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DECOMPOSABLE HAMILTON SPACES

Irena Čomić1 and Hiroaki Kawaguchi2

Abstract. The authors deal with 2(n + m) dimensional Hamilton
space of the first order and consider linear connections. The general lin-
ear connection has 43 = 64 types of connection coefficients. Different
special kinds of linear connection, as almost d-connections, d-connection,
strongly distinguished and almost strongly distinguished connections are
defined. The transformation law of connection coefficients are deter-
mined. Different covariant derivatives which transform as tensors are
obtained. For mentioned different kind of covariant derivatives the tor-
sion and curvature tensors are calculated.
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1. Definitions, natural and adapted bases

The generalization of Finsler spaces began in the second half of the last
century. The first big steps in the direction of spaces of higher orders are
given in [18], [19], which leads to Lagrange spaces of higher order. It is natural
that its dual spaces, the Hamilton spaces, are also investigated. Lagrange and
Hamilton spaces of different orders have been investigated by many authors.
Some of them are mentioned in references [1]-[24].

Let H be a 2(n + m) dimensional manifold, where some point u ∈ H in
some local chart has the coordinates

(1.1) u = (xa, xα, pa, pα) a, b, c, . . . = 1, n, α, β, γ, . . . = 1,m.

If (xa′
, xα′

, pa′ , pα′) are the coordinates of the same point u in some other
coordinate system, then the allowable coordinate transformations are given by
1-1 C∞ functions

xa′
= xa′

(xa) ⇔ xa = xa(xa′
)(1.2)

xα′
= xα′

(xα) ⇔ xα = xα(xα′
)

pa′ = Ba
a′pa ⇔ pa = Ba′

a pa′

pα′ = Bα
α′pα ⇔ pα = Bα′

α pα′ ,
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where

(1.3) Ba′

a = ∂ax
a′
, Ba

a′ = ∂a′xa, Bα′

α = ∂αx
α′
, Bα

α′ = ∂α′xα.

Definition 1.1. The 2(n +m) dimensional C∞ manifold, whose points have
coordinates as in (1.1) and the allowable coordinate transformations are pre-
scribed by (1.2) and (1.3) is called the decomposable Hamilton space.

Remark 1.1. The space H is called decomposable Hamilton space, with the
components H2n and H2m, where (xa, pa) ∈ H2n and (xα, pα) ∈ H2m.

As the transformations (1.2) are regular, so there exist inverse transforma-
tions and we have

(1.4) Ba′

a Ba
b′ = δa

′

b′ , Ba
a′Ba′

b = δab , Bα′

α Bα
β′ = δα

′

β′ , Bα
α′Bα′

β = δαβ .

Theorem 1.1. The transformations of type (1.2) form a pseudo-group.

One example of space H is such a space in which pa = ∂
∂xa , pα = ∂

∂xα .
These elements satisfy the transformation laws given by (1.2). In this special
case pax

b = δba, pαx
β = δβα. In the further examination we shall suppose that

pa and pα are arbitrary elements, which transform as it is prescribed by (1.2).
The natural basis B̄ of T (H) is

(1.5) B̄ =

{
∂a =

∂

∂xa
, ∂α =

∂

∂xα
, ∂ā =

∂

∂pa
, ∂ᾱ =

∂

∂pα

}
.

We shall use overline indices when it is necessary to affirm that they are
related to pa or pα. Where there is no confusion we omit the overlines, for
instance in (1.1).

The elements of B̄ transform in the following way:

∂a = Ba′

a ∂a′ +B b
a′ b′B

b′

a pb∂
ā′

(1.6)

∂α = Bα′

α ∂α′ +B β
α′ β′B

β′

α pβ∂
ᾱ′

∂ā = Ba
a′ ∂̄a′

, ∂ᾱ = Bα
α′∂ᾱ′

The first two elements of B̄ do not transform as tensors, the last two have
this property.

The adapted basis B of T (H) is

(1.7) B = {δa, δα, δā, δᾱ},

where

δa = ∂a −Nab∂
b̄, δā = ∂ā, Nab = Nab(x

a, pa),(1.8)

δα = ∂α −Nαβ∂
β̄ , δᾱ = ∂ᾱ, Nαβ = Nαβ(x

α, pα).
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Theorem 1.2. The necessary and sufficient conditions, that the elements of
B transform as tensors, i.e.

(1.9) δa = Ba′

a δa′ , δα = Bα′

α δα

are the following relations

Na′c′ = NacB
a
a′Bc

c′ −B b
a′ c′pb(1.10)

Nα′β′ = NαβB
α
α′B

β
β′ −B β

α′ β′pβ .

Proof. From δa′ = Ba
a′δa using (1.6) and (1.9) we get

∂a′ −Na′c′∂
c′ = Ba

a′(∂a −Nab∂
b) =

Ba
a′(Bc′

a ∂c′ +B b
a′ c′B

c′

a pb∂
a′
−NacB

c
c′∂

c′).

From (1.4) and the above equation it follows the first equation of (1.10).
The second equation can be proved in a similar way.

The natural basis B̄∗ of T ∗(H) is

B̄∗ = {dxa, dxα, dpa, dxα}.

From (1.2) it follows

dxa = Ba
a′dxa′

, dxα = Bα
α′dxα′

(1.11)

dpa = B a′

a b pa′dxb +Ba′

a dpa′ , dpα = B α′

αβ pα′dxβ +Bα′

α dpα′ .

The adapted basis B∗ of T ∗(H) is given by

(1.12) B∗ = {δxa, δxα, δpa, δpα},

where

δxa = dxa, δxα = dxα(1.13)

δpā = dpā +Mabdx
b,

δpᾱ = dpᾱ +Mαβdx
β ,

where Mab = Mab(x
a, pa), Mαβ = Mαβ(x

α, pα).

Theorem 1.3. The necessary and sufficient conditions that the elements of
B∗ transform as tensors, i.e.

δxa = Ba
a′δxa′

, δxα = Bα
α′δxα′

(1.14)

δpā = Ba′

a δpā′ , δpᾱ = Bα′

α δpᾱ′
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are the following relations:

(1.15) Ma′b′ = B c′

a bB
a
a′Bb

b′pc′ +MabB
a
a′Bb

b′

(1.16) Mα′β′ = B γ′

α βB
α
α′B

β
β′pγ′ +MαβB

α
α′B

β
β′ .

Proof. The proof is similar to the proof of Theorem 1.2.

Theorem 1.4. The duality of natural bases is coordinate invariant, i.e. from
the duality of B̄∗′

and B̄′ follows the duality of B̄∗ and B̄.

Proof. By assumption

(1.17)



dxb′

dxβ′

dpb̄′

dpβ̄′

 [∂a′∂α′∂ā′
∂ᾱ′

] =



δb
′

a′ 0 0 0

0 δβ
′

α′ 0 0

0 0 δā
′

b̄′
0

0 0 0 δᾱ
′

β̄′


Using the matrix form of (1.6) and (1.11) we have

(1.18)



dxb

dtβ

dpb̄

dpβ̄

 = A



dxb′

dtβ
′

dpb̄
′

dpβ̄′



(1.19) [∂a∂α∂
ā∂ᾱ] = [∂a′∂α′∂ā′

∂ᾱ′
]B,

where

A =



Bb
b′ 0 0 0

0 Bβ
β′ 0 0

B c′

b cpc′B
c
b′ 0 Bb′

b 0

0 B γ′

β γpγ′Bγ
β′ 0 Bβ′

β


,

B =



Ba′

a 0 0 0

0 Bα′

α 0 0

B b
a′ b′B

b′

a pb 0 Ba
a′ 0

0 B β
α′ γ′Bγ′

α pβ 0 Bα
α′


.
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Using (1.17), (1.18) and (1.19) we get

dxb

dtβ

dpb̄

dpβ̄

 [∂a∂α∂
ā∂ᾱ] =



δba 0 0 0

0 δβα 0 0

α 0 δā
b̄

0

0 β 0 δᾱ
β̄

 ,

where

α = B c′

b cpc′δ
c
a +Bb′

b B d
b′ c′B

c′

a pd

β = B γ′

β γpγ′δγα +Bβ′

β B γ
β′ γ′B

γ′

α pγ .

We have to prove α = 0, β = 0.

From Bγ
γ′B

γ′

β = δγβ , taking the partial derivative with respect to xα we get

B γ
γ′ β′B

β′

α Bγ′

β +Bγ
γ′B

γ′

α β = 0.

The multiplication of the above equation with pγ results β = 0.
The relation α = 0 can be proved in the similar way.

Theorem 1.5. The adapted basis B∗ of T ∗(H) is dual to the adapted basis B
of T (H) if B̄∗ is dual to B̄ and

(1.20) Mac = Nca, Mαγ = Nγα.

Proof. The equations (1.8) and (1.13) can be written in the matrix form as
follows: 

δxa

δxα

δpā

δpᾱ

 =



δab 0 0 0

0 δαβ 0 0

Mab 0 δb̄ā 0

0 Mαβ 0 δβ̄ᾱ





dxb

dxβ

dpb̄

dpβ̄

 ,

[δcδγδ
c̄δᾱ] = [∂d∂δδ

d̄δδ̄]



δdc 0 0 0

0 δδγ 0 0

−Ncd 0 δc̄
d̄

0

0 −Nγδ 0 δγ̄
δ̄

 .

If we multiply the above two equations and use the duality of B̄∗ and B̄ we
get 

δxa

δxα

δpā

δpᾱ

 [δcδγδ
c̄δγ̄ ] =



δac 0 0 0

0 δαγ 0 0

α 0 δc̄ā 0

0 β 0 δγ̄ᾱ

 ,
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where

α = Mac −Nca β = Mαγ −Nγα.

From the above it follows (1.20).

2. Different kinds of connections on T (H)

To define different kinds of connections on T (H) we need different subspaces
of T (H) and T ∗(H). Some point u ∈ H = H2(n+m) is given by its coordinate
(xa, xα, pa, pα), a = 1, n, α = 1,m. We can consider two families of subspaces:
H2n and H2m of H2(n+m) whose point are given by H2n : (xa, Cα, pa, Cα) and
H2n : (Ca, xα, Ca, pα) respectively, where Ca, Cα, Ca, Cα are constants. From
(1.2) it follows that H2n and H2m are Hamilton spaces and

T (H) = T (H2(n+m)) = T (H2n)⊕ T (H2m),

T ∗(H) = T ∗(H2(n+m)) = T ∗(H2n)⊕ T ∗(H2m),

T (H2n) is generated by {δa, δā}

T (H2m) is generated by {δα, δᾱ}

T ∗(H2n) is generated by {δxa, δpā}

T ∗(H2m) is generated by {δxα, δpᾱ}.

Let us denote by T1, T2, T3, T4 the subspaces of T (H) generated by {δa},
{δα} , {δā}, {δᾱ} and by T ∗

1 , T
∗
2 , T

∗
3 , T

∗
4 the subspaces of T ∗(H) generated by

{δxa}, {δxα}, {δpā}, {δpᾱ} respectively.
Some tensor T on T1 ⊗ T ∗

1 ⊗ T2 ⊗ T ∗
2 ⊗ T3 ⊗ T ∗

3 ⊗ T4 ⊗ T ∗
4 is given by

T = T a·α· · d̄·δ̄
·b ·βc̄ ·γ̄·δa ⊗ δxb ⊗ δα ⊗ δxβ ⊗ δc̄ ⊗ δpd̄ ⊗ δγ̄ ⊗ δpδ̄.

In the chart (U ′, φ′) T has the same form, only all indices obtain the sign
’. Using the transformation law of elements of adapted bases ((1.9), (1.14)) B
and B∗ in U ∩ U ′ we obtain:

(2.1) T a·d · · d̄ · δ̄
·b ·βc̄ ·γ̄ · = T a′· d′· · d̄′· δ̄′

· b′ ·β′c̄′ ·γ̄′· B
ab′dβ′c̄′d̄γ̄′δ̄

a′bd′βc̄d̄′γ̄δ̄′
.

Let us suppose that on T ∗(H)⊗ T ∗(H) one metric tensor g is given.

Theorem 2.1. The necessary and sufficient conditions that the subspaces T ∗
1 ,

T ∗
2 , T ∗

3 , T ∗
4 of T ∗(H) are mutually orthogonal with respect to g is that the

metric tensor has the form:

(2.2) g = gabδx
a ⊗ δxb + gαβδx

α ⊗ δxβ + gāb̄δpā ⊗ δpb̄ + gᾱβ̄δpᾱ ⊗ δpβ̄ .

It is supposed that all components of g are symmetric and rank g = 2(n+m).
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Theorem 2.2. The following equations are coordinate invariant

gabδx
a = δb ⇔ gabδb = δxa(2.3)

gαβδx
α = δβ ⇔ gαβδβ = δxα

gāb̄δpā = δb̄ ⇔ gāb̄δ
b̄ = δpā

gᾱβ̄δpᾱ = δβ̄ ⇔ gᾱβ̄δ
β̄ = δpᾱ

where

gabg
bc = δca, gαβg

βγ = δγα, gāb̄g
b̄c̄ = δc̄ā, gᾱβ̄g

β̄γ̄ = δγ̄ᾱ.

Proof. From the first equation of (2.3) it follows

ga′b′δx
a′

= Ba b
a′b′gabB

a′

c δxc = δac gabB
b
b′δx

c =

Bb
b′gabδx

a = Bb
b′δb = δb′ .

The other relations of (2.3) can be obtained in the similar way.

The necessary conditions for (2.3) are:

gab = gab(x
a, pa) , gāb̄ = gāb̄(xa, pa)

gαβ = gαβ(x
α, pα) , gᾱβ̄ = gᾱβ̄(xα, pα),

i.e. the metric tensor is also decomposable, its matrix has four diagonal blocks,
the first two of them are n × n, the other two m ×m matrices. The first two
are functiones of (xa, pa), the other two of (xα, pα).

We shall use the notations (if T1 : {δa}, T2 : {δα}, T3 : {δā}, T4 : {δᾱ})

(2.4) Th(H) = T1 ⊕ T2 Tv(H) = T3 ⊕ T4.

We have

(2.5) T (H2n) = T1 ⊕ T3, T (H2m) = T2 ⊕ T4.

It is obvious that

(2.6) T (H) = Th(H)⊕ Tv(H) = T (H2n)⊕ T (H2m).

Relations (2.4)-(2.6) are valid if everywhere T is substituted by T ∗, i.e. the
decomposition of the dual tangent space is possible in the same way.



174 Irena Čomić and Hiroaki Kawaguchi

Definition 2.1. The linear connection ∇(T (H)×T (H) → T (H), ∇ : (X,Y ) 7→
∇XY for every X,Y ∈ T (H) is defined by

(a) For x ∈ {a, α}, y ∈ {b, β}(2.7)

∇δxδy = Γ c
y xδc + Γ γ

y xδγ + Γyc̄xδ
c̄ + Γyγ̄xδ

γ̄

(b) for x ∈ {a, α}, ȳ ∈ {b̄, β̄}
∇δxδ

ȳ = Γȳc
xδc + Γȳγ

xδγ + Γȳ
c̄xδ

c̄ + Γȳ
γ̄xδ

γ̄ ,

(c) for x̄ ∈ {ā, ᾱ}, y ∈ {b, β}
∇δx̄δy = Γ cx̄

y δc + Γ γx̄
y δγ + Γ x̄

yc̄ δ
c̄ + Γ x̄

yγ̄δ
γ̄ ,

(d) for x̄ ∈ {ā, ᾱ}, ȳ ∈ {b̄, β̄},
∇δx̄δ

ȳ = Γȳcx̄δc + Γȳγx̄δγ + Γȳ x̄
c̄ δc̄ + Γȳ x̄

γ̄ δγ̄ .

From the above it is obvious that the linear connection has 16 ·4 = 64 types
of connection coefficients.

Definition 2.2. The almost d-connection of the first type (a.d.c.f.t.) is a linear
connection for which Y and ∇XY both belong to T (H2n) or T (H2m) for every
X ∈ T (H). For (a.d.c.f.t.) we have

∇δaδb = Γ c
b aδc + Γbc̄aδ

c̄(2.8)

∇δaδ
b̄ = Γb̄c

aδc + Γb̄
c̄aδ

c̄

∇δāδb = Γ cā
b δc + Γ ā

bc̄ δ
c̄

∇δāδ
b̄ = Γb̄cāδc + Γb̄ ā

c̄ δc̄.

In the above equations X, Y and ∇XY belong to T (H2n).
If in (2.8) we substitute a → α, ā → ᾱ we obtain the other 8 types of

connection coefficients for (a.d.c.f.t.), where X ∈ T (H2m) and Y , ∇XY belong
to T (H2n).

If in (2.8) we make the following changes:

b → β, b̄ → β̄, c → γ, c̄ → γ̄,

we obtain 8 types of (a.d.c.f.t.), where X ∈ T (H2n), Y and ∇XY belong to
T (H2m).

If in thus obtained equations we substitute

a → α, ā → ᾱ

we obtain the last 8 types of (a.d.c.f.t.), where X, Y , ∇XY belong to T (H2m).

From the above it follows that (a.d.c.f.t.) has 4 · 8 = 32 types of connection
coefficients.
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Definition 2.3. The almost d-connection of the second type (a.d.c.s.t.) is a
linear connection in which Y and ∇XY both belong to Th(H) or Tv(H) for
every X ∈ T (H).

For (a.d.c.s.t.) we have

∇δaδb = Γ c
b aδc + Γ γ

b aδγ(2.9)

∇δāδb = Γ cā
b δc + Γ γā

b δγ

∇δaδβ = Γ c
β aδc + Γ γ

β aδγ

∇δāδβ = Γ cā
β δc + Γ γā

β δγ .

In (2.9), Y and ∇XY belong to Th(H).
If in (2.9) we change everywhere a → α, ā → ᾱ we obtain other 8 types of

connection coefficients of (a.d.c.s.t.), where Y and ∇XY belong to Th(H). If
in (2.9) we make the substitution

b → b̄, β → β̄, c → c̄, γ → γ̄

exchanging the upper and lower indexes we obtain such connection coefficients
of (a.d.c.s.t.) in which Y and ∇XY belong to Tv(H). In thus obtained the
formulae we make the substitution a → α, ā → ᾱ.

In this way we obtain 4 · 8 = 32 connection coefficients of (a.d.c.s.t.).

Definition 2.4. The d-connection is a linear connection in which Y and ∇XY
belong to the same subspace T1 or T2, or T3, or T4 of T (H).

The d-connection is defined by the following equations:
For x ∈ {a, α}

∇δxδb = Γ c
b xδc ∇δxδβ = Γ γ

β xδγ(2.10)

∇δxδ
b̄ = Γb̄

c̄xδ
c̄ ∇δxδ

β̄ = Γβ̄
γ̄xδ

γ̄

and for x̄ ∈ {ā, ᾱ}

∇δx̄δb = Γ cx̄
b δc ∇δx̄δβ = Γ γx̄

β δγ(2.11)

∇δx̄δ
b̄ = Γb̄ x̄

c̄ δc̄ ∇δx̄δ
β̄ = Γβ̄ x̄

γ̄ δγ̄ .

From (2.10) and (2.11) it is obvious that for the d-connection there are
8 · 2 = 16 different types of connection coefficients.

Definition 2.5. The strongly distinguished connection (s.d.c.) is a linear con-
nection in which X, Y and ∇XY belong to the same subspace T1 or T2 or T3

or T4 of T (H).
For s.d.c. we have

∇δaδb = Γ c
b aδc ∇δαδβ = Γ γ

β αδγ(2.12)

∇δāδ
b̄ = Γb̄ ā

c̄ δc̄ ∇δᾱδ
β̄ = Γ

¯β ᾱ
γ̄ δγ̄ .
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The other connection coefficients are equal to zero.

Definition 2.6. The almost strongly distinguished connection (a.s.d.c.) is a
linear connection in which X, Y and ∇XY belong to one of T (H2n) or T (H2m).

For X, Y , ∇XY ∈ T (H2n) we have

∇δaδb = Γ c
b aδc + Γbc̄aδ

c̄(2.13)

∇δāδb = Γ cā
b δc + Γ ā

bc̄ δ
c̄

∇δaδ
b̄ = Γb̄c

aδc + Γb̄
c̄aδ

c̄

∇δāδ
b̄ = Γb̄cāδc + Γb̄ ā

c̄ δc̄.

For X, Y , ∇XY ∈ T (H2m) the (a.s.d.c.) connection is obtained from (2.13)
when the substitution (a, b, c, ā, b̄, c̄) → (α, β, γ, ᾱ, β̄, γ̄) is done.

3. The transformation law of connection coefficients

Theorem 3.1. Among 64 types of connection coefficients determined by (2.7)

only four of them: Γ c
b a Γ γ

β α, Γ
b̄
c̄a, Γ

β̄
γ̄α are transforming as connection coef-

ficients (see (3.1)-(3.4), the other are transforming as tensors.

Proof. If in (2.7) we put x = a, y = b we get

∇δa′ δb′ = ∇Ba
a′δaB

b
b′δb = Ba

a′(δaB
b
b′)δb +Ba

a′Bb
b′∇δaδb =

Ba
a′B c

b′ c′B
c′

a δc +Ba
a′Bb

b′(Γ
c

b aδc + Γ α
b aδα + Γbc̄aδ

c̄ + Γbγ̄aδ
γ̄) =

Γ c′

b′ a′Bc
c′δc + Γ α′

b′ a′Bα
α′δα + Γb′c̄′a′Bc′

c δc̄ + Γb′γ̄′a′Bγ′

γ δγ̄ .

From the above we get

δc : Γ
c′

b′ a′Bc
c′ = Γ c

b aB
a
a′Bb

b′ +B c
b′ a′ ,(3.1)

δα : Γ α′

b′ a′Bα
α′ = Γ α

b aB
a
a′Bb

b′

δc̄ : Γb′c̄′a′Bc′

c = Γbc̄aB
a
a′Bb

b′

δγ̄ : Γb′γ̄′a′Bγ′

γ = Γbγ̄aB
a
a′Bb

b′ .

If in (2.7)(a) we put x = α, y = β and using the relation

δαB
β
β′ = B β

β′ γ′B
γ′

α

by the same procedure as before we get

(3.2) Γ γ′

β′ α′B
γ
γ′ = Γ γ

β αB
α
α′B

β
β′ +B γ

α′ β′
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and the other connection coefficients: Γ c′

β′ α′ , Γβ′c̄′α′ , Γβ′γ̄′α′ are transforming
as tensor.

If in (2.7)(a) we put x = a, y = β or x = α, y = b we obtain connection
coefficients which are transforming as tensors, because

δaB
β′

β = 0, δαB
b′

b = 0.

From (2.7)(b) and x = a, ȳ = b̄, using the former procedure we get:

(3.3) Γb̄′

c̄′a′Bc′

c = Γb̄
c̄aB

a
a′Bb′

b +Ba
a′B b′

c a

and for x = α, ȳ = β̄ we get

(3.4) Γ̄β̄′

γ̄′α′B
γ′

γ = Γβ̄
γ̄αB

α
α′B

β′

β +Bα
α′B β′

γ α.

The other connection coefficients appearing in (2.7)(b) are transforming as
tensors.

As Bb
b′ , B

b′

b , Bβ
β′ , B

β′

β are not functiones of pa and pα, we have

δāBb
b′ = 0 δāBβ

β′ = 0 δᾱBb
b′ = 0 δᾱBβ

β′ = 0(3.5)

δāBb′

b = 0 δāBβ′

β = 0 δᾱBb′

b = 0 δᾱBβ′

β = 0.

From the above equations it follows that all connection coefficients appear-
ing in (2.7)(c) and (2.7)(d) are transforming as tensors.

4. Covariant differentials

Using the connections we want to obtain some tensors for which we know
the transformation law.

If X and Y are vector fields in T (H), then in the adapted basis B they have
the decomposition:

X = Xaδa +Xαδα +Xāδ
ā +Xᾱδ

ᾱ

Y = Y bδb + Y βδβ + Yb̄δ
b̄ + Yβ̄δ

β̄ .

Theorem 4.1. For the generalized linear connection ∇ we have:

∇XY = (Y b
|aX

a + Y b
|αX

α + Y b|āXā + Y b|ᾱXᾱ)δb +(4.1)

(Y β
|aX

a + Y β
|αX

α + Y β |āXā + Y β |ᾱXᾱ)δβ +

(Yb̄|aX
a + Yb̄|αX

α + Yb̄|āXā + Yb̄|ᾱXᾱ)δ
b̄ +

(Yβ̄|aX
a + Yβ̄|αX

α + Yβ̄ |āXā + Yβ̄ |ᾱXᾱ)δ
β̄ ,

where

(4.2) Y b
|a = δaY

b + Γ b
c aY

c + Γ b
γ aY

γ + Γc̄b
aYc̄ + Γγ̄b

aYγ̄ .
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If in (4.2) we make the changes a → α we obtain Y b
|α, b → β we obtain

Y β
|a, a → α ∧ b → β we obtain Y β

|α.

(4.3) Y b|ā = δāY b + Γ bā
c Y c + Γ bā

γ Y γ + Γc̄bāYc̄ + Γγ̄bāYγ̄ .

If in (4.3) we make the changes ā → ᾱ, b → β, ā → ᾱ ∧ b → β we obtain
Y b|ᾱ, Y β |ā, Y β |ᾱ respectively. Further:

(4.4) Yb̄|a = δaYb̄ + Γcb̄aY
c + Γγb̄aY

γ + Γc̄
b̄aYc̄ + Γγ̄

b̄a
Yγ̄ .

If in (4.4) we make the changes a → α, b̄ → β̄, a → α ∧ b̄ → β̄ we obtain
Yb̄|α, Yβ̄|a, Yβ̄|α respectively.

We have:

(4.5) Yb̄|ā = δāYb̄ + Γ ā
cb̄ Y c + Γ ā

γb̄ Y
γ + Γc̄ ā

b̄ Yc̄ + Γγ̄ ā

b̄
Yγ̄ .

If in (4.5) we make the changes ā → ᾱ, b̄ → β̄, ā → ᾱ ∧ b̄ → β̄ we obtain
Yb̄|ᾱ, Yβ̄ |ā and Yβ̄ |ᾱ respectively.

Theorem 4.2. All covariant derivatives determined by (4.2)-(4.5) and those
obtained by changing the indices, i.e. all 16 appearing in (4.1) transform as
tensors.

Proof. The proof follows from (3.1)-(3.5). For instance, we prove

(4.6) Y b′

|a′ = Bb′

b Ba
a′Y b

|a.

From (4.2) it follows that we have to prove that δaY
b +Γ b

c aY
c is a tensor,

because the next three terms in Y b
|a are tensors.

From (3.1) and δa′Y b′ = Ba
a′Bb′

b (δaY
b) +B b′

a bB
a
a′Y b the statement follows.

In the further consideration we shall restrict ourselves to the almost strongly
d. connection defined by (2.13).

Theorem 4.3. For X ∈ T (H2n), Y ∈ T (H), i.e.

X = Xaδa +Xāδ
ā, Y = Y bδb + Y βδβ + Yb̄δ

b̄ + Yβ̄δ
β̄

and for a.s.d. connection we have

∇XY = Y b
|aX

aδb + Y b|āXāδb + Yb̄|aX
aδb̄ + Yb̄|āXāδ

b̄ +(4.7)

Y β
|aX

aδβ + Y β |āXāδβ + Yβ̄|aX
aδβ̄ + Yβ̄ |āXāδ

β̄ ,
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where

Y b
|a = δaY

b + Γ b
c aY

c + Γc̄b
aYc̄(4.8)

Y b|ā = δāY b + Γ bā
c Y c + Γc̄bāYc̄

Yb̄|a = δaYb̄ + Γcb̄aY
c + Γc̄

b̄aYc̄

Yb̄|ā = δāYb̄ + Γ ā
cb̄ Y c + Γc̄ ā

b̄ Yc̄

Y β
|a = δaY

β , Y β |ā = δāY β , Yβ̄|a = δaYβ̄ , Yβ̄ |ā = δāYβ̄ .

If
Y β = Y β(xα, pα) and Yβ̄ = Yβ̄(x

α, pα),

then
Y β

|a = 0, Y β |ā = 0, Yβ̄|a = 0, Yβ̄ |ā = 0.

For X ∈ T (H2m), i.e. X = Xαδα + Xᾱδ
ᾱ and Y ∈ T (H) (4.7) and (4.8)

change in such a way that (a, ā, b, b̄, c, c̄, β, β̄, a, ā) from (4.7) and (4.8) became
(α, ᾱ, β, β̄, γ, γ̄, b, b̄, α, ᾱ) respectively.

Theorem 4.4. For the s.d. connection we have

(4.9) ∇XY = Y b
|aX

aδb + Y β
|αX

αδβ + Yb̄|āXāδ
b̄ + Yβ̄ |ᾱXᾱδ

β̄ ,

where the covariant derivative of Y are given by

(4.10) Y b
|a = δaY

b + Γ b
c aY

c

(4.11) Y β
|α = δαY

β + Γ β
γ αY

γ

(4.12) Yb̄|ā = δāYb̄ + Γc̄ ā
b̄ Yc̄

(4.13) Yβ̄ |ᾱ = δᾱYβ̄ + Γγ̄ ᾱ

β̄
Yγ̄ .

If ω is a 1-form field in T ∗(H), then

(4.14) ω = ωaδx
a + ωαδx

α + ωāδpā + ωᾱδpᾱ.

For the s.d. connection we define

∇δaδx
b = Γ̄b

caδx
c, ∇δαδx

β = Γ̄β
γαδp

γ(4.15)

∇δāδpb̄ = Γ̄ c̄ā
b̄ δpc̄, ∇δβ̄δpᾱ = Γ̄ γ̄β̄

ᾱ δpγ̄ .
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Theorem 4.5. For the s.d. connection the following relations are valid

(4.16) Γ̄b
ca = −Γ b

c a, Γ̄
β
γα = −Γ β

γ α, Γ̄
c̄ā

b̄ = −Γc̄ ā
b̄ , Γ̄ γ̄β̄

ᾱ = −Γγ̄ β̄
ᾱ .

Proof. As B and B∗ are dual adapted bases of T (H) and T ∗(H) respectively,
we have

⟨δxb, δa⟩ = δba, ⟨δxβ , δα⟩ = δβα,

⟨δb̄, δā⟩ = δāb̄ , ⟨δpβ̄ , δᾱ⟩ = δᾱβ̄ .

From the above equations it follows

∇δc⟨δxb, δa⟩ = 0 ⇒

⟨∇δcδx
b, δa⟩+ ⟨δxb,∇δcδa⟩ = 0

⟨Γ̄b
dcδx

d, δa⟩+ ⟨δxb,Γ d
a cδd⟩ = 0

Γ̄b
ac + Γ b

a c = 0 ⇒ Γ̄b
ac = −Γ b

a c.

The other relations in (4.16) can be proved in the same way.

5. The torsion and curvature tensors

We shall consider the almost strongly distinguished connection (given by
Definition 2.6). As

(5.1) T (X,Y ) = ∇XY −∇Y X − [X,Y ]

we first calculate the Lie bracket of basis vectors of T (H2n). We have

[δaδb] = Ωac̄b∂
c̄ = −(∂aNbc −Nad∂

d̄Nbc)∂
c̄ + (a|b)(5.2)

[δa, δ
b̄] = Ω b̄

ac̄ ∂
c̄ = ∂ b̄Nac∂

c̄

[δā, δb] = Ωā
c̄b∂

c̄ = −∂āNbc∂
c̄

[δā, δb̄] = 0,

see (1.8) and (a|b) is the previous expression in which a and b change the places.

Theorem 5.1. For X,Y ∈ T (H2n) and almost strongly distinguished connec-
tion we have

T (X,Y ) = (T c
b aδc + Tbc̄aδ

c̄)XaY b +(5.3)

(T b̄c
aδc + T b̄

c̄aδ
c̄)XaYb̄ +

(T cā
b δc + T ā

bc̄ δc̄)XāY
b +

(T b̄cāδc + T b̄ ā
c̄ δc̄)XāYb̄,
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where

T c
b a = Γ c

a b − Γ c
b a Tbc̄a = Γbc̄a − Γac̄b − Ωac̄b(5.4)

T b̄c
a = Γb̄c

a − Γ cb̄
a T b̄

c̄a = Γb̄
c̄a − Γ b̄

ac̄ − Ω b̄
ac̄

T cā
b = Γ cā

b − Γāc
b T ā

bc̄ = Γ ā
bc̄ − Γā

c̄b − Ωā
c̄b

T b̄cā = Γb̄cā − Γācb̄ T b̄ ā
c̄ = Γb̄ ā

c̄ − Γā b̄
c̄ .

For X,Y ∈ T (H2m) (5.1)-(5.4) are valid, only the changes (a, b, c, d) →
(α, β, γ, δ) have to be made.

It is obvious that for the almost distinguished connection in T (H2n+2m) we
obtain the torsion tensor of T (H2n) and T (H2m) separately.

Theorem 5.2. For the s.d. connection and X,Y ∈ T (H2n) the torsion tensor
has the form

T (X,Y ) = (T c
b aδc − Ωac̄bδ

c̄)XaY b +(5.5)

T b̄ ā
c̄ δc̄XāYb̄ − Ω b̄

ac̄δ
c̄XaYb̄ − Ωā

c̄bδ
c̄XāY

b,

where the above components of T and Ω are given by (5.2) and (5.4).

For the s.d. connection and X,Y ∈ T (H2m) (5.2) and (5.5) are valid, only
the changes (a, b, c, d) → (α, β, γ, δ) have to be made.

The curvature tensor is as usually defined by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

Theorem 5.3. For X,Y, Z ∈ T (H2n) i.e.

(5.6) X = Xaδa +Xāδ
ā, Y = Y bδb + Yb̄δ

b̄, Z = Zcδc + Zc̄δ
c̄

and a.s.d. connection, the curvature tensor is given by

R(X,Y )Z =(5.7)

(R d
c baδd +Rcd̄baδ

d̄)XaY bZc + (R d ā
c b δd +R ā

cd̄bδ
d̄)XāY

bZc +

(R db̄
c aδd +R b̄

cd̄ aδ
d̄)XaYb̄Z

c + (Rc̄d
baδd +Rc̄

d̄baδ
d̄)XaY bZc̄ +

(R db̄ā
c δd +R b̄ā

cd̄ δd̄)XāYb̄Z
c + (Rc̄d ā

b δd +Rc̄ ā
d̄b δ

d̄)XāY
bZc̄ +

(Rc̄db̄
aδd +Rc̄ b

d̄ aδ
d̄)XaYb̄Zc̄ + (Rc̄db̄āδd +Rc̄ b̄ā

d̄ δd̄)XāYb̄Zc̄.
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The components of the curvature tensors have the form:

R d
c ba = K d

c ba +Ωac̄bΓ
dc̄
c ,

K d
c ba = (δaΓ

d
c b + Γ f

c bΓ
d
f a + Γcf̄bΓ

f̄d
a)− (a|b),

Rcd̄ba = Kcd̄ba +Ωac̄bΓ
c̄

cd̄ ,

Kcd̄ba = (δaΓcd̄b + Γ f
c bΓfd̄a + Γcf̄bΓ

f̄

d̄a
)− (a|b),

R d ā
c b = K d ā

c b +Ωā
c̄bΓ

dc̄
c ,

K d ā
c b = δāΓ d

c b + Γ f
c bΓ

dā
f + Γcf̄bΓ

f̄dā − (ā|b),

R ā
cd̄b = K ā

cd̄b +Ωā
c̄bΓ

c̄
cd̄ ,

K ā
cd̄b = δāΓcd̄b + Γ f

c bΓ
ā

f d̄ + Γcf̄bΓ
f̄ ā

d̄
− (ā|b), . . . ,

or shorter

Rxyuv = Kxyuv +Ωvc̄uΓ
c̄

xy(5.8)

x ∈ {c, c̄}, y ∈ {d, d̄}, u ∈ {b, b̄}, v ∈ {a, ā}

Kxyuv = (δvΓxyu + Γ f
x uΓfyv + Γxf̄uΓ

f̄
yv)− (u|v)

and only Ωac̄b, Ω
b̄

ac̄, Ω
ā
c̄b given by (5.2) are different from zero.

Remark 5.1. For X,Y, Z ∈ T (H2m) and the a.s.d. connection Theorem 5.3
is valid when the Latin indices change to the corresponding Greek indices.

Theorem 5.4. For X,Y, Z ∈ T (H2n) (see (5.6)) and s.d. connection the
curvature tensor is given by

R(X,Y )Z = R d
c baX

aY bZcδd +Rc̄ b̄ā
d̄ XāYb̄Zc̄δ

d̄,

where

R d
c ba = (δaΓ

d
c b + Γ f

c bΓ
d
f a)− (a|b)

Rc̄ b̄ā
d̄ = (δāΓc̄ b̄

d̄ + Γc̄ b̄
f̄ Γf̄ ā

d̄
)− (ā|b̄).

Remark 5.2. For X,Y, Z ∈ T (H2m) and s.d. connection Theorem 5.4 is
valid when the Latin indices change to the corresponding Greek indices.
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[6] Čomić, I., The curvature theory of strongly distinguished connection in the re-
current K-Lagrangian spaces. Scientific Bull. of the Politechnic Inst. Bucharest,
Electrical Engineering Series vol. 53, 3-4 (1991) 79-86.
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[9] Čomić, I., Kawaguchi H., Integrability conditions and the curvature theory in
T (OsckM), Tensor Vol. 60 (1998), 74-88.

[10] Čomić, I., Kawaguchi, H., Some invariants in Miron’s OsckM . Annales Univ.
Sci Budapest 44 (2002), 179–192.
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