SPACES WITH σ-LOCALLY COUNTABLE LINDELÖF sn-NETWORKS

Luong Quoc Tuyen¹

Abstract. In this paper, we prove that a space X has a σ -locally countable Lindelöf *sn*-network if and only if X is a compact-covering compact *msss*-image of a locally separable metric space, if and only if X is a sequentially-quotient π and *msss*-image of a locally separable metric space, where "compact-covering" (or "sequentially-quotient") can not be replaced by "sequence-covering". As an application, we give a new characterizations of spaces with σ -locally countable Lindelöf weak bases.

AMS Mathematics Subject Classification (2010): 54E35, 54E40, 54D65, 54E99

Key words and phrases: weak base, sn-network, locally countable, Lindelöf, compact-covering map, compact map, msss-map.

1. Introduction

In [15], S. Lin introduced the concept of *msss*-maps to characterize spaces with certain σ -locally countable networks by *msss*-images of metric spaces. After that, Z. Li, Q. Li, and X. Zhou gave some characterizations for certain *msss*-images of metric spaces ([14]). Recently, N. V. Dung gave some characterizations for certain *msss*-images of locally separable metric spaces ([3]).

In this paper, we prove that a space X has a σ -locally countable Lindelöf sn-network if and only if X is a compact-covering compact msss-image of a locally separable metric space, if and only if X is a sequentially-quotient π and msss-image of a locally separable metric space, where "compact-covering" (or "sequentially-quotient") can not be replaced by "sequence-covering". As an application, we give a new characterizations of spaces with σ -locally countable Lindelöf weak bases.

Throughout this paper, all spaces are assumed to be T_1 and regular, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers. Let \mathcal{P} and \mathcal{Q} be two families of subsets of X and $x \in X$, we denote $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\},$ $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \operatorname{st}(x, \mathcal{P}) = \bigcup (\mathcal{P})_x \text{ and } \mathcal{P} \land \mathcal{Q} = \{P \cap Q : P \in \mathcal{P}, Q \in \mathcal{Q}\}.$ For a sequence $\{x_n\}$ converging to x and $P \subset X$, we say that $\{x_n\}$ is *eventually* in P if $\{x\} \bigcup \{x_n : n \geq m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}$ is *frequently* in P if some subsequence of $\{x_n\}$ is eventually in P.

2. Definitions

Definition 2.1. Let X be a space, $P \subset X$ and let \mathcal{P} be a cover of X.

¹Department of Mathematics, Da Nang University of Education, Viet Nam, e-mail: luongtuyench12@yahoo.com

- 1. P is a sequential neighborhood of x in X [5], if each sequence S converging to x is eventually in P.
- 2. P is a sequentially open subset of X [5], if P is a sequential neighborhood of x in X for every $x \in P$.
- 3. \mathcal{P} is an *so-cover* for X [20], if each element of \mathcal{P} is sequentially open in X.
- 4. \mathcal{P} is a *cfp-cover* for X [27], if whenever K is compact subset of X, there exists a finite family $\{K_i : i \leq n\}$ of closed subsets of K and $\{P_i : i \leq n\} \subset \mathcal{P}$ such that $K = \bigcup \{K_i : i \leq n\}$ and each $K_i \subset P_i$.
- 5. \mathcal{P} is an cs^* -cover for X [26], if every convergent sequence is frequently in some $P \in \mathcal{P}$.

Definition 2.2. Let \mathcal{P} be a family of subsets of a space X.

- 1. For each $x \in X$, \mathcal{P} is a *network* at x in X [17], if $x \in \bigcap \mathcal{P}$, and if $x \in U$ with U open in X, then there exists $P \in \mathcal{P}$ such that $x \in P \in U$.
- 2. \mathcal{P} is a *cs-network* for X [26], if each sequence S converging to a point $x \in U$ with U open in X, S is eventually in $P \subset U$ for some $P \in \mathcal{P}$.
- 3. \mathcal{P} is a cs^* -network for X [26], if for each sequence S converging to a point $x \in U$ with U open in X, S is frequently in $P \subset U$ for some $P \in \mathcal{P}$.
- 4. \mathcal{P} is *Lindelöf*, if each element of \mathcal{P} is a Lindelöf subset of X.
- 5. \mathcal{P} is *point-countable* [4], if each point $x \in X$ belongs to only countably many members of \mathcal{P} .
- 6. \mathcal{P} is *locally countable* [4], if for each $x \in X$, there exists a neighborhood V of x such that V meets only countably many members of \mathcal{P} .
- 7. \mathcal{P} is *locally finite* [4], if for each $x \in X$, there exists a neighborhood V of x such that V meets only finite many members of \mathcal{P} .
- 8. \mathcal{P} is star-countable [24], if each $P \in \mathcal{P}$ meets only countably many members of \mathcal{P} .

Definition 2.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a family of subsets of a space X satisfying that, for every $x \in X$, \mathcal{P}_x is a network at x in X, and if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

- 1. \mathcal{P} is a weak base for X [1], if $G \subset X$ such that for every $x \in G$, there exists $P \in \mathcal{P}_x$ satisfying $P \subset G$, then G is open in X. Here, \mathcal{P}_x is a weak base at x in X.
- 2. \mathcal{P} is an *sn-network* for X [16], if each member of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$. Here, \mathcal{P}_x is an *sn-network* at x in X.

Definition 2.4. Let X be a space.

- 1. X is an *sn-first countable space* [6], if there is a countable *sn*-network at x in X for all $x \in X$.
- 2. X is a cosmic space [22], if X has a countable network.
- 3. X is an \aleph_0 -space [22], if X has a countable cs-network.
- 4. X is a sequential space [5], if each sequentially open subset of X is open.
- 5. X is a *Fréchet space* [4], if for each $x \in \overline{A}$, there exists a sequence in A converging to x.

Definition 2.5. Let $f: X \longrightarrow Y$ be a map.

- 1. f is sequence-covering [23], if for each convergent sequence S of Y, there exists a convergent sequence L of X such that f(L) = S. Note that a sequence-covering map is a strong sequence-covering map in the sense of [12].
- 2. f is compact-covering [22], if for each compact subset K of Y, there exists a compact subset L of X such that f(L) = K.
- 3. f is pseudo-sequence-covering [11], if for each convergent sequence S of Y, there exists a compact subset K of X such that f(K) = S.
- 4. f is a subsequence-covering [18], if for every convergent sequence S of Y, there is a compact subset K of X such that f(K) is a subsequence of S.
- 5. f is sequentially-quotient [2], if for each convergent sequence S of Y, there exists a convergent sequence L of X such that f(L) is a subsequence of S.
- 6. f is a quotient map [4], if whenever $U \subset Y$, U open in Y if and only if $f^{-1}(U)$ open in X.
- 7. f is an msss-map [15], if X is a subspace of the product space $\prod_{i \in \mathbb{N}} X_i$ of a family $\{X_i : i \in \mathbb{N}\}$ of metric spaces and for each $y \in Y$, there is a sequence $\{V_i : i \in \mathbb{N}\}$ of open neighborhoods of y such that each $p_i f^{-1}(V_i)$ is separable in X_i .
- 8. f is compact [4], if each $f^{-1}(y)$ is compact in X.
- 9. f is a π -map [11], if for each $y \in Y$ and for each neighborhood U of y in Y, $d(f^{-1}(y), X f^{-1}(U)) > 0$, where X is a metric space with a metric d.

Definition 2.6 ([17]). Let $\{\mathcal{P}_i\}$ be a cover sequence of a space X. $\{\mathcal{P}_i\}$ is called a *point-star network*, if $\{\operatorname{st}(x, \mathcal{P}_i) : i \in \mathbb{N}\}$ is a network of x for each $x \in X$.

For some undefined or related concepts, we refer the reader to [4], [11] and [17].

3. Main results

Lemma 3.1. Let $f: M \longrightarrow X$ be a sequentially-quotient msss-map, and M be a locally separable metric space. Then, X has a σ -locally countable Lindelöf cs-network.

Proof. By Lemma 1.2 [15], there exists a base \mathcal{B} of M such that $f(\mathcal{B})$ is a σ -locally countable network for X. Since M is locally separable, for each $a \in M$, there exists a separable open neighborhood U_a . Denote

 $\mathcal{C} = \{ B \in \mathcal{B} : B \subset U_a \text{ for some } a \in M \}.$

Then, $\mathcal{C} \subset \mathcal{B}$ and \mathcal{C} is a separable base for M. If we put $\mathcal{P} = f(\mathcal{C})$, then $\mathcal{P} \subset f(\mathcal{B})$, and \mathcal{P} is a σ -locally countable Lindelöf network. Since f is sequentiallyquotient and \mathcal{C} is a base for M, \mathcal{P} is a cs^* -network. Therefore, \mathcal{P} is a σ -locally countable Lindelöf cs^* -network.

Let $\mathcal{P} = \bigcup \{\mathcal{P}_i : i \in \mathbb{N}\}\)$, we can assume that $\mathcal{P}_n \subset \mathcal{P}_{n+1}\)$ for all $n \in \mathbb{N}$. Since each element of \mathcal{P}_i is Lindelöf, each \mathcal{P}_i is star-countable. It follows from Lemma 2.1 [24] that for each $i \in \mathbb{N}$, $\mathcal{P}_i = \bigcup \{\mathcal{Q}_{i,\alpha} : \alpha \in \Lambda_i\}\)$, where $\mathcal{Q}_{i,\alpha}$ is a countable subfamily of \mathcal{P}_i for all $\alpha \in \Lambda_i$ and $(\bigcup \mathcal{Q}_{i,\alpha}) \cap (\bigcup \mathcal{Q}_{i,\beta}) = \emptyset$ for all $\alpha \neq \beta$. For each $i \in \mathbb{N}$ and $\alpha \in \Lambda_i$, we put

 $\mathcal{R}_{i,\alpha} = \{\bigcup \mathcal{F} : \mathcal{F} \text{ is a finite subfamily of } \mathcal{Q}_{i,\alpha}\}.$

Since each $\mathcal{R}_{i,\alpha}$ is countable, we can write $\mathcal{R}_{i,\alpha} = \{R_{i,\alpha,j} : j \in \mathbb{N}\}$. Now, for each $i, j \in \mathbb{N}$, put $\mathcal{F}_{i,j} = \{R_{i,\alpha,j} : \alpha \in \Lambda_i\}$, and denote $\mathcal{G} = \bigcup\{\mathcal{F}_{i,j} : i, j \in \mathbb{N}\}$. Then, each $R_{i,\alpha,j}$ is Lindelöf and each family $\mathcal{F}_{i,j}$ is locally countable. Now, we shall show that \mathcal{G} is a *cs*-network. In fact, let $\{x_n\}$ be a sequence converging to $x \in U$ with U is open in X. Since \mathcal{P} is a point-countable cs^* -network, it follows from Lemma 3 [25] that there exists a finite family $\mathcal{A} \subset (\mathcal{P})_x$ such that $\{x_n\}$ is eventually in $\bigcup \mathcal{A} \subset U$. Furthermore, since \mathcal{A} is finite and $\mathcal{P}_i \subset \mathcal{P}_{i+1}$ for all $i \in \mathbb{N}$, there exists $i \in \mathbb{N}$ such that $\mathcal{A} \subset \mathcal{P}_i$. So, there exists unique $\alpha \in \Lambda_i$ such that $\mathcal{A} \subset \mathcal{Q}_{i,\alpha}$, and $\bigcup \mathcal{A} \in \mathcal{R}_{i,\alpha}$. Thus, $\bigcup \mathcal{A} = R_{i,\alpha,j}$ for some $j \in \mathbb{N}$. Hence, $\bigcup \mathcal{A} \in \mathcal{G}$, and \mathcal{G} is a *cs*-network. Therefore, \mathcal{G} is a σ -locally countable Lindelöf *cs*-network.

Theorem 3.2. The following are equivalent for a space X.

- X is a space with a σ-locally countable sn-network and has an so-cover consisting of ℵ₀-subspaces;
- 2. X has a σ -locally countable Lindelöf sn-network;
- 3. X is a compact-covering compact and msss-image of a locally separable metric space;
- 4. X is a pseudo-sequence-covering compact and msss-image of a locally separable metric space;
- 5. X is a subsequence-covering compact and msss-image of a locally separable metric space;

6. X is a sequentially-quotient π and msss-image of a locally separable metric space.

Proof. (1) \Longrightarrow (2). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a σ -locally countable *sn*-network and \mathcal{O} be an *so*-cover consisting of \aleph_0 -subspaces for X. For each $x \in X$, pick $O_x \in \mathcal{O}$ such that $x \in O_x$ and put

$$\mathcal{G}_x = \{ P \in \mathcal{P}_x : P \subset O_x \}, \ \mathcal{G} = \bigcup \{ \mathcal{G}_x : x \in X \}.$$

Then, \mathcal{G} is a σ -locally countable Lindelöf *sn*-network for X.

(2) \Longrightarrow (3). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\} = \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally countable Lindelöf *sn*-network for X, where each \mathcal{P}_n is locally countable and each \mathcal{P}_x is an *sn*-network at x. Since X is a regular space, we can assume that each element of \mathcal{P} is closed. Since each element of \mathcal{P}_i is Lindelöf, each \mathcal{P}_i is star-countable. It follows from Lemma 2.1 [24] that for each $i \in \mathbb{N}$, $\mathcal{P}_i = \bigcup \{\mathcal{Q}_{i,\alpha} : \alpha \in \Phi_i\}$, where $\mathcal{Q}_{i,\alpha}$ is a countable subfamily of \mathcal{P}_i for all $\alpha \in \Phi_i$ and $(\bigcup \mathcal{Q}_{i,\alpha}) \cap (\bigcup \mathcal{Q}_{i,\beta}) = \emptyset$ for all $\alpha \neq \beta$. Since each $\mathcal{Q}_{i,\alpha}$ is countable, we can write $\mathcal{Q}_{i,\alpha} = \{P_{i,\alpha,j} : j \in \mathbb{N}\}$. Now, for each $i, j \in \mathbb{N}$, put $\mathcal{F}_{i,j} = \{P_{i,\alpha,j} : \alpha \in \Phi_i\}$, and

$$A_{i,j} = \{ x \in X : \mathcal{P}_x \cap \mathcal{F}_{i,j} = \emptyset \}, \ \mathcal{H}_{i,j} = \mathcal{F}_{i,j} \cup \{A_{i,j}\}.$$

Then, $\mathcal{P} = \bigcup \{ \mathcal{F}_{i,j} : i, j \in \mathbb{N} \}$, and

(a) Each $\mathcal{H}_{i,j}$ is locally countable. It is obvious.

(b) Each $\mathcal{H}_{i,j}$ is a cfp-cover. Let K be a non-empty compact subset of X. We shall show that there exists a finite subset of $\mathcal{H}_{i,j}$ which forms a cfp-cover of K. In fact, since X has a σ -locally countable sn-network, K is metrizable. Noting that each $\bigcup \mathcal{Q}_{i,\alpha}$ is sequentially open and $(\bigcup \mathcal{Q}_{i,\alpha}) \cap (\mathcal{Q}_{i,\beta}) = \emptyset$ for all $\alpha \neq \beta$. Then, K meets only finitely many members of $\{\bigcup \mathcal{Q}_{i,\alpha} : \alpha \in \Phi_i\}$. If not, for each $\alpha \in \Phi_i$, take $x_\alpha \in (\bigcup \mathcal{Q}_{i,\alpha}) \cap K$. Thus, there exists a sequence $\{x_{\alpha,n} : n \in \mathbb{N}\} \subset \{x_\alpha : \alpha \in \Phi_i\}$ such that $\{x_{\alpha,n} : n \in \mathbb{N}\}$ converges to $x \in K$. Hence, there exists $\alpha_0 \in \Phi_i$ such that $\{x_{\alpha,n} : n \in \mathbb{N}\}$ is eventually in $\bigcup \mathcal{Q}_{i,\alpha_0}$. This is a contradiction to $x_{\alpha,n} \notin \bigcup \mathcal{Q}_{i,\alpha_0}$ for all $\alpha \neq \alpha_0$. Therefore, K meets only finitely many members of $\mathcal{H}_{i,j}$. Let

$$\Gamma_{i,j} = \{ \alpha \in \Phi_i : P_{i,\alpha,j} \in \mathcal{H}_{i,j}, P_{i,\alpha,j} \cap K \neq \emptyset \}$$

For each $\alpha \in \Gamma_{i,j}$, put $K_{i,\alpha,j} = P_{i,\alpha,j} \cap K$, then $K_{i,j} = \overline{K - \bigcup_{\alpha \in \Gamma_{i,j}} K_{i,\alpha,j}}$. It is obvious that all $K_{i,\alpha,j}$ and $K_{i,j}$ are closed subset of K, and $K = K_{i,j} \cup (\bigcup_{\alpha \in \Gamma_{i,j}} K_{i,\alpha,j})$. Now, we only need to show $K_{i,j} \subset A_{i,j}$. Let $x \in K_{i,j}$, then there exists a sequence $\{x_n\}$ of $K - \bigcup_{\alpha \in \Gamma_{i,j}} K_{i,\alpha,j}$ converging to x. If $P \in \mathcal{P}_x \cap \mathcal{H}_{i,j}$, then P is a sequential neighborhood of x and $P = P_{i,\alpha,j}$ for some $\alpha \in \Gamma_{i,j}$. Thus, $x_n \in P$ whenever $n \geq m$ for some $m \in \mathbb{N}$. Hence, $x_n \in K_{i,\alpha,j}$ for some $\alpha \in \Gamma_{i,j}$, a contradiction. So, $\mathcal{P}_x \cap \mathcal{H}_{i,j} = \emptyset$, and $x \in A_{i,j}$. This implies that $K_{i,j} \subset A_{i,j}$ and $\{A_{i,j}\} \bigcup \{P_{i,\alpha,j} : \alpha \in \Gamma_{i,j}\}$ is a *cfp*-cover of K.

(c) $\{\mathcal{H}_{i,j} : i, j \in \mathbb{N}\}$ is a point-star network for X. Let $x \in U$ with U is open in X. Then, $x \in P \subset U$ for some $P \in \mathcal{P}_x$. Thus, there exists $i \in \mathbb{N}$ such that $P \in \mathcal{P}_i$. Hence, there exists a unique $\alpha \in \Phi_i$ such that $P \in \mathcal{Q}_{i,\alpha}$. This implies that $P = P_{i,\alpha,j} \in \mathcal{H}_{i,j}$ for some $j \in \mathbb{N}$. Since $P \in \mathcal{P}_x \cap \mathcal{H}_{i,j}$, $x \notin A_{i,j}$. Noting that $P \cap P_{i,\alpha,j} = \emptyset$ for all $j \neq i$. Then, $\operatorname{st}(x, \mathcal{H}_{i,j}) = P \subset U$.

Next, we write $\{\mathcal{H}_{m,n} : m, n \in \mathbb{N}\} = \{\mathcal{G}_i : i \in \mathbb{N}\}$. For each $n \in \mathbb{N}$, put $\mathcal{G}_n = \{P_\alpha : \alpha \in \Lambda_n\}$ and endow Λ_n with the discrete topology. Then,

$$M = \left\{ \alpha = (\alpha_n) \in \prod_{n \in \mathbb{N}} \Lambda_n : \{P_{\alpha_n}\} \text{ forms a network at some point } x_\alpha \in X \right\}$$

is a metric space and the point x_{α} is unique in X for every $\alpha \in M$. Define $f : M \longrightarrow X$ by $f(\alpha) = x_{\alpha}$. It follows from Lemma 13 [21] that f is a compact-covering and compact map. On the other hand, we have

Claim 1. M is locally separable.

Let $a = (\alpha_i) \in M$. Then, $\{P_{\alpha_i}\}$ is a network at some point $x_a \in X$, and $x_a \in P$ for some $P \in \mathcal{P}_{x_a}$. Thus, there exists $m \in \mathbb{N}$ such that $P \in \mathcal{P}_m$. Hence, there exists a unique $\alpha \in \Phi_m$ such that $P \in \mathcal{Q}_{m,\alpha}$. Therefore, $P = P_{m,\alpha,n} \in \mathcal{H}_{m,n}$ for some $n \in \mathbb{N}$. Since $P \in \mathcal{P}_{x_a} \cap \mathcal{H}_{m,n}$, $x_a \notin A_{m,n}$. Noting that $P \cap P_{m,\alpha,n} = \emptyset$ for every $n \in \mathbb{N}$ such that $n \neq m$. This implies that $\operatorname{st}(x, \mathcal{H}_{m,n}) = P$. Then, $\mathcal{H}_{m,n} = \mathcal{G}_{i_0}$ for some $i_0 \in \mathbb{N}$ and $P = P_{\alpha_{i_0}}$. Thus, $P_{\alpha_{i_0}}$ is Lindelöf. Put

$$U_a = M \cap \Big\{ (\beta_i) \in \prod_{i \in \mathbb{N}} \Lambda_i : \beta_i = \alpha_i, i \le i_0 \Big\}.$$

Then, U_a is an open neighborhood of a in M. Now, for each $i \leq i_0$, put $\Delta_i = \{\alpha_i\}$, and for each $i > i_0$, we put $\Delta_i = \{\alpha \in \Lambda_i : P_\alpha \cap P_{\alpha_{i_0}} \neq \emptyset\}$. Then, $U_a \subset \prod_{i \in \mathbb{N}} \Delta_i$. Furthermore, since each \mathcal{P}_i is locally countable and $P_{\alpha_{i_0}}$ is Lindelöf, Δ_i is countable for every $i > i_0$. Thus, U_a is separable, and M is locally separable.

Claim 2. f is an *msss*-map.

Let $x \in X$. For each $n \in \mathbb{N}$, since \mathcal{G}_n is locally countable, there is an open neighborhood V such that V_n intersects at most countable members of \mathcal{G}_n . Put

$$\Theta_n = \{ \alpha \in \Lambda_n : P_\alpha \cap V_n \neq \emptyset \}$$

Then, Θ_n is countable and $p_n f^{-1}(V_n) \subset \Theta_n$. Hence, $p_n f^{-1}(V_n)$ is a separable subset of Λ_n , so f is an *msss*-map.

 $(3) \Longrightarrow (4) \Longrightarrow (5) \Longrightarrow (6)$. It is obvious.

(6) \Longrightarrow (1). Let $f: M \longrightarrow X$ be a sequentially-quotient π and msss-map, where M be a locally separable metric space. By Corollary 2.9 [7], X has a point-star network $\{\mathcal{U}_n\}$, where each \mathcal{U}_n is a cs^* -cover. For each $n \in \mathbb{N}$, put $\mathcal{G}_n = \bigwedge_{i \le n} \mathcal{U}_i$. Now, for each $x \in X$, let $\mathcal{G}_x = \{\operatorname{st}(x, \mathcal{G}_n) : n \in \mathbb{N}\}$. Since each \mathcal{U}_n is a cs^* -cover, it implies that $\bigcup \{\mathcal{G}_x : x \in X\}$ is an *sn*-network for X. Hence, X is an *sn*-first countable space. On the other hand, since f is a sequentially-quotient msss-map, it follows from Lemma 3.1 that X has a σ locally countable Lindelöf cs-network \mathcal{P} . We can assume that each \mathcal{P} is closed under finite intersections. Then, each element of \mathcal{P} is a cosmic subspace. By Theorem 3.4 [20], X has an so-cover consisting of \aleph_0 -subspaces. Now, we only need to prove that X has a σ -locally countable sn-network. In fact, since X is sn-first countable, X has an sn-network $\mathcal{Q} = \bigcup \{ \mathcal{Q}_x : x \in X \}$ with each $\mathcal{Q}_x = \{ Q_n(x) : n \in \mathbb{N} \}$ is a countable weak base at x. For each $x \in X$, put

$$\mathcal{P}_x = \{ P \in \mathcal{P} : Q_n(x) \subset P \text{ for some } n \in \mathbb{N} \}.$$

By using proof of Lemma 7 [19], we obtain that \mathcal{P}_x is an *sn*-network at x. Then, $\mathcal{G} = \bigcup \{\mathcal{P}_x : x \in X\}$ is an *sn*-network for X. Since $\mathcal{G} \subset \mathcal{P}$, it implies that \mathcal{G} is locally countable. Thus, X has a σ -locally countable *sn*-network. \Box

By Theorem 3.2, the following corollary holds.

Corollary 3.3. The following are equivalent for a space X.

- 1. X is a local \aleph_0 -subspace with a σ -locally countable weak base;
- 2. X has a σ -locally countable Lindelöf weak base;
- 3. X is a compact-covering quotient compact and msss-image of a locally separable metric space;
- 4. X is a pseudo-sequence-covering quotient compact and msss-image of a locally separable metric space;
- 5. X is a subsequence-covering quotient compact and msss-image of a locally separable metric space;
- 6. X is a quotient π and msss-image of a locally separable metric space.

Example 3.4. Let C_n be a convergent sequence containing its limit point p_n for each $n \in \mathbb{N}$, where $C_m \cap C_n = \emptyset$ if $m \neq n$. Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$ be the set of all rational numbers of the real line \mathbb{R} . Put $M = (\bigoplus \{C_n : n \in \mathbb{N}\}) \oplus \mathbb{R}$ and let X be the quotient space obtained from M by identifying each p_n in C_n with q_n in \mathbb{R} . Then, by the proof of Example 3.1 [10], X has a countable weak base and X is not a sequence-covering quotient π -image of a metric space. Hence,

- 1. A space with a σ -locally countable Lindelöf sn-network \neq a sequencecovering π and msss-image of a locally separable metric space.
- 2. A space with a σ -locally countable Lindelöf weak base \neq a sequencecovering quotient π and *msss*-image of a locally separable metric space.

Example 3.5. Using Example 3.1 [9], it is easy to see that X is Hausdorff, non-regular and X has a countable base, but it is not a sequentially-quotient π -image of a metric space. This shows that regular properties of X can not be omitted in Theorem 3.2 and Corollary 3.3.

Example 3.6. S_{ω} is a Fréchet and \aleph_0 -space, but it is not first countable. Thus, S_{ω} has a σ -locally countable Lindelöf *cs*-network. It follows from Theorem 2.8 [3] that X is a sequence-covering *msss*-image of a locally separable metric space. Furthermore, since S_{ω} is not first countable, it has not point-countable *sn*-network. Hence,

- 1. A space with a σ -locally countable Lindelöf *cs*-network \neq a sequentiallyquotient π and *msss*-image of a locally separable metric space.
- 2. A sequence-covering quotient *msss*-image of a locally separable metric space $\Rightarrow X$ has a σ -locally countable Lindelöf *sn*-network.

Example 3.7. Using Example 2.7 [13], it is easy to see that X is a compactcovering quotient and compact image of a locally compact metric space, but it has no point-countable *cs*-network. Thus, a compact-covering quotient and compact image of a locally separable metric space $\Rightarrow X$ has a σ -locally countable Lindelöf *sn*-network.

Example 3.8. There exists a space X has a locally countable *sn*-network, which is not an \aleph -space (see Example 2.19 [8]). Then, a space with a σ -locally countable Lindelöf *sn*-network $\neq X$ has a σ -locally finite Lindelöf *sn*-network.

References

- Arhangel'skii, A.V., Mappings and spaces. Russian Math. Surveys 21(4) (1966), 115-162.
- [2] Boone, J.R., Siwiec, F., Sequentially quotient mappings. Czech. Math. J. 26 (1976), 174-182.
- [3] Dung, N.V., On sequence-covering msss-images of locally separable metric spaces. Lobachevskii J. Math. 30(1) (2009), 67-75.
- [4] Engelking, R., General Topology (revised and completed edition). Heldermann, Berlin, 1989.
- [5] Franklin, S.P., Spaces in which sequences suffice. Fund. Math. 57 (1965), 107-115.
- [6] Ge, Y., Characterizations of sn-metrizable spaces. Publ. Inst. Math., Nouv. Ser. 74 (88) (2003), 121-128.
- [7] Ge, Y., On pseudo-sequence-covering π-images of metric spaces. Mat. Vesnik 57 (2005), 113-120.
- [8] Ge, X., Spaces with a locally countable sn-network. Lobachevskii J. Math. 26 (2007), 33-49.
- [9] Ge, Y., Gu, J.S., On π -images of separable metric spaces. Math. Sci. 10 (2004), 65-71.
- [10] Ge, Y., Lin, S., g-metrizable spaces and the images of semi-metric spaces. Czech. Math. J. 57 (132) (2007), 1141-1149.
- [11] Ikeda, Y., Liu, C., Tanaka, Y., Quotient compact images of metric spaces, and related matters. Topology Appl. 122(1-2) (2002), 237-252.
- [12] Li, Z., A note on \aleph -spaces and g-metrizable spaces. Czech. Math. J. 55 (2005), 803-808.
- [13] Li, Z., On π -s-images of metric spaces. Int. J. Math. Sci. 7 (2005), 1101-1107.
- [14] Li, Z., Li, Q., Zhou X., On sequence-covering msss-maps. Mat. Vesnik 59 (2007), 15-21.
- [15] Lin, S., Locally countable collections, locally finite collections and Alexandroff's problems. Acta Math. Sinica 37 (1994), 491-496. (In Chinese)

- [16] Lin, S., On sequence-covering s-mappings. Adv. Math. 25(6) (1996), 548-551.
 (China)
- [17] Lin, S., Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press, Beijing, 2002.
- [18] Lin, S., Liu, C., Dai, M., Images on locally separable metric spaces. Acta Math. Sinica (N.S.) 13 (1997), 1-8.
- [19] Lin, S., Tanaka, Y., Point-countable k-networks, closed maps, and related results. Topology Appl. 59 (1994), 79-86.
- [20] Lin, S., Yan, P., Sequence-covering maps of metric spaces. Topology Appl. 109 (2001) 301-314.
- [21] Lin, S., Yan, P., Notes on *cfp*-covers. Comment. Math. Univ. Carolin. 44 (2003), 295-306.
- [22] Michael, E., \aleph_0 -spaces. J. Math. Mech. 15 (1966), 983-1002.
- [23] Siwiec, F., Sequence-covering and countably bi-quotient mappings. General Topology Appl. 1 (1971), 143-153.
- [24] Sakai, M., On spaces with a star-countable k-networks. Houston J. Math. 23(1) (1997), 45-56.
- [25] Tanaka, Y., Li, Z., Certain covering-maps and k-networks, and related matters. Topology Proc. 27(1) (2003), 317-334.
- [26] Tanaka, Y., Ge, Y., Around quotient compact images of metric spaces, and symmetric spaces. Houston J. Math. 32(1) (2006), 99-117.
- [27] Yan, P., On the compact images of metric spaces. J. Math. Study 30 (1997), 185-187. (Chinese)

Received by the editors June 23, 2013