ALMOST PSEUDO-VALUATION MAP AND PSEUDO-ALMOST VALUATION MAP

Waheed Ahmad Khan¹

Abstract. Recently author (with A. Taouti) have introduced pseudovaluation maps and discussed pseudo-valuation domains through these maps. In continuation we also introduced P-Krull domains with the help of defined maps as well. In this note we generalize a pseudo-valuation map v in the form of almost pseudo-valuation map and a pseudo-almost valuation map η . Furthermore, we construct and discuss an almost pseudo-valuation domain and a pseudo-almost valuation domain through the defined maps. Moreover, a few relationships between both integral domains through the defined maps have been proved.

AMS Mathematics Subject Classification (2010): 13A18, 12J20

 $Key\ words\ and\ phrases:$ Pseudo almost valuation map, Almost pseudovaluation map, Almost pseudo-valuation domain, Pseudo almost valuation domains

1. Introduction and Preliminaries

There are numerous studies on PVDs through various aspects. In [8], the group of divisibility of semi-valuation domains has discussed on the basis of a semi-valuation map. Further, [7] deals with the group of divisibility of quasilocal domains, for example see [7, Proposition 3.10]. An integral domain Ris said to be a pseudo-valuation domain (PVD) if every prime ideal of R is a strongly prime [5, Definition, p. 2]. A prime ideal P of R is called strongly prime if $xy \in P$, where $x, y \in K$, then $x \in P$ or $y \in P$ (alternatively P is strongly prime if and only if $x^{-1}P \subset P$, whenever $x \in K \setminus R$ [5, Definition, p. 2]. Every valuation domain is a PVD [5, Proposition 1.1] but converse is not true. A quasi-local domain (R, M) is a PVD if and only if $x^{-1}M \subset M$ whenever $x \in K \setminus R$ [5, Theorem 1.4].

By [6, p. 12], an integral domain D with the quotient field K, is said to be a valuation domain if it satisfies either of the (equivalent) conditions: (i) For any two elements $x, y \in D$, either x divides y or y divides x. (ii) For any element $x \in K$, either $x \in D$ or $x^{-1} \in D$. When D is a valuation domain, G(D) is merely the value group; and in this case, ideal theoretic properties of D are easily derived from the corresponding properties of G(D), and conversely. D is said to be an almost valuation domain (AVD) if for every $0 \neq x \in K$, there is a positive integer n such that either x^n or $x^{-n} \in D$.

Following [2], D is said to be a pseudo-almost valuation domain (PAVD) if each prime ideal P of D is pseudo-strongly prime ideal (that is if, whenever

¹Department of Mathematics and Statististics, Caledonian College of Engineering, PO Box 2322, CPOSeeb111, Sultanate of Oman, e-mail: sirwak2003@yahoo.com

 $x, y \in K$ and $xyP \subseteq P$, then there is a positive integer $m \ge 1$ such that either $x^m \in R$ or $y^mP \subseteq P$). Equivalently, D is a PAVD if and only if D is quasi-local and for every nonzero element $x \in K$, there is an integer $n \ge 1$ such that either $x^n \in D$ or $ax^{-n} \in D$ for every nonunit $a \in D$.

Following [1], an integral domain D is said to be an almost pseudo-valuation domain (APVD) if each prime ideal P of D is strongly primary ideal, in the sense that $xy \in P$, $x, y \in K$ implies that either $x^n \in P$ for some $n \ge 1$ or $y \in P$. Equivalently, D is an APVD if and only if D is quasi-local with maximal ideal M such that for every nonzero element $x \in K$, either $x^n \in M$ for some positive integer $n \ge 1$ or $ax^{-1} \in M$ for every nonunit $a \in D$.

In general,

$$\begin{array}{cccc} VD &\Rightarrow& AVD \Rightarrow& PAVD \\ \downarrow && \uparrow \\ PVD &\Rightarrow& APVD \end{array}$$

But none of the above implications is reversible.

As every PVD is necessarily quasi-local [5, Cor 1.3] and a quasi-local domain is PVD if and only if its maximal ideal is strongly prime [5, Theorem 1.4].

Author (with T. Shah) has introduced almost pseudo valuation monoids and pseudo almost valuation monoids in [9]. In [12], authors introduced a generalization of valuation maps by using some different conditions. Recently author, (with A. Taouti) introduced pseudo-valuation maps, and discussed pseudovaluation domains through these maps [10, Theorem 1.4]. Also, author (with T. Shah and A. Taouti) introduced the class of domains (P-Krull domains) through these maps [11].

In this note we continue our study, and first generalize the pseudo-valuation map as an almost pseudo-valuation map v and pseudo-almost valuation map η , then we constructed almost pseudo-valuation domain and pseudo-almost valuation domain through the defined maps. Finally, we discuss a few relationships between these domains.

2. Almost pseudo-valuation map and pseudo-almost valuation map

Here we consider $K^* = K \setminus \{0\}$ is a field and G a partially ordered group. Now we begin with the following definition.

Definition 1. Let $v : K^* \to G$ be an onto map, which has the following properties. For $x, y \in K^*$;

(a) v(xy) = v(x) + v(y)

(b) v(x) < v(y) implies v(x+y) = v(x).

(c) nv(x) = ng > 0, for $n \in \mathbb{Z}^+$ or g = v(x) < nv(y) = nh such that nh > 0, where $g, h \in G$ and h > 0.

In Definition 1, the map v is an extended semi-valuation map. No doubt, (b) implies that it is a quasi-local domain as discussed in [4, p. 180]. Moreover, condition (c) plays an important role, hereafter we call v, the almost pseudovaluation map. From Definition 1 we see that v inherit a specific characteristic in G. We manipulate G in the definition below. **Definition 2.** Let (G, \leq) be a partially ordered group. The partial order \leq is an almost total order if for all $g, h \in G$, there exists some fixed positive integer n such that either $g \leq nh$ (and also $ng \leq nh$) or $h \leq ng$ (and also $nh \leq ng$). We will denote such a group by $G^{\#}$.

Definition 3. A partially ordered set X is said to be directed if every two elements have both an upper bound and a lower bound. A partially ordered group G whose partial order is directed is called directed group [3, p. 2].

Remark 1. The group $G^{\#}$ is directed and not a torsion free.

Let $R_{\upsilon} = \{x \in K : \upsilon(x) \ge 0\}$ be a subset of K^* which is related through the map υ to G. We derive the nature of R_{υ} and we will find that R_{υ} is a basically APVD.

Proposition 1. $R_v = \{x \in K : v(x) \ge 0\}$ is an almost pseudo-valuation domain.

Proof. Clearly $1 \in R_v$ and, by Definition 1(a), R_v is closed under multiplication. If $x, y \in R_v$ then $v(x-y) \ge v(1) = 0$ since $v(x) \ge v(1)$ and $v(y) \ge v(1)$. Thus R_v is a subring of K with identity. The map v is, no doubt, a group homomorphism and its kernel is $U = \{x \in K : v(x) = 0\}$ which shows that U is a group of units of R_v . So R_v is an integral domain. Definition 1(b) shows that R_v is a quasi local domain. Let M be a maximal ideal of R_v , furthermore, let $x \in K \setminus R_v$ so by definition 1(c), $x^n \in M$. Thus R_v is an almost pseudovaluation domain.

Below we give a crucial proposition for a better utilization of a group $G^{\#}$.

Proposition 2. Let D be an integral domain with quotient field K and group of divisibility G. The following are equivalent.

(i) D is an APVD (and hence quasi-local).

(ii) For each $g \in G$, there exist $n \in \mathbb{Z}^+$ such that either ng > 0 or g < nh for all $h \in G$.

Proof. (1) \Rightarrow (2)

Let M be the only maximal ideal in D. Let $g \in G$ such that g = xU, where $x \in K^*$. So, the definition implies if $x^n \in M$ for some positive integer $n \ge 1$, then we have $ng = x^nU > 0$ and if $ax^{-1} \in M$ for any nonunit $a \in D$ such that nh = aU > 0, then $ax^{-1}U = h - g > 0$. Thus g < nh.

 $(2) \Rightarrow (1)$

We first show that D is quasi-local. If D has two distinct maximal ideals Mand N, then choose $x \in M \setminus N$ and $y \in N \setminus M$. Let $ng' = x^n y^{-n} U$ and h = yU. Clearly, $ng' \neq 0$ and $g' \not\leq nh$, while nh > 0 because if g' < nh then this means that $xy^{-1}U < yU$ implies that $xU < y^2U$ and equivalently $y^2D \subset xD \subset M$ and hence $y \in M$ contradiction to our supposition, therefore $g' \not\leq nh$. This contradicts the hypothesis, so D must be local. Let $x \in K$ such that xU = gand $ng = x^nU$, if ng > 0 this implies that $x^n \in M$ and if g < nh then xU < nh. Let a be a nonunit element in D such that nh = aU, obviously nh > 0 and hence $xU < aU \Rightarrow ax^{-1}U > 0 \Rightarrow ax^{-1} \in M$. Hence, D is APVD. **Remark 2.** By above Proposition 2(ii), it becomes clear that $G \cong G^{\#}$ (G is isomorphic to $G^{\#}$). Thus $G^{\#}$ is a group of divisibility of an almost pseudo-valuation domain.

We can discuss all the characteristics of a APVD through the map v. Now, after defining an almost pseudo-valuation map we define pseudo-almost valuation map. In Definition 4 we consider $K^* = K \setminus \{0\}$ is a field and G, a partially ordered group.

Definition 4. Let $\eta : K^* \to G$ be an onto map, which has the following properties. For $x, y \in K^*$;

(a) $\eta(xy) = \eta(x) + \eta(y)$.

(b) $\eta(x) < \eta(y)$ implies $\eta(x+y) = \eta(x)$.

(c) $\eta(x^n) = ng > 0$ or $\eta(y) = h$ such that ng < h for all $h \in G$, where h > 0.

We call η , the pseudo-almost valuation map.

In Definition 4 η inherits a specific property in G, hereafter we denote such a G by $G^{\#\#}$.

Let $R_{\eta} = \{x \in K : \eta(x) \ge 0\}$ be a subset of K^* which is related through the map η to G. We derive the nature of R_{η} and we will find that R_{η} is a basically APVD.

Proposition 3. $R_{\eta} = \{x \in K : \eta(x) \ge 0\}$ is a pseudo almost valuation domain.

Proof. Clearly, $1 \in R_{\eta}$ and, by definition 1(a) R_{η} is closed under multiplication. If $x, y \in R_{\eta}$ then $\eta(x - y) \geq \eta(1) = 0$ since $\eta(x) \geq \eta(1)$ and $\eta(y) \geq \eta(1)$. Thus R_{η} is a subring of K with identity. The map η is no doubt a group homomorphism and its kernel is $U = \{x \in K : \eta(x) = 0\}$, which shows that U is a group of units of R_{η} . So R_{η} is an integral domain. Definition 1(b) shows that R_{η} is a quasi local domain. Let $x \in K \setminus R_{\eta}$, by Definition 1(c), $x^n \in D$ for $n \geq 1$. Thus R_{η} is a pseudo almost valuation domain.

Further we check the validity of our defined map η and group of divisibility $G^{\#\#}$ in Proposition 4.

Proposition 4. Let D be an integral domain with quotient field K and group of divisibility $G^{\#\#}$, then the following are equivalent

(i) D is a PAVD.

(ii) For each $g \in G^{\#\#}$, there exist $n \in \mathbb{Z}^+$ and is fixed, such that either ng > 0 or ng < h for all $h \in G^{\#\#}$, where h > 0.

Proof. (1) \Longrightarrow (2), let $E(D) = \{x \in K \mid x^n \notin D \text{ for every } n \ge 1\}$ if $x \in E(D)$, then clearly $ng \not\ge 0$. As in D, every prime ideal is a pseudo strongly prime, so $x^{-n}M \subset M$. Then for each $m \in M$, $x^{-n}m \in M$. Let xU = g and mU = h > 0, so $(x^{-n}m)U = x^{-n}U + mU = -ng + h > 0$ implies ng < h for each h > 0otherwise g > nh, which follows that $x^n \in D$.

 $(2) \Longrightarrow (1)$ Let M be the maximal ideal of D, to show D is a PAVD we only need to show M is the pseudo strongly prime ideal. For this let $x \in E(D)$

such that $xU = g \in G$, for each integer $n \ge 1$. So for each $m \in M$, we choose mU = h' > 0. Then by the hypothesis ng < h implies that $x^nU < mU$. This implies $mx^{-n}U > 0$ and so $mx^{-n} \in M$. Hence $x^{-n}M \subset M$. So M is a pseudo strongly prime ideal.

Remark 3. From Definition 2 and by Proposition 4 it is clear that $APVD \implies PAVD$. Also, we have $G^{\#\#} \subset G^{\#}$.

Conclusion 1. This study brings a method by which one can discuss each of the characteristics of an almost pseudo-valuation domain and a pseudo almost valuation domain with the help of maps v and η . Furthermore at the base of the maps v and η we can construct new integral domains which can be written as an intersection of almost pseudo-valuation overrings and pseudo-almost valuation overrings. Authors have already introduced the domains that can be written as intersection of pseudo-valuation overrings.

References

- Badawi, A., Houston, E. G., Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conductive domains. Comm. Algebra. 30 (2002), 1591-1606.
- [2] Badawi, A., On Pseudo-almost valuation domains. Comm. Algebra. Vol. 35 (4) (2007), 1167-1181.
- [3] Glass, A. M. W., Partially Ordered Groups. Series in Algebra Vol. 7: World Scientific Publishing Co. Ptc. Ltd 1999.
- [4] Gilmer, R., Multiplicative ideal theory. New York: Marcel Dekker. ing. (1972).
- [5] Hedstrom, J. R., Houston, E. G., Pseudo-valuation domains. Pacific Journal of Mathematics. Vol. 75 (1978), No 1.
- [6] Hutchins, H. C., Examples of commutative rings. USA: Polygonal Publishing House 80 Passaic Avenue Passaic NJ 07055 1981.
- [7] Močkeř, J., Groups of Divisibility. Mathematics and its applications. Dordretcht, Boston, Lancaster: D. Riedel Publishing Company.
- [8] Ohm, J., Semivaluations and groups of divisibility. Canad. J. Math. 21(1969), 576-591.
- [9] Shah, T., Khan, W. A., On some generalized valuation monoids. Novi Sad J. Math. Vol. 41 No. 2 (2011), 111-116.
- [10] Khan, W. A., Taouti, A., Pseudo-valuation maps and pseudo-valuation domains. Appl. Math. Sci. Vol. 7 (2013), No. 17, 799-805.
- [11] Khan, W. A., Shah, T., Taouti, A., Domains like Krull domains and their factorization properties. World Applied Sciences Journal. 22(1) (2013), 121-125.
- [12] Shah, T., Ansari, A. S. On Comparability Conditions and Generalized Valuation Maps. Palestine Journal of Mathematics. Vol. 2(1) (2013), 22–31.

Received by the editors March 3, 2013