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LOCAL CLOSURE FUNCTIONS IN IDEAL
TOPOLOGICAL SPACES

Ahmad Al-Omari1 and Takashi Noiri2

Abstract. In this paper, (X, τ, I) denotes an ideal topological space.
Analogously to the local function [2], we define an operator Γ(A)(I, τ)
called the local closure function of A with respect to I and τ as fol-
lows: Γ(A)(I, τ) = {x ∈ X : A ∩ Cl(U) /∈ I for every U ∈ τ(x)}. We
investigate properties of Γ(A)(I, τ). Moreover, by using Γ(A)(I, τ), we
introduce an operator ΨΓ : P(X) → τ satisfying ΨΓ(A) = X−Γ(X−A)
for each A ∈ P(X). We set σ = {A ⊆ X : A ⊆ ΨΓ(A)} and σ0 = {A ⊆
X : A ⊆ Int(Cl(ΨΓ(A)))} and show that τθ ⊆ σ ⊆ σ0.
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1. Introduction and preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For
a subset A of a topological space (X, τ), Cl(A) and Int(A) denote the closure
and the interior of A in (X, τ), respectively. An ideal I on a topological space
(X, τ) is a non-empty collection of subsets of X which satisfies the following
properties:

1. A ∈ I and B ⊆ A implies that B ∈ I.

2. A ∈ I and B ∈ I implies A ∪B ∈ I.

An ideal topological space is a topological space (X, τ) with an ideal I on X
and is denoted by (X, τ, I). For a subset A ⊆ X, A∗(I, τ) = {x ∈ X : A∩U /∈ I
for every open set U containing x} is called the local function of A with respect
to I and τ (see [1], [2]). We simply write A∗ instead of A∗(I, τ) in case there is
no chance for confusion. For every ideal topological space (X, τ, I), there exists
a topology τ∗(I), finer than τ , generating by the base β(I, τ) = {U−J : U ∈ τ
and J ∈ I}. It is known in Example 3.6 of [2] that β(I, τ) is not always a
topology. When there is no ambiguity, τ∗(I) is denoted by τ∗. Recall that A is
said to be ∗-dense in itself (resp. τ∗-closed, ∗-perfect) if A ⊆ A∗ (resp. A∗ ⊆ A,
A = A∗). For a subset A ⊆ X, Cl∗(A) and Int∗(A) will denote the closure
and the interior of A in (X, τ∗), respectively. In 1968, Veličko [6] introduced
the class of θ-open sets. A set A is said to be θ-open [6] if every point of A
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has an open neighborhood whose closure is contained in A. The θ-interior [6]
of A in X is the union of all θ-open subsets of A and is denoted by Intθ(A).
Naturally, the complement of a θ-open set is said to be θ-closed. Equivalently,
Clθ(A) = {x ∈ X : Cl(U) ∩ A ̸= ϕ for every U ∈ τ(x)} and a set A is θ-closed
if and only if A = Clθ(A). Note that all θ-open sets form a topology on X
which is coarser than τ , and is denoted by τθ and that a space (X, τ) is regular
if and only if τ = τθ. Note also that the θ-closure of a given set need not be a
θ-closed set.

In this paper, analogously to the local function A∗(I, τ), we define an op-
erator Γ(A)(I, τ) called the local closure function of A with respect to I and
τ as follows: Γ(A)(I, τ) = {x ∈ X : A ∩ Cl(U) /∈ I for every U ∈ τ(x)}.
We investigate properties of Γ(A)(I, τ). Moreover, we introduce an operator
ΨΓ : P(X) → τ satisfying ΨΓ(A) = X − Γ(X − A) for each A ∈ P(X). We
set σ = {A ⊆ X : A ⊆ ΨΓ(A)} and σ0 = {A ⊆ X : A ⊆ Int(Cl(ΨΓ(A)))} and
show that τθ ⊆ σ ⊆ σ0.

2. Local closure functions

Definition 2.1. Let (X, τ, I) be an ideal topological space. For a subset A of
X, we define the following operator: Γ(A)(I, τ) = {x ∈ X : A ∩ Cl(U) /∈ I for
every U ∈ τ(x)}, where τ(x) = {U ∈ τ : x ∈ U}. In case there is no confusion
Γ(A)(I, τ) is briefly denoted by Γ(A) and is called the local closure function of
A with respect to I and τ .

Lemma 2.2. Let (X, τ, I) be an ideal topological space. Then A∗(I, τ) ⊆
Γ(A)(I, τ) for every subset A of X.

Proof. Let x ∈ A∗(I, τ). Then, A ∩ U /∈ I for every open set U containing x.
Since A ∩ U ⊆ A ∩ Cl(U), we have A ∩ Cl(U) /∈ I and hence x ∈ Γ(A)(I, τ).

Example 2.3. Let X = {a, b, c, d}, τ = {ϕ,X, {a, c}, {d}, {a, c, d}}, and I =
{ϕ, {c}}. Let A = {b, c, d}. Then Γ(A) = {a, b, c, d} and A∗ = {b, d}.

Example 2.4. Let (X, τ) be the real numbers with the left-ray topology, i.e.
τ = {(−∞, a) : a ∈ X} ∪ {X,ϕ}. Let If be the ideal of all finite subsets of
X. Let A = [0, 1]. Then Γ(A) = {x ∈ X : A ∩ Cl(U) = A /∈ If for every
U ∈ τ(x)} = X and −1 /∈ A∗ which shows A∗ ⊂ Γ(A) .

Lemma 2.5. Let (X, τ) be a topological space and A be a subset of X. Then

1. If A is open, then Cl(A) = Clθ(A).

2. If A is closed, then Int(A) = Intθ(A).

Theorem 2.6. Let (X, τ) be a topological space, I and J be two ideals on X,
and let A and B be subsets of X. Then the following properties hold:

1. If A ⊆ B, then Γ(A) ⊆ Γ(B).
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2. If I ⊆ J , then Γ(A)(I) ⊇ Γ(A)(J ).

3. Γ(A) = Cl(Γ(A)) ⊆ Clθ(A) and Γ(A) is closed.

4. If A ⊆ Γ(A) and Γ(A) is open, then Γ(A) = Clθ(A).

5. If A ∈ I, then Γ(A) = ∅.

Proof. (1) Suppose that x /∈ Γ(B). Then there exists U ∈ τ(x) such that
B∩Cl(U) ∈ I. Since A∩Cl(U) ⊆ B∩Cl(U), A∩Cl(U) ∈ I. Hence x /∈ Γ(A).
Thus X \ Γ(B) ⊆ X \ Γ(A) or Γ(A) ⊆ Γ(B).
(2) Suppose that x /∈ Γ(A)(I). There exists U ∈ τ(x) such that A∩Cl(U) ∈ I.
Since I ⊆ J , A∩Cl(U) ∈ J and x /∈ Γ(A)(J ). Therefore, Γ(A)(J ) ⊆ Γ(A)(I).
(3) We have Γ(A) ⊆ Cl(Γ(A)) in general. Let x ∈ Cl(Γ(A)). Then Γ(A)∩U ̸= ∅
for every U ∈ τ(x). Therefore, there exists some y ∈ Γ(A) ∩ U and U ∈ τ(y).
Since y ∈ Γ(A), A∩Cl(U) /∈ I and hence x ∈ Γ(A). Hence we have Cl(Γ(A)) ⊆
Γ(A) and hence Γ(A) = Cl(Γ(A)). Again, let x ∈ Cl(Γ(A)) = Γ(A), then
A ∩ Cl(U) /∈ I for every U ∈ τ(x). This implies A ∩ Cl(U) ̸= ∅ for every U ∈
τ(x). Therefore, x ∈ Clθ(A). This shows that Γ(A)(I) = Cl(Γ(A)) ⊆ Clθ(A).
(4) For any subset A of X, by (3) we have Γ(A) = Cl(Γ(A)) ⊆ Clθ(A).
Since A ⊆ Γ(A) and Γ(A) is open, by Lemma 2.5, Clθ(A) ⊆ Clθ(Γ(A)) =
Cl(Γ(A)) = Γ(A) ⊆ Clθ(A) and hence Γ(A) = Clθ(A).
(5) Suppose that x ∈ Γ(A). Then for any U ∈ τ(x), A ∩ Cl(U) /∈ I. But since
A ∈ I, A ∩ Cl(U) ∈ I for every U ∈ τ(x). This is a contradiction. Hence
Γ(A) = ∅.

Lemma 2.7. Let (X, τ, I) be an ideal topological space. If U ∈ τθ, then
U ∩ Γ(A) = U ∩ Γ(U ∩A) ⊆ Γ(U ∩A) for any subset A of X.

Proof. Suppose that U ∈ τθ and x ∈ U ∩ Γ(A). Then x ∈ U and x ∈ Γ(A).
Since U ∈ τθ, then there exists W ∈ τ such that x ∈ W ⊆ Cl(W ) ⊆ U . Let
V be any open set containing x. Then V ∩W ∈ τ(x) and Cl(V ∩W ) ∩A /∈ I
and hence Cl(V ) ∩ (U ∩ A) /∈ I. This shows that x ∈ Γ(U ∩ A) and hence we
obtain U ∩ Γ(A) ⊆ Γ(U ∩ A). Moreover, U ∩ Γ(A) ⊆ U ∩ Γ(U ∩ A) and by
Theorem 2.6 Γ(U ∩ A) ⊆ Γ(A) and U ∩ Γ(U ∩ A) ⊆ U ∩ Γ(A). Therefore,
U ∩ Γ(A) = U ∩ Γ(U ∩A).

Theorem 2.8. Let (X, τ, I) be an ideal topological space and A, B any subsets
of X. Then the following properties hold:

1. Γ(∅) = ∅.

2. Γ(A) ∪ Γ(B) = Γ(A ∪B).

Proof. (1) The proof is obvious.
(2) It follows from Theorem 2.6 that Γ(A ∪ B) ⊇ Γ(A) ∪ Γ(B). To prove the
reverse inclusion, let x /∈ Γ(A) ∪ Γ(B). Then x belongs neither to Γ(A) nor
to Γ(B). Therefore there exist Ux, Vx ∈ τ(x) such that Cl(Ux) ∩ A ∈ I and
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Cl(Vx)∩B ∈ I. Since I is additive, (Cl(Ux)∩A)∪(Cl(Vx)∩B) ∈ I. Moreover,
since I is hereditary and

(Cl(Ux) ∩A) ∪ (Cl(Vx) ∩B) = [(Cl(Ux) ∩A) ∪ Cl(Vx)] ∩ [(Cl(Ux) ∩A) ∪B]

= (Cl(Ux)∪Cl(Vx)) ∩ (A ∪ Cl(Vx)) ∩ (Cl(Ux) ∪B) ∩ (A ∪B)

⊇ Cl(Ux∩Vx) ∩ (A ∪B),

Cl(Ux ∩ Vx) ∩ (A ∪ B) ∈ I. Since Ux ∩ Vx ∈ τ(x), x /∈ Γ(A ∪ B). Hence
(X \Γ(A))∩ (X \Γ(B) ⊆ X \Γ(A∪B) or Γ(A∪B) ⊆ Γ(A)∪Γ(B). Hence we
obtain Γ(A) ∪ Γ(B) = Γ(A ∪B).

Lemma 2.9. Let (X, τ, I) be an ideal topological space and A,B be subsets of
X. Then Γ(A)− Γ(B) = Γ(A−B)− Γ(B).

Proof. We have by Theorem 2.8 Γ(A) = Γ[(A− B) ∪ (A ∩ B)] = Γ(A− B) ∪
Γ(A ∩ B) ⊆ Γ(A − B) ∪ Γ(B). Thus Γ(A) − Γ(B) ⊆ Γ(A − B) − Γ(B). By
Theorem 2.6, Γ(A− B) ⊆ Γ(A) and hence Γ(A− B)− Γ(B) ⊆ Γ(A)− Γ(B).
Hence Γ(A)− Γ(B) = Γ(A−B)− Γ(B).

Corollary 2.10. Let (X, τ, I) be an ideal topological space and A,B be subsets
of X with B ∈ I. Then Γ(A ∪B) = Γ(A) = Γ(A−B).

Proof. Since B ∈ I, by Theorem 2.6 Γ(B) = ∅. By Lemma 2.9, Γ(A) =
Γ(A−B) and by Theorem 2.8 Γ(A ∪B) = Γ(A) ∪ Γ(B) = Γ(A)

3. Closure compatibility of topological spaces

Definition 3.1. [4] Let (X, τ, I) be an ideal topological space. We say the τ
is compatible with the ideal I, denoted τ ∼ I, if the following holds for every
A ⊆ X, if for every x ∈ A there exists U ∈ τ(x) such that U ∩ A ∈ I, then
A ∈ I.

Definition 3.2. Let (X, τ, I) be an ideal topological space. We say the τ is
closure compatible with the ideal I, denoted τ ∼Γ I, if the following holds for
every A ⊆ X, if for every x ∈ A there exists U ∈ τ(x) such that Cl(U)∩A ∈ I,
then A ∈ I.

Remark 3.3. If τ is compatible with I, then τ is closure compatible with I.

Theorem 3.4. Let (X, τ, I) be an ideal topological space, the following prop-
erties are equivalent:

1. τ ∼Γ I;

2. If a subset A of X has a cover of open sets each of whose closure inter-
section with A is in I, then A ∈ I;

3. For every A ⊆ X, A ∩ Γ(A) = ∅ implies that A ∈ I;
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4. For every A ⊆ X, A− Γ(A) ∈ I;

5. For every A ⊆ X, if A contains no nonempty subset B with B ⊆ Γ(B),
then A ∈ I.

Proof. (1) ⇒ (2): The proof is obvious.
(2) ⇒ (3): Let A ⊆ X and x ∈ A. Then x /∈ Γ(A) and there exists Vx ∈ τ(x)
such that Cl(Vx)∩A ∈ I. Therefore, we have A ⊆ ∪{Vx : x ∈ A} and Vx ∈ τ(x)
and by (2) A ∈ I.
(3) ⇒ (4): For any A ⊆ X, A − Γ(A) ⊆ A and (A − Γ(A)) ∩ Γ(A − Γ(A)) ⊆
(A− Γ(A)) ∩ Γ(A) = ∅. By (3), A− Γ(A) ∈ I.
(4) ⇒ (5): By (4), for every A ⊆ X, A − Γ(A) ∈ I. Let A − Γ(A) = J ∈
I, then A = J ∪ (A ∩ Γ(A)) and by Theorem 2.8(2) and Theorem 2.6(5),
Γ(A) = Γ(J) ∪ Γ(A ∩ Γ(A)) = Γ(A ∩ Γ(A)). Therefore, we have A ∩ Γ(A) =
A ∩ Γ(A ∩ Γ(A)) ⊆ Γ(A ∩ Γ(A)) and A ∩ Γ(A) ⊆ A. By the assumption
A ∩ Γ(A) = ∅ and hence A = A− Γ(A) ∈ I.
(5) ⇒ (1): Let A ⊆ X and assume that for every x ∈ A, there exists U ∈ τ(x)
such that Cl(U)∩A ∈ I. Then A∩Γ(A) = ∅. Suppose that A contains B such
that B ⊆ Γ(B). Then B = B ∩ Γ(B) ⊆ A ∩ Γ(A) = ∅. Therefore, A contains
no nonempty subset B with B ⊆ Γ(B). Hence A ∈ I.

Theorem 3.5. Let (X, τ, I) be an ideal topological space. If τ is closure
compatible with I, then the following equivalent properties hold:

1. For every A ⊆ X, A ∩ Γ(A) = ∅ implies that Γ(A) = ∅;

2. For every A ⊆ X, Γ(A− Γ(A)) = ∅;

3. For every A ⊆ X, Γ(A ∩ Γ(A)) = Γ(A).

Proof. First, we show that (1) holds if τ is closure compatible with I. Let A be
any subset of X and A ∩ Γ(A) = ∅. By Theorem 3.4, A ∈ I and by Theorem
2.6 (5) Γ(A) = ∅.
(1) ⇒ (2): Assume that for every A ⊆ X, A∩Γ(A) = ∅ implies that Γ(A) = ∅.
Let B = A− Γ(A), then

B ∩ Γ(B) = (A− Γ(A)) ∩ Γ(A− Γ(A))

= (A ∩ (X − Γ(A))) ∩ Γ(A ∩ (X − Γ(A)))

⊆ [A ∩ (X − Γ(A))] ∩ [Γ(A) ∩ (Γ(X − Γ(A)))] = ∅.

By (1), we have Γ(B) = ∅. Hence Γ(A− Γ(A)) = ∅.
(2) ⇒ (3): Assume for every A ⊆ X, Γ(A− Γ(A)) = ∅.

A = (A− Γ(A)) ∪ (A ∩ Γ(A))

Γ(A) = Γ[(A− Γ(A)) ∪ (A ∩ Γ(A))]

= Γ(A− Γ(A)) ∪ Γ(A ∩ Γ(A))

= Γ(A ∩ Γ(A)).

(3) ⇒ (1): Assume for every A ⊆ X, A ∩ Γ(A) = ∅ and Γ(A ∩ Γ(A)) = Γ(A).
This implies that ∅ = Γ(∅) = Γ(A).
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Theorem 3.6. Let (X, τ, I) be an ideal topological space, then the following
properties are equivalent:

1. Cl(τ) ∩ I = ∅, where Cl(τ) = {Cl(V ) : V ∈ τ};

2. If I ∈ I, then Intθ(I) = ∅;

3. For every clopen G, G ⊆ Γ(G);

4. X = Γ(X).

Proof. (1) ⇒ (2): Let Cl(τ) ∩ I = ∅ and I ∈ I. Suppose that x ∈ Intθ(I).
Then there exists U ∈ τ such that x ∈ U ⊆ Cl(U) ⊆ I. Since I ∈ I and hence
∅ ̸= {x} ⊆ Cl(U) ∈ Cl(τ) ∩ I. This is contrary to Cl(τ) ∩ I = ∅. Therefore,
Intθ(I) = ∅.
(2)⇒ (3): Let x ∈ G. Assume x /∈ Γ(G), then there exists Ux ∈ τ(x) such that
G ∩ Cl(Ux) ∈ I and hence G ∩ Ux ∈ I. Since G is clopen, by (2) and Lemma
2.5, x ∈ G ∩ Ux = Int(G ∩ Ux) ⊆ Int(G ∩ Cl(Ux)) = Intθ(G ∩ Cl(Ux)) = ∅.
This is a contradiction. Hence x ∈ Γ(G) and G ⊆ Γ(G).
(3)⇒ (4): Since X is clopen, then X = Γ(X).
(4)⇒ (1): X = Γ(X) = {x ∈ X : Cl(U) ∩X = Cl(U) /∈ I for each open set U
containing x}. Hence Cl(τ) ∩ I = ∅.

Theorem 3.7. Let (X, τ, I) be an ideal topological space, τ be closure compat-
ible with I. Then for every G ∈ τθ and any subset A of X, Cl(Γ(G ∩ A)) =
Γ(G ∩A) ⊆ Γ(G ∩ Γ(A)) ⊆ Clθ(G ∩ Γ(A)).

Proof. By Theorem 3.5(3) and Theorem 2.6, we have Γ(G ∩ A) = Γ((G ∩
A) ∩ Γ(G ∩ A)) ⊆ Γ(G ∩ Γ(A)). Moreover, by Theorem 2.6, Cl(Γ(G ∩ A)) =
Γ(G ∩A) ⊆ Γ(G ∩ Γ(A)) ⊆ Clθ(G ∩ Γ(A)).

4. ΨΓ-operator

Definition 4.1. Let (X, τ, I) be an ideal topological space. An operator ΨΓ :
P(X) → τ is defined as follows: for everyA ∈ X, ΨΓ(A) = {x ∈ X : there exists
U ∈ τ(x) such that Cl(U)−A ∈ I} and observe that ΨΓ(A) = X −Γ(X −A).

Several basic facts concerning the behavior of the operator ΨΓ are included
in the following theorem.

Theorem 4.2. Let (X, τ, I) be an ideal topological space. Then the following
properties hold:

1. If A ⊆ X, then ΨΓ(A) is open.

2. If A ⊆ B, then ΨΓ(A) ⊆ ΨΓ(B).

3. If A,B ∈ P(X), then ΨΓ(A ∩B) = ΨΓ(A) ∩ΨΓ(B).

4. If A ⊆ X, then ΨΓ(A) = ΨΓ(ΨΓ(A)) if and only if
Γ(X −A) = Γ(Γ(X −A)).



Local closure functions in ideal topological spaces 145

5. If A ∈ I, then ΨΓ(A) = X − Γ(X).

6. If A ⊆ X, I ∈ I, then ΨΓ(A− I) = ΨΓ(A).

7. If A ⊆ X, I ∈ I, then ΨΓ(A ∪ I) = ΨΓ(A).

8. If (A−B) ∪ (B −A) ∈ I, then ΨΓ(A) = ΨΓ(B).

Proof. (1) This follows from Theorem 2.6 (3).
(2) This follows from Theorem 2.6 (1).
(3)

ΨΓ(A ∩B) =X − Γ(X − (A ∩B))

=X − Γ[(X −A) ∪ (X −B)]

=X − [Γ(X −A) ∪ Γ(X −B)]

=[X − Γ(X −A) ∩ [X − Γ(X −B)]

=ΨΓ(A) ∩ΨΓ(B).

(4) This follows from the facts:

1. ΨΓ(A) = X − Γ(X −A).

2. ΨΓ(ΨΓ(A)) = X − Γ[X − (X − Γ(X −A))] = X − Γ(Γ(X −A)).

(5) By Corollary 2.10 we obtain that Γ(X −A) = Γ(X) if A ∈ I.
(6) This follows from Corollary 2.10 and ΨΓ(A− I) = X − Γ[X − (A− I)] =
X − Γ[(X −A) ∪ I] = X − Γ(X −A) = ΨΓ(A).
(7) This follows from Corollary 2.10 and ΨΓ(A ∪ I) = X − Γ[X − (A ∪ I)] =
X − Γ[(X −A)− I] = X − Γ(X −A) = ΨΓ(A).
(8) Assume (A− B) ∪ (B − A) ∈ I. Let A− B = I and B − A = J . Observe
that I, J ∈ I by heredity. Also observe that B = (A− I) ∪ J . Thus ΨΓ(A) =
ΨΓ(A− I) = Ψ[(A− I) ∪ J ] = ΨΓ(B) by (6) and (7).

Corollary 4.3. Let (X, τ, I) be an ideal topological space. Then U ⊆ ΨΓ(U)
for every θ-open set U ⊆ X.

Proof. We know that ΨΓ(U) = X−Γ(X−U). Now Γ(X−U) ⊆ Clθ(X−U) =
X−U , since X−U is θ-closed. Therefore, U = X−(X−U) ⊆ X−Γ(X−U) =
ΨΓ(U).

Now we give an example of a set A which is not θ-open but satisfies A ⊆
ΨΓ(A).

Example 4.4. Let X = {a, b, c, d}, τ = {ϕ,X, {a, c}, {d}, {a, c, d}}, and I =
{ϕ, {b}, {c}, {b, c}}. Let A = {a}. Then ΨΓ({a}) = X − Γ(X − {a}) = X −
Γ({b, c, d}) = X − {b, d} = {a, c}. Therefore, A ⊆ ΨΓ(A), but A is not θ-open.

Example 4.5. Let (X, τ) be the real numbers with the left-ray topology, i.e.
τ = {(−∞, a) : a ∈ X} ∪ {X,ϕ}. Let If be the ideal of all finite subsets of
X. Let A = X − {0, 1}. Then ΨΓ({A}) = X − Γ({0, 1}) = X. Therefore,
A ⊆ ΨΓ(A), but A is not θ-open.
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Theorem 4.6. Let (X, τ, I) be an ideal topological space and A ⊆ X. Then
the following properties hold:

1. ΨΓ(A) = ∪{U ∈ τ : Cl(U)−A ∈ I}.

2. ΨΓ(A) ⊇ ∪{U ∈ τ : (Cl(U)−A) ∪ (A− Cl(U)) ∈ I}.

Proof. (1) This follows immediately from the definition of ΨΓ-operator.
(2) Since I is heredity, it is obvious that ∪{U ∈ τ : (Cl(U)−A)∪(A−Cl(U)) ∈
I} ⊆ ∪{U ∈ τ : Cl(U)−A ∈ I} = ΨΓ(A) for every A ⊆ X.

Theorem 4.7. Let (X, τ, I) be an ideal topological space. If σ = {A ⊆ X :
A ⊆ ΨΓ(A)}. Then σ is a topology for X.

Proof. Let σ = {A ⊆ X : A ⊆ ΨΓ(A)}. Since ϕ ∈ I, by Theorem 2.6(5)
Γ(ϕ) = ϕ and ΨΓ(X) = X − Γ(X −X) = X − Γ(ϕ) = X. Moreover, ΨΓ(ϕ) =
X − Γ(X − ϕ) = X − X = ϕ. Therefore, we obtain that ϕ ⊆ ΨΓ(ϕ) and
X ⊆ ΨΓ(X) = X, and thus ϕ and X ∈ σ. Now if A,B ∈ σ, then by Theorem
4.2 A ∩ B ⊆ ΨΓ(A) ∩ ΨΓ(B) = ΨΓ(A ∩ B) which implies that A ∩ B ∈ σ. If
{Aα : α ∈ ∆} ⊆ σ, then Aα ⊆ ΨΓ(Aα) ⊆ ΨΓ(∪Aα) for every α and hence
∪Aα ⊆ ΨΓ(∪Aα). This shows that σ is a topology.

Lemma 4.8. If either A ∈ τ or B ∈ τ , then Int(Cl(A ∩B)) = Int(Cl(A)) ∩
Int(Cl(B)).

Proof. This is an immediate consequence of Lemma 3.5 of [5].

Theorem 4.9. Let σ0 = {A ⊆ X : A ⊆ Int(Cl(ΨΓ(A)))}, then σ0 is a topology
for X.

Proof. By Theorem 4.2, for any subset A of X, ΨΓ(A) is open and σ ⊂ σ0.
Therefore, ∅, X ∈ σ0. Let A, B ∈ σ0. Then by Lemma 4.8 and Theorem
4.2, we have A ∩ B ⊂ Int(Cl(ΨΓ(A))) ∩ Int(Cl(ΨΓ(B))) = Int(Cl(ΨΓ(A) ∩
ΨΓ(B))) = Int(Cl(ΨΓ(A ∩ B))). Therefore, A ∩ B ∈ σ0. Let Aα ∈ σ0 for
each α ∈ ∆. By Theorem 4.2, for each α ∈ ∆, Aα ⊆ Int(Cl(ΨΓ(Aα))) ⊆
Int(Cl(ΨΓ(∪Aα))) and hence ∪Aα ⊂ Int(Cl(ΨΓ(∪Aα))). Hence ∪Aα ∈ σ0.
This shows that σ0 is a topology for X.

By Theorem 4.2 and Corollary 4.3 the following relations holds:

θ-open //

��

open

σ-open // σ0-open

Remark 4.10. 1. In Example 4.4, A is σ-open but it is not open. Therefore,
every σ0-open set is not open.
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2. Let X = {a, b, c} with τ = {∅, {a}, {b}, {a, b}, {a, c}, X} and I = {ϕ, {a}}
be an ideal on X. We observe that {a} is open but it is not σ0-open sets,
since ΨΓ({a}) = X − Γ({b, c}) = X −X = ϕ. Also, {c} is not open but
it is σ-open set, since ΨΓ({c}) = X − Γ({a, b}) = X − {b} = {a, c}.

3. Question: Is there an example which shows that σ $ σ0 ?.

Theorem 4.11. Let (X, τ, I) be an ideal topological space. Then τ ∼Γ I if
and only if ΨΓ(A)−A ∈ I for every A ⊆ X.

Proof. Necessity. Assume τ ∼Γ I and let A ⊆ X. Observe that x ∈ ΨΓ(A)−A
if and only if x /∈ A and x /∈ Γ(X − A) if and only if x /∈ A and there exists
Ux ∈ τ(x) such that Cl(Ux) − A ∈ I if and only if there exists Ux ∈ τ(x)
such that x ∈ Cl(Ux) − A ∈ I. Now, for each x ∈ ΨΓ(A) − A and Ux ∈ τ(x),
Cl(Ux)∩(ΨΓ(A)−A) ∈ I by heredity and hence ΨΓ(A)−A ∈ I by assumption
that τ ∼Γ I.

Sufficiency. Let A ⊆ X and assume that for each x ∈ A there exists
Ux ∈ τ(x) such that Cl(Ux) ∩ A ∈ I. Observe that ΨΓ(X − A) − (X − A) =
A− Γ(A) = {x : there exists Ux ∈ τ(x) such that x ∈ Cl(Ux) ∩ A ∈ I}. Thus
we have A ⊆ ΨΓ(X −A)− (X −A) ∈ I and hence A ∈ I by heredity of I.

Proposition 4.12. Let (X, τ, I) be an ideal topological space with τ ∼Γ I,
A ⊆ X. If N is a nonempty open subset of Γ(A)∩ΨΓ(A), then N −A ∈ I and
Cl(N) ∩A /∈ I.

Proof. If N ⊆ Γ(A) ∩ΨΓ(A), then N −A ⊆ ΨΓ(A)−A ∈ I by Theorem 4.11
and hence N −A ∈ I by heredity. Since N ∈ τ − {ϕ} and N ⊆ Γ(A), we have
Cl(N) ∩A /∈ I by the definition of Γ(A).

In [3], Newcomb defines A = B [mod I] if (A − B) ∪ (B − A) ∈ I and
observes that = [mod I] is an equivalence relation. By Theorem 4.2 (8), we
have that if A = B [mod I], then ΨΓ(A) = ΨΓ(B).

Definition 4.13. Let (X, τ, I) be an ideal topological space. A subset A of
X is called a Baire set with respect to τ and I, denoted A ∈ Br(X, τ, I), if
there exists a θ-open set U such that A = U [mod I].

Lemma 4.14. Let (X, τ, I) be an ideal topological space with τ ∼Γ I. If U ,
V ∈ τθ and ΨΓ(U) = ΨΓ(V ), then U = V [mod I].

Proof. Since U ∈ τθ, by Corollary 4.3 we have U ⊆ ΨΓ(U) and hence U −V ⊆
ΨΓ(U) − V = ΨΓ(V ) − V ∈ I by Theorem 4.11. Therefore, U − V ∈ I.
Similarly, V −U ∈ I. Now, (U −V )∪ (V −U) ∈ I by additivity. Hence U = V
[mod I].

Theorem 4.15. Let (X, τ, I) be an ideal topological space with τ ∼Γ I. If A,
B ∈ Br(X, τ, I), and ΨΓ(A) = ΨΓ(B), then A = B [mod I].
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Proof. Let U, V ∈ τθ be such that A = U [mod I] and B = V [mod I]. Now
ΨΓ(A) = ΨΓ(U) and ΨΓ(B) = ΨΓ(V ) by Theorem 4.2(8). Since ΨΓ(A) =
ΨΓ(B) implies that ΨΓ(U) = ΨΓ(V ) and hence U = V [mod I] by Lemma
4.14. Hence A = B [mod I] by transitivity.

Proposition 4.16. Let (X, τ, I) be an ideal topological space.

1. If B ∈ Br(X, τ, I) − I, then there exists A ∈ τθ − {ϕ} such that B = A
[mod I].

2. Let Cl(τ) ∩ I = ϕ, then B ∈ Br(X, τ, I) − I if and only if there exists
A ∈ τθ − {ϕ} such that B = A [mod I].

Proof. (1) Assume B ∈ Br(X, τ, I) − I, then B ∈ Br(X, τ, I). Hence there
exists A ∈ τθ such that B = A [mod I]. If A = ϕ, then we have B = ϕ [mod
I]. This implies that B ∈ I which is a contradiction.
(2) Assume there exists A ∈ τθ − {ϕ} such that B = A [mod I], hence by
Definition 4.13, B ∈ Br(X, τ, I). Then A = (B − J) ∪ I, where J = B −
A, I = A − B ∈ I. If B ∈ I, then A ∈ I by heredity and additivity. Since
A ∈ τθ − {ϕ}, A ̸= ϕ and there exists U ∈ τ such that ϕ ̸= U ⊆ Cl(U) ⊆ A.
Since A ∈ I, Cl(U) ∈ I and hence Cl(U) ∈ Cl(τ) ∩ I. This contradicts that
Cl(τ) ∩ I = ϕ.

Proposition 4.17. Let (X, τ, I) be an ideal topological space with τ ∩ I = ϕ.
If B ∈ Br(X, τ, I)− I, then ΨΓ(B) ∩ Intθ(Γ(B)) ̸= ϕ.

Proof. Assume B ∈ Br(X, τ, I)− I, then by Proposition 4.16(1), there exists
A ∈ τθ − {ϕ} such that B = A [mod I]. By Theorem 3.6 and Lemma 2.7,
A = A∩X = A∩Γ(X) ⊆ Γ(A∩X) = Γ(A). This implies that ϕ ̸= A ⊆ Γ(A) =
Γ((B−J)∪I) = Γ(B), where J = B−A, I = A−B ∈ I by Corollary 2.10. Since
A ∈ τθ, A ⊆ Intθ(Γ(B)). Also, ϕ ̸= A ⊆ ΨΓ(A) = ΨΓ(B) by Corollary 4.3
and Theorem 4.2(8). Consequently, we obtain A ⊆ ΨΓ(B) ∩ Intθ(Γ(B)).

Given an ideal topological space (X, τ, I), let U(X, τ, I) denote {A ⊆ X :
there exists B ∈ Br(X, τ, I)− I such that B ⊆ A}.

Proposition 4.18. Let (X, τ, I) be an ideal topological space with τ ∩ I = ϕ.
If τ = τθ, then the following statements are equivalent:

1. A ∈ U(X, τ, I);

2. ΨΓ(A) ∩ Intθ(Γ(A)) ̸= ϕ;

3. ΨΓ(A) ∩ Γ(A) ̸= ϕ;

4. ΨΓ(A) ̸= ϕ;

5. Int∗(A) ̸= ϕ;

6. There exists N ∈ τ − {ϕ} such that N −A ∈ I and N ∩A /∈ I.
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Proof. (1)⇒ (2): LetB ∈ Br(X, τ, I)−I such thatB ⊆ A. Then Intθ(Γ(B)) ⊆
Intθ(Γ(A)) and ΨΓ(B) ⊆ ΨΓ(A) and hence Intθ(Γ(B))∩ΨΓ(B) ⊆ Intθ(Γ(A))∩
ΨΓ(A). By Proposition 4.17, we have ΨΓ(A) ∩ Intθ(Γ(A)) ̸= ϕ.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): The proof is obvious.
(4) ⇒ (5): If ΨΓ(A) ̸= ϕ, then there exists U ∈ τ − {ϕ} such that U − A ∈ I.
Since U /∈ I and U = (U −A)∪ (U ∩A), we have U ∩A /∈ I. By Theorem 4.2,
ϕ ̸= (U ∩ A) ⊆ ΨΓ(U) ∩ A = ΨΓ((U − A) ∪ (U ∩ A)) ∩ A = ΨΓ(U ∩ A) ∩ A ⊆
ΨΓ(A) ∩A = Int∗(A). Hence Int∗(A) ̸= ϕ.
(5) ⇒ (6): If Int∗(A) ̸= ϕ, then by Theorem 3.1 of [2] there exists N ∈ τ−{ϕ}
and I ∈ I such that ϕ ̸= N−I ⊆ A. We have N−A ∈ I, N = (N−A)∪(N∩A)
and N /∈ I. This implies that N ∩A /∈ I.
(6) ⇒ (1): Let B = N ∩ A /∈ I with N ∈ τθ − {ϕ} and N − A ∈ I. Then
B ∈ Br(X, τ, I)− I since B /∈ I and (B −N) ∪ (N −B) = N −A ∈ I.

Theorem 4.19. Let (X, τ, I) be an ideal topological space with τ ∼Γ I, where
Cl(τ) ∩ I = ϕ. Then for A ⊆ X, ΨΓ(A) ⊆ Γ(A).

Proof. Suppose x ∈ ΨΓ(A) and x /∈ Γ(A). Then there exists a nonempty
neighborhood Ux ∈ τ(x) such that Cl(Ux) ∩ A ∈ I. Since x ∈ ΨΓ(A), by
Theorem 4.6 x ∈ ∪{U ∈ τ : Cl(U) − A ∈ I} and there exists V ∈ τ(x)
and Cl(V ) − A ∈ I. Now we have Ux ∩ V ∈ τ(x), Cl(Ux ∩ V ) ∩ A ∈ I
and Cl(Ux ∩ V ) − A ∈ I by heredity. Hence by finite additivity we have
Cl(Ux ∩V )∩A)∪ (Cl(Ux ∩V )−A) = Cl(Ux ∩V ) ∈ I. Since (Ux ∩V ) ∈ τ(x),
this is contrary to Cl(τ) ∩ I = ϕ. Therefore, x ∈ Γ(A). This implies that
ΨΓ(A) ⊆ Γ(A).
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