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DECOMPOSABLE HAMILTON SPACES
Irena Comié® and Hiroaki Kawaguchi®

Abstract. The authors deal with 2(n 4+ m) dimensional Hamilton
space of the first order and consider linear connections. The general lin-
ear connection has 43 = 64 types of connection coefficients. Different
special kinds of linear connection, as almost d-connections, d-connection,
strongly distinguished and almost strongly distinguished connections are
defined. The transformation law of connection coefficients are deter-
mined. Different covariant derivatives which transform as tensors are
obtained. For mentioned different kind of covariant derivatives the tor-
sion and curvature tensors are calculated.
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1. Definitions, natural and adapted bases

The generalization of Finsler spaces began in the second half of the last
century. The first big steps in the direction of spaces of higher orders are
given in [18], [19], which leads to Lagrange spaces of higher order. It is natural
that its dual spaces, the Hamilton spaces, are also investigated. Lagrange and
Hamilton spaces of different orders have been investigated by many authors.
Some of them are mentioned in references [1]-[24].

Let H be a 2(n + m) dimensional manifold, where some point v € H in
some local chart has the coordinates

(1.1) u= (2% z%pa,pa) abc,...=1n, a,B,y,...=1m.

If (x“/7 xo‘/7pa/7pa/) are the coordinates of the same point u in some other
coordinate system, then the allowable coordinate transformations are given by
1-1 C*° functions

(1.2) z* =z% (2%) & 2 =2%(z?)

Par = Bg’pa <~ Pa = Bg Da’

Par = Bg’pa < Po = Bg DPa’,
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where

/ ’ ’

(1.3) BZ, =0,2%, B =0y2% By =0,x%, BS =0y
Definition 1.1. The 2(n + m) dimensional C* manifold, whose points have
coordinates as in () and the allowable coordinate transformations are pre-
scribed by (I2) and (3) is called the decomposable Hamilton space.

Remark 1.1. The space H 1is called decomposable Hamilton space, with the
components Hap and Hay,, where (x%,p,) € Hap and (2%, pg) € Hop.

As the transformations (IC2A) are regular, so there exist inverse transforma-
tions and we have

(1.4) BYBg =6y, BYBY =6¢, BYBS =43, BB =65

Theorem 1.1. The transformations of type (I2) form a pseudo-group.

One example of space H is such a space in which p, = %, Pa = aga'

These elements satisfy the transformation laws given by (IZ2). In this special

case par’ = 6%, pox® = 65. In the further examination we shall suppose that

pa and p,, are arbitrary elements, which transform as it is prescribed by (I2).
The natural basis B of T(H) is

_ ) 0 o 9 . 0
(1.5) B‘{“_axa’a‘*_axa’a = 5,0 _apa}'

We shall use overline indices when it is necessary to affirm that they are
related to p, or p,. Where there is no confusion we omit the overlines, for
instance in (IT).

The elements of B transform in the following way:

(1.6) 8o = BY 9y + B,b, BY pyo
0o = B Oar + B 5 BE pso™
0" = BLo", 0% =By
The first two elements of B do not transform as tensors, the last two have

this property.
The adapted basis B of T(H) is

(1.7) B = {84,084, 0%, 6%},
where
(1.8) 0o =0 — Nupd®, 6% = 0% Nup = Nup (2%, o),

0o = 0 — Napd®, 6% =0% Nup = Nap(2®, pa).
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Theorem 1.2. The necessary and sufficient conditions, that the elements of
B transform as tensors, i.e.

’

(1.9) 80 =B84, 6o =B b,
are the following relations
(1.10) Nyer = NoeB% BS — Byl oy
Nurgr = NapBU B, — B, 5 ps.
Proof. From 4, = B% ¢, using ([CA) and (IU) we get
O = Norwd” = B (00 — Nap0") =
Bl (Bg 0 + B,/ o By pod” — NacBo0”).

From (IA) and the above equation it follows the first equation of (ICIM).
The second equation can be proved in a similar way. O

The natural basis B* of T*(H) is
B* = {dz",dx®,dp,,dzs}.
From (I2) it follows
(111)  da® = B%da®, da® = B%dz®
dp, = B, pwrda® + B dpyr,  dpa = B,§ parda® + BS dp.

The adapted basis B* of T*(H) is given by

(1.12) B* = {02°,02%,0pa, 0pa },
where
(1.13) o0x® =dz®, 0z =dx®

6pa = dpg + Mapdz®,
Opa = dpa + Ma,@dxﬁ,
where Ma, = Moy (2%, pa), Mag = Mag(z®, pa)-

Theorem 1.3. The necessary and sufficient conditions that the elements of
B* transform as tensors, i.e.

(1.14) 62% = B% 6z,  0x® = B0z

0pa = Bglépa'a dpa = Bg/épa/
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are the following relations:

(1.15) My = BE B Bbpe + MBS B,
(1.16) Mo g = B, ;BSBj,py + MapBa By,
Proof. The proof is similar to the proof of Theorem 2. U

Theorem 1.4. The duality of natural bases is coordinate invariant, i.e. from
the duality of B* and B’ follows the duality of B* and B.

Proof. By assumption

dazt’ (6% 0 0 0 ]

dz? o 0 65 0 o
(1.17) [0 00 0% 0V = y

dpy, 0 0 & 0

de/ L 0 0 0 6%, ]

Using the matrix form of ([H) and () we have

daxb dz?
dt? dt?’
(1.18) =A .
dpy dp®
(1.19) [0,020%0%] = [04 000" 0% B,
where _
B}, 0 0 0
B
0 By, 0 0
A: ’ ’ ’
B¢ .per By, 0 BY 0
]
I 0 BJ pyBj 0 By
[ B¢ 0 0 0 |
0 B 0 0
B= ,
Ba/bb’ngb 0 Bg/ 0
ﬂ ’
I 0 B, Blps 0 B |
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Using (ITT7), (IIX) and (CT9) we get

dx? $ 0 0 0

dt? o 0 & 0 0
[040,0%0%) = ) :

dpg a 0 (5}% 0

dp 3 0 B 0 (5%

where
Q= BbC/cpC’(S; + Bngb’dc/B;/pd
o ’ /B/ /7
8=B7 p.&+BS By Blp,.

We have to prove a =0, 5 =0.
From BJ, B = ¢}, taking the partial derivative with respect to = we get

B,BYB) + BB, =0.

v B a B
The multiplication of the above equation with p, results 8 = 0.
The relation o = 0 can be proved in the similar way. O

Theorem 1.5. The adapted basis B* of T*(H) is dual to the adapted basis B
of T(H) if B* is dual to B and

(1.20) Mae = New, Moy = Ny

Proof. The equations (IR) and (ICI3) can be written in the matrix form as
follows:

Sz oy 0 0 0 dab
ox® 0 6 0 0 dxzP
0pa B My 0 (52 0 dpy ,
3pa 0 My 0 2] [ dps
6d 0 0
0 & 0 0

[6:6,6°6%] = [04050767)

“Nea 0 35 0

0 —Nyu 0 6]

If we multiply the above two equations and use the duality of B* and B we
get

Sz & 0 0 0
oz o 0 6 0 0

[6.6,0°67] = ) :
0pa a 0 & 0

5pa 0 B 0 62
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where
a=Mu.— Neq B:Ma’y_N'yow
From the above it follows (I20). O

2. Different kinds of connections on 7'(H)

To define different kinds of connections on T'(H) we need different subspaces
of T(H) and T*(H). Some point v € H = Hy(y, 1, is given by its coordinate
(% 2%, Do, Pa), a = 1I,n, « = 1,m. We can consider two families of subspaces:
Hyy, and Hay, of Hy( 4,y Whose point are given by Ha, @ (2%, C¥, pq, C,) and
Hsy, 0 (C*, 2%, Cy, po) respectively, where C%, C*, C,, C, are constants. From
() it follows that Hs, and Ha,, are Hamilton spaces and

T(H) =T (Hypnim)) = T(Han) © T(Hom),
T"(H) = T"(Ha(nm)) = T"(Han) ® T" (Ham),
T(Hs,) is generated by {d,, 5%}

T(Ha,,) is generated by {d,, 5%}

T*(Hay,) is generated by {0z, dps }

T*(Hay,) is generated by {dz%, dpa}-

Let us denote by Ty, T, T3, Ty the subspaces of T(H) generated by {d,},
{0a} , {09}, {69} and by T}, Ty, T, T the subspaces of T*(H) generated by
{6z}, {0z}, {Opa}, {0pa} respectively.

Some tensor T'on 11 R T} @ Tr @ T35 @ T3 @ Ty @ Ty ® Ty is given by

T = T%%: %06, © 62° © 6, ® 62° © 6° © 6p; © 57 ® 8p;.

In the chart (U’,¢’) T has the same form, only all indices obtain the sign
’. Using the transformation law of elements of adapted bases ((I19), (I14)) B
and B* in U N U’ we obtain:

ad--d-5 _pa-d- - d-§ pob'ds'cdy's
(2.1) T ge 5. =T g5 By pears -

Let us suppose that on T*(H) ® T*(H ) one metric tensor g is given.

Theorem 2.1. The necessary and sufficient conditions that the subspaces Ty,
T3, Ty, Ty of T*(H) are mutually orthogonal with respect to g is that the
metric tensor has the form:

(22) g = gapdz® @ oz’ + 9ap0z® ® o8 + gag5pa ® op; + gaﬁépd ® dpg-

It is supposed that all components of g are symmetric and rank g = 2(n+m).
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Theorem 2.2. The following equations are coordinate invariant
(2.3) Gapdz® = 0 <= g8y, = dz°

Gapdr® =05 < g*Po5 = 62

gab5pa =5 e gagtsb = 0pa

9&5519& = = gaﬁ’&'é = dpa

where
9avg" =05, gapd™ = 0%, 939" =065, 9apg” =02
Proof. From the first equation of (E33) it follows
Gy 0% = BL, gup B 63° = 6% gq, B 62 =
BY gapdz® = By = 6y
The other relations of (E23) can be obtained in the similar way. O

The necessary conditions for (2Z3) are:

Gab = gab(xaapa) 3 gaE = ga5($a>pa)
Jap = 9a5($a7pa) ) g&B = g&B(xavpa)7

i.e. the metric tensor is also decomposable, its matrix has four diagonal blocks,
the first two of them are n x n, the other two m x m matrices. The first two
are functiones of (z%,p,), the other two of (%, py).

We shall use the notations (if Ty : {04}, T2 : {00}, T3 : {6%}, Ty : {6°})

(2.4) ThWH)y=Th&Ty, T,H)=T3®Ty.
We have
(2.5) T(Hop)=T1®&T3, T(Hom)=ToPTy.

It is obvious that
(2.6) T(H) = Tu(H) ® To(H) = T(Han) & T(Han).

Relations (E4)-(2@) are valid if everywhere T is substituted by T*, i.e. the
decomposition of the dual tangent space is possible in the same way.
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Definition 2.1. The linear connection V(T(H)xT(H) - T(H), V : (X,Y) —
VxY for every X, Y € T(H) is defined by

(2.7) (a) Forz € {a,a}, ye{b S}
Vi,0y =D 00 + T ,0y 4 Tyepd® 4 Tyypd?

(b) forz € {a,a}, 7e{b s}

Vs, o = ngdc + Fgl&y + Fg&xcsé + Fgfymfs;yv
(c) forze{a,a}, ye{bp}

Vsaby =6 +T,)%0, +T,26°+T,257,
(d) forzc{a,a}, yecibp},

Vs 6¥ = TV75, + D975, + T926° + T%767.

From the above it is obvious that the linear connection has 16-4 = 64 types
of connection coefficients.

Definition 2.2. The almost d-connection of the first type (a.d.c.f.t.) is a linear
connection for which' Y and VxY both belong to T(Ha,) or T(Hay,) for every
X € T(H). For (a.d.c.f.t.) we have

(2.8) Vs,05 = T y0c + Dycad”
V5,80 =I5, +1%,,6°
Vgady = T80, + 1, 26°
Vgad? = IO, + T0A6°.

In the above equations X, Y and VxY belong to T(Ha,,).

If in (E8) we substitute a — «, @ — & we obtain the other 8 types of
connection coefficients for (a.d.c.f.t.), where X € T(Ha,,) and Y, VxY belong
to T(H2n).

If in () we make the following changes:

b= B8, b—=B, c—7v, =7,
we obtain 8 types of (a.d.c.f.t.), where X € T(Ha,), Y and VxY belong to

T(Hom).
If in thus obtained equations we substitute

a— o, a—

we obtain the last 8 types of (a.d.c.f.t.), where X, Y, VxY belong to T'(Hay, ).
From the above it follows that (a.d.c.f.t.) has 4-8 = 32 types of connection
coefficients.
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Definition 2.3. The almost d-connection of the second type (a.d.c.s.t.) is a
linear connection in which Y and VxY both belong to Ty (H) or T,(H) for
every X € T(H).

For (a.d.c.s.t.) we have

(2.9) Vs, 0 = D\Cude + 1,00,
Vsady = Fbcaéc =+ Fb7657
V(;aélg = Fﬁcaéc + Fﬁ’ya&y

Vsadg = F,Bcatsc + F/gﬁ&y.

In (£9), Y and VxY belong to Ty, (H).

If in (Z9) we change everywhere a — «, @ — @ we obtain other 8 types of
connection coefficients of (a.d.c.s.t.), where Y and VxY belong to Tj,(H). If
in (Z9) we make the substitution

b—b B—B, c—E v—=7

exchanging the upper and lower indexes we obtain such connection coefficients
of (a.d.c.s.t.) in which Y and VxY belong to T,,(H). In thus obtained the
formulae we make the substitution a — o, @ — a.

In this way we obtain 4 - 8 = 32 connection coefficients of (a.d.c.s.t.).

Definition 2.4. The d-connection is a linear connection in whichY and VxY
belong to the same subspace Ty or Ty, or T3, or Ty of T(H).

The d-connection is defined by the following equations:

For x € {a,a}

(2.10) Vs, 00 =1y 50c Vs,08 = Fgw(SW

Vs, 6 = TP _s° V5,6 =17,8
and for & € {a, a}
(2.11) Vsz0p = [0, Vszds =T776,

Vsed” = T2767.
From (200) and (EI) it is obvious that for the d-connection there are

8 - 2 = 16 different types of connection coefficients.

Definition 2.5. The strongly distinguished connection (s.d.c.) is a linear con-
nection in which X, Y and VxY belong to the same subspace Ty or Ty or T3
orTy of T(H).

For s.d.c. we have

(2.12) V5,00 =T00c Ve,05 =T7 0,

Vsedl = 1057 Vyad? =10 %67,

le
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The other connection coefficients are equal to zero.

Definition 2.6. The almost strongly distinguished connection (a.s.d.c.) is a
linear connection in which X,Y and VxY belong to one of T(Hzy,) or T(Hapm,).

For X, Y, VxY € T(Hs,) we have
(2.13) Vs, 00 = 1,0 + Tyead®
Vsady = D585, + [,36°
Vs, 60 =T 5, + T 5°
Vgad? = a5, + T005°.
For X, Y, VxY € T(Hap) the (a.s.d.c.) connection is obtained from (2713)
when the substitution (a,b,c,a,b,¢) = (o, 8,7, @, 3,7) is done.
3. The transformation law of connection coefficients

Theorem 3.1. Among 64 types of connection coefficients determined by (2-2)

only four of them: I', €, Fﬂﬁya, Fgéa, Fﬁ;ya are transforming as connection coef-

ficients (see (B)-(BA), the other are transforming as tensors.
Proof. If in (E20) we put = a, y = b we get
V(;a, Op = VBZ,tSaBll;’db = Bgl(éaBg/)(sb + Bg/BZIV(;a(Sb =
B%ByE wBE 8, + BY B (T80 + Ty %00 + Tozad® + Tipsad?) =
Uy 0 BESe + Ty B 6o + Diyerar BE 0° + Tyrrr BY 7.
From the above we get

(31) 66 . Fb/C/ /Bsr = Fbca g/Bg/ + Bb,(;

a a’

6o : Ty* B =T, BY B,
6% : TywaBS =TheaBLBY
87 : Ty BY =Ty BB
If in (220)(a) we put « = «, y =  and using the relation
aBj =By . BY
by the same procedure as before we get

5’ Y _1p 8 v
(3.2) ry) . B) =T, B&BS + B, 4
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and the other connection coefficients: FB?, o Lsrerar, Dgrgrar are transforming
as tensor.

If in (E7)(a) we put £ = a, y = § or ¢ = «, y = b we obtain connection
coefficients which are transforming as tensors, because

8B =0, S.Bf =0.
From (222)(b) and 2 = a, § = b, using the former procedure we get:
(3.3) ", B¢ =1°. B%BY + B4B.Y
and for = o, § = 3 we get
=B ' _ 1B a pb’ a !
(3.4) [7,,B] =T",,B%B; +BYB.°,.

The other connection coefficients appearing in (222)(b) are transforming as
tensors. ,
As Bf,, Bg , Bg,, Bg are not functiones of p, and p,, we have

(3.5) 8By =0 §"Bj, =0 By =0 B =0

By =0 §°Bj =0 &°Bf =0 6°Bj =0.

From the above equations it follows that all connection coefficients appear-
ing in (270)(c) and (272)(d) are transforming as tensors. O

4. Covariant differentials

Using the connections we want to obtain some tensors for which we know
the transformation law.

If X and Y are vector fields in T'(H), then in the adapted basis B they have
the decomposition:

X = X%+ X% + X350 + X56°
Y =Y 0, + Y785 + Y30° + Y587,
Theorem 4.1. For the generalized linear connection V we have:
(4.1) VxY = (Y, X"+ Y5 X"+ V" X5 + Y 1" X5)0, +
(YﬁaXa + YﬁlaXa + Yﬁ|aX@ + Yﬁ|aX07)55 +
(Yia X + Yo X + Y3l Xa + Y5|* Xa)8" +

(Y3, X+ Y5, X“ + Y5|°Xa + V3% X5)0”,

(4.2) Y0, =6, +T. Yo+ Y +T%,Ye +T7,Y5.
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If in (23) we make the changes a — o we obtain Y . b — 3 we obtain
B

lo®

yB

la’

a— aAb— [ we obtain Y

(43) Yb|ﬁ _ 66}/1) =+ Fcbéyc + F}yb@y’}’ + I‘\EbﬁYE + F'T/ble:/.

If in (B23) we make the changes a — a, b — , a = @ Ab — [ we obtain
Y% VP2 YB|% respectively. Further:

(4.4) Yoo =0aYs + DY+ T 5, Y7 + 1% Yo + 17, V5.

If in (Z4) we make the changes a — o, b — 3, a — a Ab — [ we obtain
Yija» Y5ia> Y5|a respectively.

We have:
(4.5) Yi|* =00V + T Y+ T Y7 + T, + 17,5,

If in (Z3) we make the changes @ — &, b — 3, @ — a@ A b — [ we obtain
Y3|%, Y5|* and Yj3| respectively.
Theorem 4.2. All covariant derivatives determined by (B2)-(B3) and those
obtained by changing the indices, i.e. all 16 appearing in (BE1) transform as

tensors.

Proof. The proof follows from (B)-(BH). For instance, we prove
(4.6) vt =B BLY",.

From (E22) it follows that we have to prove that 6,Y?° +T'.°, Y is a tensor,
because the next three terms in Ybl . are tensors.

From (B1) and 0, Y" = B% B} (8,Y?) + B,", B%Y" the statement follows.
O

In the further consideration we shall restrict ourselves to the almost strongly
d. connection defined by (E13).

Theorem 4.3. For X € T(Hsy,), Y € T(H), i.e.

X = X%, + Xa0%, Y =Y 0, + Y735 + Y30 + Y56°
and for a.s.d. connection we have
(A7) VxY = Y X+ V" Xa6, + Yy, X0 + V| X0 +

YA, X5 + Y P17 X405 + Y5, X 67 + V5|7 X,07,



Decomposable Hamilton spaces 179

where
(4.8) Y, =6 Y +T. Y +T Y,
Yb'?l — 6ﬁyb _|_ Fcbﬁyc + FEb&}/E
Vijo = 6aY5 + Do Y+ 1%, Yz
}/B|& — 66}/6 + chﬁyc _|_1—\EE§‘)/E
B _ B Bia __ sav B -~ -~ |a __ savys_
Vi, =0YP YOr =8P Y5, =0.Y; Y| =8V
If
vh = Yﬁ(xavpa) and YB = Yﬁ(xavpu)v
then

B _ Bla _ o _la
Y, =0, YP[" =0, Yy, =0, V5" =0.

For X € T(Hzp), i.e. X = X% + Xa0® and Y € T(H) (270) and (E3)
change in such a way that (a,a,b,b,¢,¢, 3, 3, a,a) from (E=2) and (E=) became
(o, @, B, 8,7,7,b,b, a, &) respectively.

Theorem 4.4. For the s.d. connection we have
(4.9) VXY = Y4, X + Y, X055 + V[ " Xa0® + Y3|* Xad”,
where the covariant derivative of Y are given by

4.10 Yt =6, YP 4.0 Ve
|a c a

(4.11) v

la

=6YP4+T.° Y7
(412) }/%)‘d == 5&}/2; + FEBEY5

(4.13) Y5|% =65 + 17 Y5
If w is a 1-form field in T*(H), then

(4.14) W= Wedx® + wabx® + wopg + W pas.
For the s.d. connection we define

(4.15) Vs, 0xb =T  6x°, Vs dzP = 1_1570[(51)'Y

Vsadpy = [3%0pe,  Vsadpa = féigép;/-
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Theorem 4.5. For the s.d. connection the following relations are valid

(4.16) f‘bca = _Fcbcw fﬂva = _F“/Bcw f‘Eaa = _FéEa f‘(;YB = -1 B'

) «@

Proof. As B and B* are dual adapted bases of T(H) and T™*(H ) respectively,
we have

(02°,64) =00, (6a”,84) = 65,
(65,0%) = 62, <6p3,5°7> = 5%‘.
From the above equations it follows
Vs, (02, 6,) =0 =
(Vs.02b,84) + (02°,Vs,8,) = 0
(T 4024, 6,) + (62°, T, %.64) = 0
[+, =0=T", =-T,.

The other relations in (EI8) can be proved in the same way. O

5. The torsion and curvature tensors

We shall consider the almost strongly distinguished connection (given by
Definition Z@). As

(5.1) T(X,Y)=VxY -VyX - [X,Y]
we first calculate the Lie bracket of basis vectors of T'(Ha,,). We have
(5:2) [8082] = Qucs0® = —(9aNoe — Nuad'Noc)0° + (alb)
[0a, 0% = Q,00° = 8°N,.0°
[6%, 8] = Q%,0° = —0" Np.0°
(67,6 =0,

see (ICR) and (a|b) is the previous expression in which a and b change the places.

Theorem 5.1. For X,Y € T(Hs,) and almost strongly distinguished connec-
tion we have

(5.3) T(X,Y) = (T,%0c+ Thea0®) XY 4
(TBCa(sC + Tgéaaé)Xa}/l; +
(T}, 0, + Ty "0%) Xa Y +

(T°%5, + T,%6%) X, Y3,
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where
(54) Tb ca = Facb - Fbca Tbéa - Fbéa - Faéb - Qaéb
qbe _phe _peb b _pb _p b_q b

Tb ca __ Fbca _ I‘\Zlcb Tb_a — Fb‘a _ Faéb _ Qaéb
TBCTI — FZ)CEL _ Fad; Tb,‘i — FB 7?1 _ 1—\675.
For X,Y € T(Hzy) (B)-(B4) are valid, only the changes (a,b,c,d) —
(a, B,7,9) have to be made.
It is obvious that for the almost distinguished connection in T'(Hay,42:m) We

obtain the torsion tensor of T(Hs,,) and T(Ha,,) separately.

Theorem 5.2. For the s.d. connection and X,Y € T(Hay,) the torsion tensor
has the form

(5.5) T(X,Y) = (T,%0c — Quapd®) XY +
Th o6 X, Y; — Q,06°X Y5 — Q% 6°X, VP,
where the above components of T and Q are given by (B22) and (B4).
For the s.d. connection and X,Y € T'(Hs,,) (B2) and (633) are valid, only
the changes (a, b, c,d) — («a, 3,7, ) have to be made.
The curvature tensor is as usually defined by
R(X,Y)Z =VxVyZ -VyVxZ —VxyZ.
Theorem 5.3. For XY, Z € T(Ha,) i.e.
(5.6) X = X%, + Xa6%, Y = Y6, + V36", Z = Z°6. + Z:6°
and a.s.d. connection, the curvature tensor is given by
(5.7) R(X,Y)Z =
(R&,10a + Rogyad) XY Z¢ + (RE 64 + R, 26 X, Y Z¢ +
(R® 64+ RE 0D)XY;2° + (R, 84 + R, 61 XY Z, +
(R0, + R 50N XY32° + (R} 6 + RG007) XY Zs +

(R84 + R 6D X Y3 Zz + (R°M5, + RP67) X,y Zs.
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The components of the curvature tensors have the form:
Rcdba = chba + Qaabrcdé7
K, = (0al % + Fcfbrfda + Fcf_brfg) — (a[b),
Reva = Kedva + Qacdl
K. gpo = (0l caqp + Fcfbrf(ia + FcbeJ;a) — (alb),
RO = K5+ QL5
K4 =8 Th +T /0 + Fcbefda — (alb),

a_ 75 a a e
Rch - chb + Echd7

K. g =0T g+ Fcfbrf% + Fcfbrfga —(alp), ...,

or shorter

(5.8) Ruyur = Koyuo + Queulyl

S {caé}a ye {dad}v u e {bvl;}» v E {ava}
szuv = (6vrxyu + Fxfurfyv + szuP];v) - (U"U)

and only Qqz, Q2 Q% given by (5.2) are different from zero.

ac’
Remark 5.1. For X,Y,Z € T(Hs,,) and the a.s.d. connection Theorem B3
is valid when the Latin indices change to the corresponding Greek indices.

Theorem 5.4. For X,Y,Z € T(Hs,) (see (68)) and s.d. connection the
curvature tensor is given by

R(X,Y)Z = R%, XY 2%, + R°}) X, Y3 Z:6%,
where

R, = (0,08, + TS E,) — (alb)

¢ ba

REJB& — (65.]:\5&5 + FEfBF Jﬁ) _ (a|b)
Remark 5.2. For X|Y,Z € T(Hz,) and s.d. connection Theorem B2 is

valid when the Latin indices change to the corresponding Greek indices.
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