(\Gamma(A)) \subseteq$ $\Gamma(A)$ and hence $\Gamma(A) = Cl(\Gamma(A))$. Again, let $x \in Cl(\Gamma(A)) = \Gamma(A)$, then $A \cap Cl(U) \notin \mathcal{I}$ for every $U \in \tau(x)$. This implies $A \cap Cl(U) \neq \emptyset$ for every $U \in$ $\tau(x)$. Therefore, $x \in Cl_{\theta}(A)$. This shows that $\Gamma(A)(\mathcal{I}) = Cl(\Gamma(A)) \subseteq Cl_{\theta}(A)$. (4) For any subset A of X, by (3) we have $\Gamma(A) = Cl(\Gamma(A)) \subseteq Cl_{\theta}(A)$. Since $A \subseteq \Gamma(A)$ and $\Gamma(A)$ is open, by Lemma 2.5, $Cl_{\theta}(A) \subseteq Cl_{\theta}(\Gamma(A)) =$ $Cl(\Gamma(A)) = \Gamma(A) \subseteq Cl_{\theta}(A)$ and hence $\Gamma(A) = Cl_{\theta}(A)$. (5) Suppose that $x \in \Gamma(A)$. Then for any $U \in \tau(x), A \cap Cl(U) \notin \mathcal{I}$. But since $A \in \mathcal{I}, A \cap Cl(U) \in \mathcal{I}$ for every $U \in \tau(x)$. This is a contradiction. Hence $\Gamma(A) = \emptyset$.

Lemma 2.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If $U \in \tau_{\theta}$, then $U \cap \Gamma(A) = U \cap \Gamma(U \cap A) \subseteq \Gamma(U \cap A)$ for any subset A of X.

Proof. Suppose that $U \in \tau_{\theta}$ and $x \in U \cap \Gamma(A)$. Then $x \in U$ and $x \in \Gamma(A)$. Since $U \in \tau_{\theta}$, then there exists $W \in \tau$ such that $x \in W \subseteq Cl(W) \subseteq U$. Let V be any open set containing x. Then $V \cap W \in \tau(x)$ and $Cl(V \cap W) \cap A \notin \mathcal{I}$ and hence $Cl(V) \cap (U \cap A) \notin \mathcal{I}$. This shows that $x \in \Gamma(U \cap A)$ and hence we obtain $U \cap \Gamma(A) \subseteq \Gamma(U \cap A)$. Moreover, $U \cap \Gamma(A) \subseteq U \cap \Gamma(U \cap A)$ and by Theorem 2.6 $\Gamma(U \cap A) \subseteq \Gamma(A)$ and $U \cap \Gamma(U \cap A) \subseteq U \cap \Gamma(A)$. Therefore, $U \cap \Gamma(A) = U \cap \Gamma(U \cap A)$.

Theorem 2.8. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B any subsets of X. Then the following properties hold:

- 1. $\Gamma(\emptyset) = \emptyset$.
- 2. $\Gamma(A) \cup \Gamma(B) = \Gamma(A \cup B).$

Proof. (1) The proof is obvious.

(2) It follows from Theorem 2.6 that $\Gamma(A \cup B) \supseteq \Gamma(A) \cup \Gamma(B)$. To prove the reverse inclusion, let $x \notin \Gamma(A) \cup \Gamma(B)$. Then x belongs neither to $\Gamma(A)$ nor to $\Gamma(B)$. Therefore there exist $U_x, V_x \in \tau(x)$ such that $Cl(U_x) \cap A \in \mathcal{I}$ and

 $Cl(V_x) \cap B \in \mathcal{I}$. Since \mathcal{I} is additive, $(Cl(U_x) \cap A) \cup (Cl(V_x) \cap B) \in \mathcal{I}$. Moreover, since \mathcal{I} is hereditary and

$$(Cl(U_x) \cap A) \cup (Cl(V_x) \cap B) = [(Cl(U_x) \cap A) \cup Cl(V_x)] \cap [(Cl(U_x) \cap A) \cup B]$$

= $(Cl(U_x) \cup Cl(V_x)) \cap (A \cup Cl(V_x)) \cap (Cl(U_x) \cup B) \cap (A \cup B)$
 $\supseteq Cl(U_x \cap V_x) \cap (A \cup B),$

 $Cl(U_x \cap V_x) \cap (A \cup B) \in \mathcal{I}$. Since $U_x \cap V_x \in \tau(x), x \notin \Gamma(A \cup B)$. Hence $(X \setminus \Gamma(A)) \cap (X \setminus \Gamma(B) \subseteq X \setminus \Gamma(A \cup B) \text{ or } \Gamma(A \cup B) \subseteq \Gamma(A) \cup \Gamma(B)$. Hence we obtain $\Gamma(A) \cup \Gamma(B) = \Gamma(A \cup B)$.

Lemma 2.9. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X. Then $\Gamma(A) - \Gamma(B) = \Gamma(A - B) - \Gamma(B)$.

Proof. We have by Theorem 2.8 $\Gamma(A) = \Gamma[(A - B) \cup (A \cap B)] = \Gamma(A - B) \cup \Gamma(A \cap B) \subseteq \Gamma(A - B) \cup \Gamma(B)$. Thus $\Gamma(A) - \Gamma(B) \subseteq \Gamma(A - B) - \Gamma(B)$. By Theorem 2.6, $\Gamma(A - B) \subseteq \Gamma(A)$ and hence $\Gamma(A - B) - \Gamma(B) \subseteq \Gamma(A) - \Gamma(B)$. Hence $\Gamma(A) - \Gamma(B) = \Gamma(A - B) - \Gamma(B)$.

Corollary 2.10. Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X with $B \in \mathcal{I}$. Then $\Gamma(A \cup B) = \Gamma(A) = \Gamma(A - B)$.

Proof. Since $B \in \mathcal{I}$, by Theorem 2.6 $\Gamma(B) = \emptyset$. By Lemma 2.9, $\Gamma(A) = \Gamma(A - B)$ and by Theorem 2.8 $\Gamma(A \cup B) = \Gamma(A) \cup \Gamma(B) = \Gamma(A)$

3. Closure compatibility of topological spaces

Definition 3.1. [4] Let (X, τ, \mathcal{I}) be an ideal topological space. We say the τ is compatible with the ideal \mathcal{I} , denoted $\tau \sim \mathcal{I}$, if the following holds for every $A \subseteq X$, if for every $x \in A$ there exists $U \in \tau(x)$ such that $U \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Definition 3.2. Let (X, τ, \mathcal{I}) be an ideal topological space. We say the τ is closure compatible with the ideal \mathcal{I} , denoted $\tau \sim_{\Gamma} \mathcal{I}$, if the following holds for every $A \subseteq X$, if for every $x \in A$ there exists $U \in \tau(x)$ such that $Cl(U) \cap A \in \mathcal{I}$, then $A \in \mathcal{I}$.

Remark 3.3. If τ is compatible with \mathcal{I} , then τ is closure compatible with \mathcal{I} .

Theorem 3.4. Let (X, τ, \mathcal{I}) be an ideal topological space, the following properties are equivalent:

- 1. $\tau \sim_{\Gamma} \mathcal{I};$
- 2. If a subset A of X has a cover of open sets each of whose closure intersection with A is in \mathcal{I} , then $A \in \mathcal{I}$;
- 3. For every $A \subseteq X$, $A \cap \Gamma(A) = \emptyset$ implies that $A \in \mathcal{I}$;

- 4. For every $A \subseteq X$, $A \Gamma(A) \in \mathcal{I}$;
- 5. For every $A \subseteq X$, if A contains no nonempty subset B with $B \subseteq \Gamma(B)$, then $A \in \mathcal{I}$.
- *Proof.* (1) \Rightarrow (2): The proof is obvious.

(2) \Rightarrow (3): Let $A \subseteq X$ and $x \in A$. Then $x \notin \Gamma(A)$ and there exists $V_x \in \tau(x)$ such that $Cl(V_x) \cap A \in \mathcal{I}$. Therefore, we have $A \subseteq \bigcup \{V_x : x \in A\}$ and $V_x \in \tau(x)$ and by (2) $A \in \mathcal{I}$.

(3) \Rightarrow (4): For any $A \subseteq X$, $A - \Gamma(A) \subseteq A$ and $(A - \Gamma(A)) \cap \Gamma(A - \Gamma(A)) \subseteq (A - \Gamma(A)) \cap \Gamma(A) = \emptyset$. By (3), $A - \Gamma(A) \in \mathcal{I}$.

 $(4) \Rightarrow (5)$: By (4), for every $A \subseteq X$, $A - \Gamma(A) \in \mathcal{I}$. Let $A - \Gamma(A) = J \in \mathcal{I}$, then $A = J \cup (A \cap \Gamma(A))$ and by Theorem 2.8(2) and Theorem 2.6(5), $\Gamma(A) = \Gamma(J) \cup \Gamma(A \cap \Gamma(A)) = \Gamma(A \cap \Gamma(A))$. Therefore, we have $A \cap \Gamma(A) = A \cap \Gamma(A \cap \Gamma(A)) \subseteq \Gamma(A \cap \Gamma(A))$ and $A \cap \Gamma(A) \subseteq A$. By the assumption $A \cap \Gamma(A) = \emptyset$ and hence $A = A - \Gamma(A) \in \mathcal{I}$.

 $(5) \Rightarrow (1)$: Let $A \subseteq X$ and assume that for every $x \in A$, there exists $U \in \tau(x)$ such that $Cl(U) \cap A \in \mathcal{I}$. Then $A \cap \Gamma(A) = \emptyset$. Suppose that A contains B such that $B \subseteq \Gamma(B)$. Then $B = B \cap \Gamma(B) \subseteq A \cap \Gamma(A) = \emptyset$. Therefore, A contains no nonempty subset B with $B \subseteq \Gamma(B)$. Hence $A \in \mathcal{I}$.

Theorem 3.5. Let (X, τ, \mathcal{I}) be an ideal topological space. If τ is closure compatible with \mathcal{I} , then the following equivalent properties hold:

- 1. For every $A \subseteq X$, $A \cap \Gamma(A) = \emptyset$ implies that $\Gamma(A) = \emptyset$;
- 2. For every $A \subseteq X$, $\Gamma(A \Gamma(A)) = \emptyset$;
- 3. For every $A \subseteq X$, $\Gamma(A \cap \Gamma(A)) = \Gamma(A)$.

Proof. First, we show that (1) holds if τ is closure compatible with \mathcal{I} . Let A be any subset of X and $A \cap \Gamma(A) = \emptyset$. By Theorem 3.4, $A \in \mathcal{I}$ and by Theorem 2.6 (5) $\Gamma(A) = \emptyset$.

(1) \Rightarrow (2): Assume that for every $A \subseteq X$, $A \cap \Gamma(A) = \emptyset$ implies that $\Gamma(A) = \emptyset$. Let $B = A - \Gamma(A)$, then

$$B \cap \Gamma(B) = (A - \Gamma(A)) \cap \Gamma(A - \Gamma(A))$$

= $(A \cap (X - \Gamma(A))) \cap \Gamma(A \cap (X - \Gamma(A)))$
 $\subseteq [A \cap (X - \Gamma(A))] \cap [\Gamma(A) \cap (\Gamma(X - \Gamma(A)))] = \emptyset.$

By (1), we have $\Gamma(B) = \emptyset$. Hence $\Gamma(A - \Gamma(A)) = \emptyset$. (2) \Rightarrow (3): Assume for every $A \subseteq X$, $\Gamma(A - \Gamma(A)) = \emptyset$.

$$A = (A - \Gamma(A)) \cup (A \cap \Gamma(A))$$

$$\Gamma(A) = \Gamma[(A - \Gamma(A)) \cup (A \cap \Gamma(A))]$$

$$= \Gamma(A - \Gamma(A)) \cup \Gamma(A \cap \Gamma(A))$$

$$= \Gamma(A \cap \Gamma(A)).$$

(3) \Rightarrow (1): Assume for every $A \subseteq X$, $A \cap \Gamma(A) = \emptyset$ and $\Gamma(A \cap \Gamma(A)) = \Gamma(A)$. This implies that $\emptyset = \Gamma(\emptyset) = \Gamma(A)$. **Theorem 3.6.** Let (X, τ, \mathcal{I}) be an ideal topological space, then the following properties are equivalent:

- 1. $Cl(\tau) \cap \mathcal{I} = \emptyset$, where $Cl(\tau) = \{Cl(V) : V \in \tau\};$
- 2. If $I \in \mathcal{I}$, then $Int_{\theta}(I) = \emptyset$;
- 3. For every clopen $G, G \subseteq \Gamma(G)$;
- 4. $X = \Gamma(X)$.

Proof. (1) \Rightarrow (2): Let $Cl(\tau) \cap \mathcal{I} = \emptyset$ and $I \in \mathcal{I}$. Suppose that $x \in Int_{\theta}(I)$. Then there exists $U \in \tau$ such that $x \in U \subseteq Cl(U) \subseteq I$. Since $I \in \mathcal{I}$ and hence $\emptyset \neq \{x\} \subseteq Cl(U) \in Cl(\tau) \cap \mathcal{I}$. This is contrary to $Cl(\tau) \cap \mathcal{I} = \emptyset$. Therefore, $Int_{\theta}(I) = \emptyset$.

 $(2) \Rightarrow (3)$: Let $x \in G$. Assume $x \notin \Gamma(G)$, then there exists $U_x \in \tau(x)$ such that $G \cap Cl(U_x) \in \mathcal{I}$ and hence $G \cap U_x \in \mathcal{I}$. Since G is clopen, by (2) and Lemma 2.5, $x \in G \cap U_x = Int(G \cap U_x) \subseteq Int(G \cap Cl(U_x)) = Int_{\theta}(G \cap Cl(U_x)) = \emptyset$. This is a contradiction. Hence $x \in \Gamma(G)$ and $G \subseteq \Gamma(G)$.

(3) \Rightarrow (4): Since X is clopen, then $X = \Gamma(X)$.

(4) \Rightarrow (1): $X = \Gamma(X) = \{x \in X : Cl(U) \cap X = Cl(U) \notin \mathcal{I} \text{ for each open set } U \text{ containing } x\}$. Hence $Cl(\tau) \cap \mathcal{I} = \emptyset$.

Theorem 3.7. Let (X, τ, \mathcal{I}) be an ideal topological space, τ be closure compatible with \mathcal{I} . Then for every $G \in \tau_{\theta}$ and any subset A of X, $Cl(\Gamma(G \cap A)) = \Gamma(G \cap A) \subseteq \Gamma(G \cap \Gamma(A)) \subseteq Cl_{\theta}(G \cap \Gamma(A))$.

Proof. By Theorem 3.5(3) and Theorem 2.6, we have $\Gamma(G \cap A) = \Gamma((G \cap A) \cap \Gamma(G \cap A)) \subseteq \Gamma(G \cap \Gamma(A))$. Moreover, by Theorem 2.6, $Cl(\Gamma(G \cap A)) = \Gamma(G \cap A) \subseteq \Gamma(G \cap \Gamma(A)) \subseteq Cl_{\theta}(G \cap \Gamma(A))$.

4. Ψ_{Γ} -operator

Definition 4.1. Let (X, τ, \mathcal{I}) be an ideal topological space. An operator Ψ_{Γ} : $\mathcal{P}(X) \to \tau$ is defined as follows: for every $A \in X$, $\Psi_{\Gamma}(A) = \{x \in X : \text{there exists} U \in \tau(x) \text{ such that } Cl(U) - A \in \mathcal{I}\}$ and observe that $\Psi_{\Gamma}(A) = X - \Gamma(X - A)$.

Several basic facts concerning the behavior of the operator Ψ_{Γ} are included in the following theorem.

Theorem 4.2. Let (X, τ, \mathcal{I}) be an ideal topological space. Then the following properties hold:

- 1. If $A \subseteq X$, then $\Psi_{\Gamma}(A)$ is open.
- 2. If $A \subseteq B$, then $\Psi_{\Gamma}(A) \subseteq \Psi_{\Gamma}(B)$.
- 3. If $A, B \in \mathcal{P}(X)$, then $\Psi_{\Gamma}(A \cap B) = \Psi_{\Gamma}(A) \cap \Psi_{\Gamma}(B)$.
- 4. If $A \subseteq X$, then $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(\Psi_{\Gamma}(A))$ if and only if $\Gamma(X A) = \Gamma(\Gamma(X A))$.

- If A ∈ I, then Ψ_Γ(A) = X − Γ(X).
 If A ⊆ X, I ∈ I, then Ψ_Γ(A − I) = Ψ_Γ(A).
- 7. If $A \subseteq X$, $I \in \mathcal{I}$, then $\Psi_{\Gamma}(A \cup I) = \Psi_{\Gamma}(A)$.

8. If
$$(A - B) \cup (B - A) \in \mathcal{I}$$
, then $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(B)$.

Proof. (1) This follows from Theorem 2.6 (3).(2) This follows from Theorem 2.6 (1).(3)

$$\Psi_{\Gamma}(A \cap B) = X - \Gamma(X - (A \cap B))$$

= X - \Gamma[(X - A) \cup (X - B)]
= X - [\Gamma(X - A) \cup \Gamma(X - B)]
= [X - \Gamma(X - A) \cap [X - \Gamma(X - B)]
= \Psi_{\Gamma}(A) \cup \Psi_{\Gamma}(B).

(4) This follows from the facts:

1.
$$\Psi_{\Gamma}(A) = X - \Gamma(X - A).$$

2.
$$\Psi_{\Gamma}(\Psi_{\Gamma}(A)) = X - \Gamma[X - (X - \Gamma(X - A))] = X - \Gamma(\Gamma(X - A)).$$

(5) By Corollary 2.10 we obtain that $\Gamma(X - A) = \Gamma(X)$ if $A \in \mathcal{I}$.

(6) This follows from Corollary 2.10 and $\Psi_{\Gamma}(A-I) = X - \Gamma[X - (A-I)] = X - \Gamma[(X-A) \cup I] = X - \Gamma(X-A) = \Psi_{\Gamma}(A).$ (7) This follows from Corollary 2.10 and $\Psi_{\Gamma}(A \cup I) = X - \Gamma[X - (A \cup I)] = X - \Gamma[(X-A) - I] = X - \Gamma(X-A) = \Psi_{\Gamma}(A).$

(8) Assume $(A - B) \cup (B - A) \in \mathcal{I}$. Let A - B = I and B - A = J. Observe that $I, J \in \mathcal{I}$ by heredity. Also observe that $B = (A - I) \cup J$. Thus $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(A - I) = \Psi_{\Gamma}(A - I) \cup J = \Psi_{\Gamma}(B)$ by (6) and (7).

Corollary 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $U \subseteq \Psi_{\Gamma}(U)$ for every θ -open set $U \subseteq X$.

Proof. We know that $\Psi_{\Gamma}(U) = X - \Gamma(X - U)$. Now $\Gamma(X - U) \subseteq Cl_{\theta}(X - U) = X - U$, since X - U is θ -closed. Therefore, $U = X - (X - U) \subseteq X - \Gamma(X - U) = \Psi_{\Gamma}(U)$.

Now we give an example of a set A which is not θ -open but satisfies $A \subseteq \Psi_{\Gamma}(A)$.

Example 4.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{a, c\}, \{d\}, \{a, c, d\}\}$, and $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Let $A = \{a\}$. Then $\Psi_{\Gamma}(\{a\}) = X - \Gamma(X - \{a\}) = X - \Gamma(\{b, c, d\}) = X - \{b, d\} = \{a, c\}$. Therefore, $A \subseteq \Psi_{\Gamma}(A)$, but A is not θ -open.

Example 4.5. Let (X, τ) be the real numbers with the left-ray topology, i.e. $\tau = \{(-\infty, a) : a \in X\} \cup \{X, \phi\}$. Let \mathcal{I}_f be the ideal of all finite subsets of X. Let $A = X - \{0, 1\}$. Then $\Psi_{\Gamma}(\{A\}) = X - \Gamma(\{0, 1\}) = X$. Therefore, $A \subseteq \Psi_{\Gamma}(A)$, but A is not θ -open.

Theorem 4.6. Let (X, τ, \mathcal{I}) be an ideal topological space and $A \subseteq X$. Then the following properties hold:

1.
$$\Psi_{\Gamma}(A) = \bigcup \{ U \in \tau : Cl(U) - A \in \mathcal{I} \}.$$

2.
$$\Psi_{\Gamma}(A) \supseteq \cup \{U \in \tau : (Cl(U) - A) \cup (A - Cl(U)) \in \mathcal{I}\}.$$

Proof. (1) This follows immediately from the definition of Ψ_{Γ} -operator. (2) Since \mathcal{I} is heredity, it is obvious that $\cup \{U \in \tau : (Cl(U) - A) \cup (A - Cl(U)) \in \mathcal{I}\} \subseteq \cup \{U \in \tau : Cl(U) - A \in \mathcal{I}\} = \Psi_{\Gamma}(A)$ for every $A \subseteq X$. \Box

Theorem 4.7. Let (X, τ, \mathcal{I}) be an ideal topological space. If $\sigma = \{A \subseteq X : A \subseteq \Psi_{\Gamma}(A)\}$. Then σ is a topology for X.

Proof. Let $\sigma = \{A \subseteq X : A \subseteq \Psi_{\Gamma}(A)\}$. Since $\phi \in \mathcal{I}$, by Theorem 2.6(5) $\Gamma(\phi) = \phi$ and $\Psi_{\Gamma}(X) = X - \Gamma(X - X) = X - \Gamma(\phi) = X$. Moreover, $\Psi_{\Gamma}(\phi) = X - \Gamma(X - \phi) = X - X = \phi$. Therefore, we obtain that $\phi \subseteq \Psi_{\Gamma}(\phi)$ and $X \subseteq \Psi_{\Gamma}(X) = X$, and thus ϕ and $X \in \sigma$. Now if $A, B \in \sigma$, then by Theorem 4.2 $A \cap B \subseteq \Psi_{\Gamma}(A) \cap \Psi_{\Gamma}(B) = \Psi_{\Gamma}(A \cap B)$ which implies that $A \cap B \in \sigma$. If $\{A_{\alpha} : \alpha \in \Delta\} \subseteq \sigma$, then $A_{\alpha} \subseteq \Psi_{\Gamma}(A_{\alpha}) \subseteq \Psi_{\Gamma}(\cup A_{\alpha})$ for every α and hence $\cup A_{\alpha} \subseteq \Psi_{\Gamma}(\cup A_{\alpha})$. This shows that σ is a topology. \Box

Lemma 4.8. If either $A \in \tau$ or $B \in \tau$, then $Int(Cl(A \cap B)) = Int(Cl(A)) \cap Int(Cl(B))$.

Proof. This is an immediate consequence of Lemma 3.5 of [5].

Theorem 4.9. Let $\sigma_0 = \{A \subseteq X : A \subseteq Int(Cl(\Psi_{\Gamma}(A)))\}$, then σ_0 is a topology for X.

Proof. By Theorem 4.2, for any subset A of X, $\Psi_{\Gamma}(A)$ is open and $\sigma \subset \sigma_0$. Therefore, \emptyset , $X \in \sigma_0$. Let $A, B \in \sigma_0$. Then by Lemma 4.8 and Theorem 4.2, we have $A \cap B \subset Int(Cl(\Psi_{\Gamma}(A))) \cap Int(Cl(\Psi_{\Gamma}(B))) = Int(Cl(\Psi_{\Gamma}(A) \cap \Psi_{\Gamma}(B))) = Int(Cl(\Psi_{\Gamma}(A \cap B)))$. Therefore, $A \cap B \in \sigma_0$. Let $A_{\alpha} \in \sigma_0$ for each $\alpha \in \Delta$. By Theorem 4.2, for each $\alpha \in \Delta$, $A_{\alpha} \subseteq Int(Cl(\Psi_{\Gamma}(A_{\alpha}))) \subseteq Int(Cl(\Psi_{\Gamma}(\cup A_{\alpha})))$ and hence $\cup A_{\alpha} \subset Int(Cl(\Psi_{\Gamma}(\cup A_{\alpha})))$. Hence $\cup A_{\alpha} \in \sigma_0$. This shows that σ_0 is a topology for X.

By Theorem 4.2 and Corollary 4.3 the following relations holds:

Remark 4.10. 1. In Example 4.4, A is σ -open but it is not open. Therefore, every σ_0 -open set is not open.

- 2. Let $X = \{a, b, c\}$ with $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\phi, \{a\}\}$ be an ideal on X. We observe that $\{a\}$ is open but it is not σ_0 -open sets, since $\Psi_{\Gamma}(\{a\}) = X - \Gamma(\{b, c\}) = X - X = \phi$. Also, $\{c\}$ is not open but it is σ -open set, since $\Psi_{\Gamma}(\{c\}) = X - \Gamma(\{a, b\}) = X - \{b\} = \{a, c\}$.
- 3. Question: Is there an example which shows that $\sigma \subsetneq \sigma_0$?.

Theorem 4.11. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\tau \sim_{\Gamma} \mathcal{I}$ if and only if $\Psi_{\Gamma}(A) - A \in \mathcal{I}$ for every $A \subseteq X$.

Proof. Necessity. Assume $\tau \sim_{\Gamma} \mathcal{I}$ and let $A \subseteq X$. Observe that $x \in \Psi_{\Gamma}(A) - A$ if and only if $x \notin A$ and $x \notin \Gamma(X - A)$ if and only if $x \notin A$ and there exists $U_x \in \tau(x)$ such that $Cl(U_x) - A \in \mathcal{I}$ if and only if there exists $U_x \in \tau(x)$ such that $x \in Cl(U_x) - A \in \mathcal{I}$. Now, for each $x \in \Psi_{\Gamma}(A) - A$ and $U_x \in \tau(x)$, $Cl(U_x) \cap (\Psi_{\Gamma}(A) - A) \in \mathcal{I}$ by heredity and hence $\Psi_{\Gamma}(A) - A \in \mathcal{I}$ by assumption that $\tau \sim_{\Gamma} \mathcal{I}$.

Sufficiency. Let $A \subseteq X$ and assume that for each $x \in A$ there exists $U_x \in \tau(x)$ such that $Cl(U_x) \cap A \in \mathcal{I}$. Observe that $\Psi_{\Gamma}(X - A) - (X - A) = A - \Gamma(A) = \{x : \text{there exists } U_x \in \tau(x) \text{ such that } x \in Cl(U_x) \cap A \in \mathcal{I}\}$. Thus we have $A \subseteq \Psi_{\Gamma}(X - A) - (X - A) \in \mathcal{I}$ and hence $A \in \mathcal{I}$ by heredity of \mathcal{I} . \Box

Proposition 4.12. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\Gamma} \mathcal{I}$, $A \subseteq X$. If N is a nonempty open subset of $\Gamma(A) \cap \Psi_{\Gamma}(A)$, then $N - A \in \mathcal{I}$ and $Cl(N) \cap A \notin \mathcal{I}$.

Proof. If $N \subseteq \Gamma(A) \cap \Psi_{\Gamma}(A)$, then $N - A \subseteq \Psi_{\Gamma}(A) - A \in \mathcal{I}$ by Theorem 4.11 and hence $N - A \in \mathcal{I}$ by heredity. Since $N \in \tau - \{\phi\}$ and $N \subseteq \Gamma(A)$, we have $Cl(N) \cap A \notin \mathcal{I}$ by the definition of $\Gamma(A)$.

In [3], Newcomb defines $A = B \mod \mathcal{I}$ if $(A - B) \cup (B - A) \in \mathcal{I}$ and observes that = $[\mod \mathcal{I}]$ is an equivalence relation. By Theorem 4.2 (8), we have that if $A = B \pmod{\mathcal{I}}$, then $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(B)$.

Definition 4.13. Let (X, τ, \mathcal{I}) be an ideal topological space. A subset A of X is called a Baire set with respect to τ and \mathcal{I} , denoted $A \in \mathcal{B}_r(X, \tau, \mathcal{I})$, if there exists a θ -open set U such that $A = U \pmod{\mathcal{I}}$.

Lemma 4.14. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\Gamma} \mathcal{I}$. If U, $V \in \tau_{\theta}$ and $\Psi_{\Gamma}(U) = \Psi_{\Gamma}(V)$, then $U = V \mod \mathcal{I}$.

Proof. Since $U \in \tau_{\theta}$, by Corollary 4.3 we have $U \subseteq \Psi_{\Gamma}(U)$ and hence $U - V \subseteq \Psi_{\Gamma}(U) - V = \Psi_{\Gamma}(V) - V \in \mathcal{I}$ by Theorem 4.11. Therefore, $U - V \in \mathcal{I}$. Similarly, $V - U \in \mathcal{I}$. Now, $(U - V) \cup (V - U) \in \mathcal{I}$ by additivity. Hence U = V [mod \mathcal{I}].

Theorem 4.15. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\Gamma} \mathcal{I}$. If A, $B \in \mathcal{B}_r(X, \tau, \mathcal{I})$, and $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(B)$, then $A = B \mod \mathcal{I}$.

Proof. Let $U, V \in \tau_{\theta}$ be such that $A = U \mod \mathcal{I}$ and $B = V \mod \mathcal{I}$. Now $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(U)$ and $\Psi_{\Gamma}(B) = \Psi_{\Gamma}(V)$ by Theorem 4.2(8). Since $\Psi_{\Gamma}(A) = \Psi_{\Gamma}(B)$ implies that $\Psi_{\Gamma}(U) = \Psi_{\Gamma}(V)$ and hence $U = V \mod \mathcal{I}$ by Lemma 4.14. Hence $A = B \mod \mathcal{I}$ by transitivity.

Proposition 4.16. Let (X, τ, \mathcal{I}) be an ideal topological space.

- 1. If $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) \mathcal{I}$, then there exists $A \in \tau_{\theta} \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$.
- 2. Let $Cl(\tau) \cap \mathcal{I} = \phi$, then $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) \mathcal{I}$ if and only if there exists $A \in \tau_{\theta} \{\phi\}$ such that $B = A \pmod{\mathcal{I}}$.

Proof. (1) Assume $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$, then $B \in \mathcal{B}_r(X, \tau, \mathcal{I})$. Hence there exists $A \in \tau_{\theta}$ such that $B = A \pmod{\mathcal{I}}$. If $A = \phi$, then we have $B = \phi \pmod{\mathcal{I}}$. This implies that $B \in \mathcal{I}$ which is a contradiction.

(2) Assume there exists $A \in \tau_{\theta} - \{\phi\}$ such that $B = A \mod \mathcal{I}$, hence by Definition 4.13, $B \in \mathcal{B}_r(X, \tau, \mathcal{I})$. Then $A = (B - J) \cup I$, where J = B - A, $I = A - B \in \mathcal{I}$. If $B \in \mathcal{I}$, then $A \in \mathcal{I}$ by heredity and additivity. Since $A \in \tau_{\theta} - \{\phi\}, A \neq \phi$ and there exists $U \in \tau$ such that $\phi \neq U \subseteq Cl(U) \subseteq A$. Since $A \in \mathcal{I}, Cl(U) \in \mathcal{I}$ and hence $Cl(U) \in Cl(\tau) \cap \mathcal{I}$. This contradicts that $Cl(\tau) \cap \mathcal{I} = \phi$.

Proposition 4.17. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \cap \mathcal{I} = \phi$. If $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$, then $\Psi_{\Gamma}(B) \cap Int_{\theta}(\Gamma(B)) \neq \phi$.

Proof. Assume $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$, then by Proposition 4.16(1), there exists $A \in \tau_{\theta} - \{\phi\}$ such that $B = A \mod \mathcal{I}$. By Theorem 3.6 and Lemma 2.7, $A = A \cap X = A \cap \Gamma(X) \subseteq \Gamma(A \cap X) = \Gamma(A)$. This implies that $\phi \neq A \subseteq \Gamma(A) = \Gamma((B-J) \cup I) = \Gamma(B)$, where J = B - A, $I = A - B \in \mathcal{I}$ by Corollary 2.10. Since $A \in \tau_{\theta}$, $A \subseteq Int_{\theta}(\Gamma(B))$. Also, $\phi \neq A \subseteq \Psi_{\Gamma}(A) = \Psi_{\Gamma}(B)$ by Corollary 4.3 and Theorem 4.2(8). Consequently, we obtain $A \subseteq \Psi_{\Gamma}(B) \cap Int_{\theta}(\Gamma(B))$. \Box

Given an ideal topological space (X, τ, \mathcal{I}) , let $\mathcal{U}(X, \tau, \mathcal{I})$ denote $\{A \subseteq X :$ there exists $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A\}$.

Proposition 4.18. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \cap \mathcal{I} = \phi$. If $\tau = \tau_{\theta}$, then the following statements are equivalent:

- 1. $A \in \mathcal{U}(X, \tau, \mathcal{I});$
- 2. $\Psi_{\Gamma}(A) \cap Int_{\theta}(\Gamma(A)) \neq \phi;$
- 3. $\Psi_{\Gamma}(A) \cap \Gamma(A) \neq \phi;$
- 4. $\Psi_{\Gamma}(A) \neq \phi;$
- 5. $Int_*(A) \neq \phi;$
- 6. There exists $N \in \tau \{\phi\}$ such that $N A \in \mathcal{I}$ and $N \cap A \notin \mathcal{I}$.

Proof. (1) \Rightarrow (2): Let $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ such that $B \subseteq A$. Then $Int_{\theta}(\Gamma(B)) \subseteq Int_{\theta}(\Gamma(A))$ and $\Psi_{\Gamma}(B) \subseteq \Psi_{\Gamma}(A)$ and hence $Int_{\theta}(\Gamma(B)) \cap \Psi_{\Gamma}(B) \subseteq Int_{\theta}(\Gamma(A)) \cap \Psi_{\Gamma}(A)$. By Proposition 4.17, we have $\Psi_{\Gamma}(A) \cap Int_{\theta}(\Gamma(A)) \neq \phi$.

 $(2) \Rightarrow (3)$: The proof is obvious.

 $(3) \Rightarrow (4)$: The proof is obvious.

 $\begin{array}{l} (4) \Rightarrow (5): \text{ If } \Psi_{\Gamma}(A) \neq \phi, \text{ then there exists } U \in \tau - \{\phi\} \text{ such that } U - A \in \mathcal{I}. \\ \text{Since } U \notin \mathcal{I} \text{ and } U = (U - A) \cup (U \cap A), \text{ we have } U \cap A \notin \mathcal{I}. \text{ By Theorem 4.2,} \\ \phi \neq (U \cap A) \subseteq \Psi_{\Gamma}(U) \cap A = \Psi_{\Gamma}((U - A) \cup (U \cap A)) \cap A = \Psi_{\Gamma}(U \cap A) \cap A \subseteq \\ \Psi_{\Gamma}(A) \cap A = Int_{*}(A). \text{ Hence } Int_{*}(A) \neq \phi. \end{array}$

(5) \Rightarrow (6): If $Int_*(A) \neq \phi$, then by Theorem 3.1 of [2] there exists $N \in \tau - \{\phi\}$ and $I \in \mathcal{I}$ such that $\phi \neq N - I \subseteq A$. We have $N - A \in \mathcal{I}$, $N = (N - A) \cup (N \cap A)$ and $N \notin \mathcal{I}$. This implies that $N \cap A \notin \mathcal{I}$.

(6) \Rightarrow (1): Let $B = N \cap A \notin \mathcal{I}$ with $N \in \tau_{\theta} - \{\phi\}$ and $N - A \in \mathcal{I}$. Then $B \in \mathcal{B}_r(X, \tau, \mathcal{I}) - \mathcal{I}$ since $B \notin \mathcal{I}$ and $(B - N) \cup (N - B) = N - A \in \mathcal{I}$. \Box

Theorem 4.19. Let (X, τ, \mathcal{I}) be an ideal topological space with $\tau \sim_{\Gamma} \mathcal{I}$, where $Cl(\tau) \cap \mathcal{I} = \phi$. Then for $A \subseteq X$, $\Psi_{\Gamma}(A) \subseteq \Gamma(A)$.

Proof. Suppose $x \in \Psi_{\Gamma}(A)$ and $x \notin \Gamma(A)$. Then there exists a nonempty neighborhood $U_x \in \tau(x)$ such that $Cl(U_x) \cap A \in \mathcal{I}$. Since $x \in \Psi_{\Gamma}(A)$, by Theorem 4.6 $x \in \bigcup \{U \in \tau : Cl(U) - A \in \mathcal{I}\}$ and there exists $V \in \tau(x)$ and $Cl(V) - A \in \mathcal{I}$. Now we have $U_x \cap V \in \tau(x)$, $Cl(U_x \cap V) \cap A \in \mathcal{I}$ and $Cl(U_x \cap V) - A \in \mathcal{I}$ by heredity. Hence by finite additivity we have $Cl(U_x \cap V) \cap A) \cup (Cl(U_x \cap V) - A) = Cl(U_x \cap V) \in \mathcal{I}$. Since $(U_x \cap V) \in \tau(x)$, this is contrary to $Cl(\tau) \cap \mathcal{I} = \phi$. Therefore, $x \in \Gamma(A)$. This implies that $\Psi_{\Gamma}(A) \subseteq \Gamma(A)$.

Acknowledgement

The authors wish to thank the referee for useful comments and suggestions.

References

- Al-omari, A., Noiri, T., A topology via *M*-local functions in ideal *m*-spaces. Questions and Answers in General Topology, 30 (2012), 105-114.
- [2] Janković, D., Hamlet, T. R., New topologies from old via ideals. Amer. Math. Monthly, 97 (1990), 295-310.
- [3] Newcomb, R. L., Topologies which are compact modulo an ideal. Ph. D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.
- [4] Njåstad, O., Remarks on topologies defined by local properties. Anh. Norske Vid.-Akad. Oslo (N. S.), 8 (1966), 1-6.
- [5] Noiri, T., On α -continuous functions. Casopis Pest. Mat. 109 (1984), 118-126.
- [6] Veličko, N. V., H-closed topological spaces. Amer. Math. Soc. Transl. 78 (1968), 103-118.

Received by the editors March 1, 2013