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SPACES WITH σ-LOCALLY COUNTABLE
LINDELÖF sn-NETWORKS

Luong Quoc Tuyen1

Abstract. In this paper, we prove that a space X has a σ-locally
countable Lindelöf sn-network if and only if X is a compact-covering
compact msss-image of a locally separable metric space, if and only if X
is a sequentially-quotient π and msss-image of a locally separable metric
space, where “compact-covering” (or “sequentially-quotient”) can not be
replaced by “sequence-covering”. As an application, we give a new char-
acterizations of spaces with σ-locally countable Lindelöf weak bases.

AMS Mathematics Subject Classification (2010): 54E35, 54E40, 54D65,
54E99

Key words and phrases: weak base, sn-network, locally countable, Lin-
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1. Introduction

In [15], S. Lin introduced the concept of msss-maps to characterize spaces
with certain σ-locally countable networks by msss-images of metric spaces.
After that, Z. Li, Q. Li, and X. Zhou gave some characterizations for certain
msss-images of metric spaces ([14]). Recently, N. V. Dung gave some charac-
terizations for certain msss-images of locally separable metric spaces ([3]).

In this paper, we prove that a space X has a σ-locally countable Lindelöf
sn-network if and only if X is a compact-covering compact msss-image of a
locally separable metric space, if and only if X is a sequentially-quotient π and
msss-image of a locally separable metric space, where “compact-covering” (or
“sequentially-quotient”) can not be replaced by “sequence-covering”. As an
application, we give a new characterizations of spaces with σ-locally countable
Lindelöf weak bases.

Throughout this paper, all spaces are assumed to be T1 and regular, all maps
are continuous and onto, N denotes the set of all natural numbers. Let P and Q
be two families of subsets of X and x ∈ X, we denote (P)x = {P ∈ P : x ∈ P},∪
P =

∪
{P : P ∈ P}, st(x,P) =

∪
(P)x and P

∧
Q = {P∩Q : P ∈ P, Q ∈ Q}.

For a sequence {xn} converging to x and P ⊂ X, we say that {xn} is eventually
in P if {x}

∪
{xn : n ≥ m} ⊂ P for some m ∈ N, and {xn} is frequently in P if

some subsequence of {xn} is eventually in P .

2. Definitions

Definition 2.1. Let X be a space, P ⊂ X and let P be a cover of X.
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1. P is a sequential neighborhood of x in X [5], if each sequence S converging
to x is eventually in P .

2. P is a sequentially open subset of X [5], if P is a sequential neighborhood
of x in X for every x ∈ P .

3. P is an so-cover for X [20], if each element of P is sequentially open in
X.

4. P is a cfp-cover for X [27], if whenever K is compact subset of X,
there exists a finite family {Ki : i ≤ n} of closed subsets of K and
{Pi : i ≤ n} ⊂ P such that K =

∪
{Ki : i ≤ n} and each Ki ⊂ Pi.

5. P is an cs∗-cover for X [26], if every convergent sequence is frequently in
some P ∈ P.

Definition 2.2. Let P be a family of subsets of a space X.

1. For each x ∈ X, P is a network at x in X [17], if x ∈
∩

P, and if x ∈ U
with U open in X, then there exists P ∈ P such that x ∈ P ∈ U .

2. P is a cs-network for X [26], if each sequence S converging to a point
x ∈ U with U open in X, S is eventually in P ⊂ U for some P ∈ P.

3. P is a cs∗-network for X [26], if for each sequence S converging to a point
x ∈ U with U open in X, S is frequently in P ⊂ U for some P ∈ P.

4. P is Lindelöf, if each element of P is a Lindelöf subset of X.

5. P is point-countable [4], if each point x ∈ X belongs to only countably
many members of P.

6. P is locally countable [4], if for each x ∈ X, there exists a neighborhood
V of x such that V meets only countably many members of P.

7. P is locally finite [4], if for each x ∈ X, there exists a neighborhood V of
x such that V meets only finite many members of P.

8. P is star-countable [24], if each P ∈ P meets only countably many mem-
bers of P.

Definition 2.3. Let P =
∪
{Px : x ∈ X} be a family of subsets of a space X

satisfying that, for every x ∈ X, Px is a network at x in X, and if U, V ∈ Px,
then W ⊂ U ∩ V for some W ∈ Px.

1. P is a weak base for X [1], if G ⊂ X such that for every x ∈ G, there
exists P ∈ Px satisfying P ⊂ G, then G is open in X. Here, Px is a weak
base at x in X.

2. P is an sn-network for X [16], if each member of Px is a sequential
neighborhood of x for all x ∈ X. Here, Px is an sn-network at x in X.

Definition 2.4. Let X be a space.
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1. X is an sn-first countable space [6], if there is a countable sn-network at
x in X for all x ∈ X.

2. X is a cosmic space [22], if X has a countable network.

3. X is an ℵ0-space [22], if X has a countable cs-network.

4. X is a sequential space [5], if each sequentially open subset of X is open.

5. X is a Fréchet space [4], if for each x ∈ A, there exists a sequence in A
converging to x.

Definition 2.5. Let f : X −→ Y be a map.

1. f is sequence-covering [23], if for each convergent sequence S of Y , there
exists a convergent sequence L of X such that f(L) = S. Note that a
sequence-covering map is a strong sequence-covering map in the sense of
[12].

2. f is compact-covering [22], if for each compact subset K of Y , there exists
a compact subset L of X such that f(L) = K.

3. f is pseudo-sequence-covering [11], if for each convergent sequence S of
Y , there exists a compact subset K of X such that f(K) = S.

4. f is a subsequence-covering [18], if for every convergent sequence S of Y ,
there is a compact subset K of X such that f(K) is a subsequence of S.

5. f is sequentially-quotient [2], if for each convergent sequence S of Y , there
exists a convergent sequence L of X such that f(L) is a subsequence of
S.

6. f is a quotient map [4], if whenever U ⊂ Y , U open in Y if and only if
f−1(U) open in X.

7. f is an msss-map [15], if X is a subspace of the product space
∏

i∈N Xi

of a family {Xi : i ∈ N} of metric spaces and for each y ∈ Y , there
is a sequence {Vi : i ∈ N} of open neighborhoods of y such that each
pif

−1(Vi) is separable in Xi.

8. f is compact [4], if each f−1(y) is compact in X.

9. f is a π-map [11], if for each y ∈ Y and for each neighborhood U of y in
Y , d

(
f−1(y), X − f−1(U)

)
> 0, where X is a metric space with a metric

d.

Definition 2.6 ([17]). Let {Pi} be a cover sequence of a space X. {Pi} is
called a point-star network, if {st(x,Pi) : i ∈ N} is a network of x for each
x ∈ X.

For some undefined or related concepts, we refer the reader to [4], [11] and
[17].
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3. Main results

Lemma 3.1. Let f : M −→ X be a sequentially-quotient msss-map, and M
be a locally separable metric space. Then, X has a σ-locally countable Lindelöf
cs-network.

Proof. By Lemma 1.2 [15], there exists a base B of M such that f(B) is a σ-
locally countable network for X. Since M is locally separable, for each a ∈ M ,
there exists a separable open neighborhood Ua. Denote

C = {B ∈ B : B ⊂ Ua for some a ∈ M}.

Then, C ⊂ B and C is a separable base for M . If we put P = f(C), then P ⊂
f(B), and P is a σ-locally countable Lindelöf network. Since f is sequentially-
quotient and C is a base for M , P is a cs∗-network. Therefore, P is a σ-locally
countable Lindelöf cs∗-network.

Let P =
∪
{Pi : i ∈ N}, we can assume that Pn ⊂ Pn+1 for all n ∈ N.

Since each element of Pi is Lindelöf, each Pi is star-countable. It follows from
Lemma 2.1 [24] that for each i ∈ N, Pi =

∪
{Qi,α : α ∈ Λi}, where Qi,α is a

countable subfamily of Pi for all α ∈ Λi and (
∪
Qi,α) ∩ (

∪
Qi,β) = ∅ for all

α ̸= β. For each i ∈ N and α ∈ Λi, we put

Ri,α = {
∪
F : F is a finite subfamily of Qi,α}.

Since each Ri,α is countable, we can write Ri,α = {Ri,α,j : j ∈ N}. Now, for
each i, j ∈ N, put Fi,j = {Ri,α,j : α ∈ Λi}, and denote G =

∪
{Fi,j : i, j ∈ N}.

Then, each Ri,α,j is Lindelöf and each family Fi,j is locally countable. Now, we
shall show that G is a cs-network. In fact, let {xn} be a sequence converging to
x ∈ U with U is open in X. Since P is a point-countable cs∗-network, it follows
from Lemma 3 [25] that there exists a finite family A ⊂ (P)x such that {xn}
is eventually in

∪
A ⊂ U . Furthermore, since A is finite and Pi ⊂ Pi+1 for all

i ∈ N, there exists i ∈ N such that A ⊂ Pi. So, there exists unique α ∈ Λi such
that A ⊂ Qi,α, and

∪
A ∈ Ri,α. Thus,

∪
A = Ri,α,j for some j ∈ N. Hence,∪

A ∈ G, and G is a cs-network. Therefore, G is a σ-locally countable Lindelöf
cs-network.

Theorem 3.2. The following are equivalent for a space X.

1. X is a space with a σ-locally countable sn-network and has an so-cover
consisting of ℵ0-subspaces;

2. X has a σ-locally countable Lindelöf sn-network;

3. X is a compact-covering compact and msss-image of a locally separable
metric space;

4. X is a pseudo-sequence-covering compact and msss-image of a locally
separable metric space;

5. X is a subsequence-covering compact and msss-image of a locally sepa-
rable metric space;
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6. X is a sequentially-quotient π and msss-image of a locally separable met-
ric space.

Proof. (1) =⇒ (2). Let P =
∪
{Px : x ∈ X} be a σ-locally countable sn-

network and O be an so-cover consisting of ℵ0-subspaces for X. For each
x ∈ X, pick Ox ∈ O such that x ∈ Ox and put

Gx = {P ∈ Px : P ⊂ Ox}, G =
∪
{Gx : x ∈ X}.

Then, G is a σ-locally countable Lindelöf sn-network for X.
(2) =⇒ (3). Let P =

∪
{Px : x ∈ X} = {Pn : n ∈ N} be a σ-locally

countable Lindelöf sn-network for X, where each Pn is locally countable and
each Px is an sn-network at x. Since X is a regular space, we can assume
that each element of P is closed. Since each element of Pi is Lindelöf, each Pi

is star-countable. It follows from Lemma 2.1 [24] that for each i ∈ N, Pi =∪
{Qi,α : α ∈ Φi}, where Qi,α is a countable subfamily of Pi for all α ∈ Φi and

(
∪
Qi,α)∩(

∪
Qi,β) = ∅ for all α ̸= β. Since each Qi,α is countable, we can write

Qi,α = {Pi,α,j : j ∈ N}. Now, for each i, j ∈ N, put Fi,j = {Pi,α,j : α ∈ Φi},
and

Ai,j = {x ∈ X : Px ∩ Fi,j = ∅}, Hi,j = Fi,j ∪ {Ai,j}.

Then, P =
∪
{Fi,j : i, j ∈ N}, and

(a) Each Hi,j is locally countable. It is obvious.
(b) Each Hi,j is a cfp-cover. Let K be a non-empty compact subset of X.

We shall show that there exists a finite subset of Hi,j which forms a cfp-cover
of K. In fact, since X has a σ-locally countable sn-network, K is metrizable.
Noting that each

∪
Qi,α is sequentially open and (

∪
Qi,α) ∩ (Qi,β) = ∅ for all

α ̸= β. Then, K meets only finitely many members of {
∪
Qi,α : α ∈ Φi}. If

not, for each α ∈ Φi, take xα ∈ (
∪
Qi,α) ∩ K. Thus, there exists a sequence

{xα,n : n ∈ N} ⊂ {xα : α ∈ Φi} such that {xα,n : n ∈ N} converges to x ∈ K.
Hence, there exists α0 ∈ Φi such that {xα,n : n ∈ N} is eventually in

∪
Qi,α0 .

This is a contradiction to xα,n /∈
∪
Qi,α0 for all α ̸= α0. Therefore, K meets

only finitely many members of Hi,j . Let

Γi,j = {α ∈ Φi : Pi,α,j ∈ Hi,j , Pi,α,j ∩K ̸= ∅}.

For each α ∈ Γi,j , put Ki,α,j = Pi,α,j ∩ K, then Ki,j = K −
∪

α∈Γi,j
Ki,α,j .

It is obvious that all Ki,α,j and Ki,j are closed subset of K, and K = Ki,j ∪
(
∪

α∈Γi,j
Ki,α,j). Now, we only need to show Ki,j ⊂ Ai,j . Let x ∈ Ki,j ,

then there exists a sequence {xn} of K −
∪

α∈Γi,j
Ki,α,j converging to x. If

P ∈ Px ∩ Hi,j , then P is a sequential neighborhood of x and P = Pi,α,j for
some α ∈ Γi,j . Thus, xn ∈ P whenever n ≥ m for some m ∈ N. Hence,
xn ∈ Ki,α,j for some α ∈ Γi,j , a contradiction. So, Px ∩Hi,j = ∅, and x ∈ Ai,j .
This implies that Ki,j ⊂ Ai,j and {Ai,j}

∪
{Pi,α,j : α ∈ Γi,j} is a cfp-cover of

K.
(c) {Hi,j : i, j ∈ N} is a point-star network for X. Let x ∈ U with U is

open in X. Then, x ∈ P ⊂ U for some P ∈ Px. Thus, there exists i ∈ N such
that P ∈ Pi. Hence, there exists a unique α ∈ Φi such that P ∈ Qi,α. This
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implies that P = Pi,α,j ∈ Hi,j for some j ∈ N. Since P ∈ Px ∩ Hi,j , x /∈ Ai,j .
Noting that P ∩ Pi,α,j = ∅ for all j ̸= i. Then, st(x,Hi,j) = P ⊂ U .

Next, we write {Hm,n : m,n ∈ N} = {Gi : i ∈ N}. For each n ∈ N, put
Gn = {Pα : α ∈ Λn} and endow Λn with the discrete topology. Then,

M =
{
α = (αn) ∈

∏
n∈N

Λn : {Pαn} forms a network at some point xα ∈ X
}

is a metric space and the point xα is unique in X for every α ∈ M . Define
f : M −→ X by f(α) = xα. It follows from Lemma 13 [21] that f is a
compact-covering and compact map. On the other hand, we have

Claim 1. M is locally separable.
Let a = (αi) ∈ M . Then, {Pαi

} is a network at some point xa ∈ X, and
xa ∈ P for some P ∈ Pxa . Thus, there exists m ∈ N such that P ∈ Pm.
Hence, there exists a unique α ∈ Φm such that P ∈ Qm,α. Therefore, P =
Pm,α,n ∈ Hm,n for some n ∈ N. Since P ∈ Pxa ∩ Hm,n, xa /∈ Am,n. Noting
that P ∩ Pm,α,n = ∅ for every n ∈ N such that n ̸= m. This implies that
st(x,Hm,n) = P . Then, Hm,n = Gi0 for some i0 ∈ N and P = Pαi0

. Thus, Pαi0

is Lindelöf. Put

Ua = M ∩
{
(βi) ∈

∏
i∈N

Λi : βi = αi, i ≤ i0

}
.

Then, Ua is an open neighborhood of a in M . Now, for each i ≤ i0, put
∆i = {αi}, and for each i > i0, we put ∆i = {α ∈ Λi : Pα ∩ Pαi0

̸= ∅}.
Then, Ua ⊂

∏
i∈N ∆i. Furthermore, since each Pi is locally countable and Pαi0

is Lindelöf, ∆i is countable for every i > i0. Thus, Ua is separable, and M is
locally separable.

Claim 2. f is an msss-map.
Let x ∈ X. For each n ∈ N, since Gn is locally countable, there is an open

neighborhood V such that Vn intersects at most countable members of Gn. Put

Θn = {α ∈ Λn : Pα ∩ Vn ̸= ∅}

Then, Θn is countable and pnf
−1(Vn) ⊂ Θn. Hence, pnf

−1(Vn) is a separable
subset of Λn, so f is an msss-map.

(3) =⇒ (4) =⇒ (5) =⇒ (6). It is obvious.
(6) =⇒ (1). Let f : M −→ X be a sequentially-quotient π and msss-map,

where M be a locally separable metric space. By Corollary 2.9 [7], X has a
point-star network {Un}, where each Un is a cs∗-cover. For each n ∈ N, put
Gn =

∧
i≤n Ui. Now, for each x ∈ X, let Gx = {st(x,Gn) : n ∈ N}. Since

each Un is a cs∗-cover, it implies that
∪
{Gx : x ∈ X} is an sn-network for

X. Hence, X is an sn-first countable space. On the other hand, since f is a
sequentially-quotient msss-map, it follows from Lemma 3.1 that X has a σ-
locally countable Lindelöf cs-network P. We can assume that each P is closed
under finite intersections. Then, each element of P is a cosmic subspace. By
Theorem 3.4 [20], X has an so-cover consisting of ℵ0-subspaces. Now, we only
need to prove that X has a σ-locally countable sn-network. In fact, since X
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is sn-first countable, X has an sn-network Q =
∪
{Qx : x ∈ X} with each

Qx = {Qn(x) : n ∈ N} is a countable weak base at x. For each x ∈ X, put

Px = {P ∈ P : Qn(x) ⊂ P for some n ∈ N}.

By using proof of Lemma 7 [19], we obtain that Px is an sn-network at x.
Then, G =

∪
{Px : x ∈ X} is an sn-network for X. Since G ⊂ P, it implies

that G is locally countable. Thus, X has a σ-locally countable sn-network.

By Theorem 3.2, the following corollary holds.

Corollary 3.3. The following are equivalent for a space X.

1. X is a local ℵ0-subspace with a σ-locally countable weak base;

2. X has a σ-locally countable Lindelöf weak base;

3. X is a compact-covering quotient compact and msss-image of a locally
separable metric space;

4. X is a pseudo-sequence-covering quotient compact and msss-image of a
locally separable metric space;

5. X is a subsequence-covering quotient compact and msss-image of a locally
separable metric space;

6. X is a quotient π and msss-image of a locally separable metric space.

Example 3.4. Let Cn be a convergent sequence containing its limit point pn
for each n ∈ N, where Cm ∩Cn = ∅ if m ̸= n. Let Q = {qn : n ∈ N} be the set
of all rational numbers of the real line R. Put M = (

⊕
{Cn : n ∈ N})⊕R and

let X be the quotient space obtained from M by identifying each pn in Cn with
qn in R. Then, by the proof of Example 3.1 [10], X has a countable weak base
and X is not a sequence-covering quotient π-image of a metric space. Hence,

1. A space with a σ-locally countable Lindelöf sn-network ̸⇒ a sequence-
covering π and msss-image of a locally separable metric space.

2. A space with a σ-locally countable Lindelöf weak base ̸⇒ a sequence-
covering quotient π and msss-image of a locally separable metric space.

Example 3.5. Using Example 3.1 [9], it is easy to see that X is Hausdorff,
non-regular and X has a countable base, but it is not a sequentially-quotient
π-image of a metric space. This shows that regular properties of X can not be
omitted in Theorem 3.2 and Corollary 3.3.

Example 3.6. Sω is a Fréchet and ℵ0-space, but it is not first countable. Thus,
Sω has a σ-locally countable Lindelöf cs-network. It follows from Theorem 2.8
[3] that X is a sequence-covering msss-image of a locally separable metric
space. Furthermore, since Sω is not first countable, it has not point-countable
sn-network. Hence,
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1. A space with a σ-locally countable Lindelöf cs-network ̸⇒ a sequentially-
quotient π and msss-image of a locally separable metric space.

2. A sequence-covering quotient msss-image of a locally separable metric
space ̸⇒ X has a σ-locally countable Lindelöf sn-network.

Example 3.7. Using Example 2.7 [13], it is easy to see that X is a compact-
covering quotient and compact image of a locally compact metric space, but
it has no point-countable cs-network. Thus, a compact-covering quotient and
compact image of a locally separable metric space ̸⇒ X has a σ-locally count-
able Lindelöf sn-network.

Example 3.8. There exists a space X has a locally countable sn-network,
which is not an ℵ-space (see Example 2.19 [8]). Then, a space with a σ-locally
countable Lindelöf sn-network ̸⇒ X has a σ-locally finite Lindelöf sn-network.
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[16] Lin, S., On sequence-covering s-mappings. Adv. Math. 25(6) (1996), 548-551.
(China)

[17] Lin, S., Point-Countable Covers and Sequence-Covering Mappings. Chinese Sci-
ence Press, Beijing, 2002.

[18] Lin, S., Liu, C., Dai, M., Images on locally separable metric spaces. Acta Math.
Sinica (N.S.) 13 (1997), 1-8.

[19] Lin, S., Tanaka, Y., Point-countable k-networks, closed maps, and related re-
sults. Topology Appl. 59 (1994), 79-86.

[20] Lin, S., Yan, P., Sequence-covering maps of metric spaces. Topology Appl. 109
(2001) 301-314.

[21] Lin, S., Yan, P., Notes on cfp-covers. Comment. Math. Univ. Carolin. 44 (2003),
295-306.

[22] Michael, E., ℵ0-spaces. J. Math. Mech. 15 (1966), 983-1002.

[23] Siwiec, F., Sequence-covering and countably bi-quotient mappings. General
Topology Appl. 1 (1971), 143-153.

[24] Sakai, M., On spaces with a star-countable k-networks. Houston J. Math. 23(1)
(1997), 45-56.

[25] Tanaka, Y., Li, Z., Certain covering-maps and k-networks, and related matters.
Topology Proc. 27(1) (2003), 317-334.

[26] Tanaka, Y., Ge, Y., Around quotient compact images of metric spaces, and
symmetric spaces. Houston J. Math. 32(1) (2006), 99-117.

[27] Yan, P., On the compact images of metric spaces. J. Math. Study 30 (1997),
185-187. (Chinese)

Received by the editors June 23, 2013


	Introduction
	Definitions
	Main results

